Spectroscopic Factors For SD shell

With two new interaction models: USDA and USDB

Spectroscopic Factors from literatures

Need a consistent method

TWOFNR for Experimental SF

≻SF_Ex=

- Johnson- Soper Adiabatic
 Approximation to take care of d-breakup effects – Adiabatic 3-bodies model
- ➤ Use global optical potential with standardized parameters (CH89)
- >n-potential : Woods-Saxon shape $r_0 = 1.25$ fm & $a_0 = 0.65$

What we have gotten so far

For ground state only, SF>0.2

What happen to small **SF**<**0.2** ?

Importance of Neutron Spectroscopic Factors in the study of rp(proton capture)

- Spectroscopic factors (SF) determine the reaction rates
 - \rightarrow important input to astrophysical network calculations.
- Most SFs of the relevant states for nucleosynthesis processes are not available experimentally \rightarrow calculated by shell model.

➤ Therefore, it is important to establish the accuracies of these calculations by comparing experimental spectroscopic factors.

≻Use MIRROR NUCLEI!!

USDA and USDB

- Original USD → 452 energy data from 66 nuclei → least square fit to obtain the Hamiltonians
- USDA and UDSB → 608 energy data in 77 nuclei distributed over sd-shell nuclei
- USDA and UDSB are using different linear combination of parameters

Open for USD, solid for USDA

SF_Experiment

Open for USD, solid for USDB

Solid for USDA, Open for USDB

What we have gotten more than before

Excited states \rightarrow extent to much smaller SFs !!

Extract j values

Reaction	E*_USD	E*_USDA	E*_USDB	E*_Ex	SF_USD	SF_USDA	SF_USDB	SF_Ex	J_pi	nlj
Mg26dpMg27	5.399	5.493	5.628	5.625	0.15901	0.14653	0.14099	0.135329	3/2+	1d5/2
Mg26dpMg27	5.454	5.683	5.696	5.625	0.00324	0.00577	0.00493	0.089739	5/2+	1d3/2

Other shell

Ni Isotopes (fp shell) USDB (SD shell) 10 Ni58dpNi59 C136 Mg27 Ni60dpNi61 Ni61dpNi62 т Ŷ Si31 S35 Δ • Ni62dpNi63 1 Ni64dpNi65 Ca43 line 0.1 0.5 line 0.8line — 1.2line 1 line 1.5 line 0.1 SF_Ex 0.01 0.001 0.001 0.0001 0.000 0.0001 0.001 0.1 0.001 0.01 0.1 0.01 0.0001 1 10 SF_Ox SF_Ox

SF_EX

Summary

- By using a consistent analysis approach, we are able to extract spectroscopic factors of the excited states from different reactions and compare between them
- The extracted spectroscopic factors are sensitive to the different interactions used in shell model calculations
- With the newest interaction USDB, the comparisons between experimental and theoretical values is good within 20% uncertainty for SF as small as ~0.001 – the theoretical uncertainties are important in astrophysics network calculations
- Systematics also suggest that the j values could be extracted by comparing to shell model calculations that give good predictions of energy levels and spectroscopic factors

Thank you!