# Experiment 05038

Study of the diffractive component in the one-proton knockout of <sup>9</sup>C

## Goals of the experiment

- Knockout reactions: sudden removal of one or two nucleons from the projectile by a light target (<sup>9</sup>Be)
  - Direct reaction
  - Two reaction mechanisms
    - Stripping: removed nucleon interacts with target
    - Diffraction: removed nucleon elastically scattered
  - In most experiments, only the heavy residue is detected
  - Relative contributions of each mechanism unknown experimentally
- Detect removed proton in <sup>9</sup>C one-proton knockout reactions to single out diffraction

### Experimental setup

- S800 + HiRA
  - S800 to detect <sup>8</sup>B residue
  - HiRA to detect proton in coincidence
- <sup>8</sup>B has no bound excited state
  - Initial and final states well known

# HiRA setup

- 10 telescopes at 17 cm from target covering between 10° and 60° in the lab
- Detect high energy protons (100 MeV)
  - No ΔE detectors
  - Energy loss in E detectors: 2 MeV
  - Punch-through energy for CsI: 110 MeV









# Run program

#### Expected rates

- Radioactive <sup>9</sup>C produced from 150 MeV/u <sup>16</sup>O
- Incoming rate 2000 °C/ s/pnA
- Cross sections 40 mb stripping 14 mb diffraction
- About 10 S800+HiRA coincidences per second
- Three Bρ values to cover <sup>8</sup>B parallel momentum

