Position determination of fragile objects in nuclear physics experiments

Hoi Kit Cheung, The Chinese University of Hong Kong Supervisor: Prof. Betty Tsang, National Superconducting Cyclotron Laboratory, MSU
I nverse kinematics transfer reaction is used to

Requirement for position measurements

- Must be Non-Contact	
- Mechanical measurements may alter the configuration of our setup	
- It may also damage our detectors and target foils	
- Accurate (sub-millimeter) position measurements	
- needed to resolve nucleus of different excited states	

Laser Based Alignment System (LBAS)
Small and portable, can be used inside an experimental chamber
Measure (r, θ, φ) of a point in space Resolution in $r: 45.6 \mu \mathrm{~m}$
Angular Resolution: less than 0.006°

- Misalignment of the rotation axes

The offset is corrected at the early stage of data analysis
Limited Range: $25.4 \mathrm{~cm}-40.6 \mathrm{~cm}$
Measurements are made at different laser position Measure the same reference objects for each of the laser
positions to determine their relative positions
ransformation between laser positions
Transformation between laser posic Combination of translations and rotations Parameters (Euler angles
determined from fitting

```
Match all measurements into a global coordinate system
```


MCP Mask Reference objects (posts)

Conclusion
\square In the experiment, sub-millimeter ($\sim 0,3 \mathrm{~mm}$, which corresponds to 0.05°) accuracy is achieved using the Laser Based Alignment System (LBAS), with appropriate analysis method.
The approach used is systematic and general, and can be applied to other experiments.
study the structure of exotic nuclei. Sub-millimeter accuracy is required in our position measurements.

Micro-Channel Plate Detectors (MCP)

- Provide position and timing information of an ion traversing the target Especially important when the beam size is large ($\sim 2 \mathrm{~cm}$ in diameter for radioactive beam such as ${ }^{56} \mathrm{Ni}$)
The beam position can be calibrated using a MCP mask
By measuring the MCP mask, the position of the beam in the global

S800 Spectrometer

High Resolution Array (HiRA)
Detect the light particles (deuteron, proton, ${ }^{3}$ He etc.) produced in the reaction.

- 16 telescopes, all $\sim 35 \mathrm{~cm}$ away facing the target

Each telescope contains 2 Silicon detectors plus 4 CSI
E (middle) detector has 32 strips arranged vertically and horizontally, size $\sim 2 \mathrm{~mm} \times 2 \mathrm{~mm}$, each with size $2 \mathrm{~mm} \times 2 \mathrm{~m}$
Inherent angular resolution: $\sim 0.3^{\circ}$
The scattering angle corresponding to every pixel is known, by determining their positio relative to the target
The results are compared with the design

MICHIGAN STATE
UNIVERSITY

