- Access to the Fission Kinematic MC Calculator
- New features of the Fission Kinematic MC Calculator
- Plotting two fission fragments simultaneously
- Passing two fission fragments simultaneously
- Angular Acceptance
- Momentum Acceptance
- Angular Acceptance \& Momentum Acceptance
- Using non-zero target thickness
- Acceptances and non-zero target thickness
- Some other plots.....

Set fissile nucleus excitation energy and target thickness in this dialog

Access to the Fission Kinematic MC Calculator

Momentum acceptance instead the previous pseudo-energy acceptance

"Brho" plots

Main new feature to start plotting and passing two fission fragments simultaneouslyadd coriungeted fragment (D)
${ }^{95}$ Rb fragment kinematics (expected final) $238 \mathrm{U}=>95 \mathrm{Rb}\left({ }^{97} \mathrm{Rb}^{\star}\right)+{ }^{138} \mathrm{Cs}\left({ }^{141} \mathrm{Cs}^{\star}\right) \quad$ (Projectile Energy : $200.00 \mathrm{MeV} / \mathrm{u}$) Q reaction: 159.88 MeV (Excitations $20.0=>18.4+22.5$); Angular Distribution (CM): Iso Rectangle Ang.Acceptance (mrad): $\mathrm{H}=3000.0(0.5) ; \mathrm{V}=3000.0(0.5)$

${ }^{45} \mathrm{Rb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final) $238 \mathrm{U}=>95 \mathrm{Rb}\left({ }^{97} \mathrm{Rb}^{\star}\right)+{ }^{138} \mathrm{Cs}\left({ }^{141} \mathrm{Cs}^{\star}\right) \quad$ (Projectile Energy: 200.00 MeV/u) Q reaction: 159.88 MeV (Excitations $20.0=>18.4+22.5$); Angular Distribution (CM): Isotrc Rectangle Ang.Acceptance (mrad): $\mathrm{H}=3000.0(0.5) ; \mathrm{V}=3000.0(0.5)$

Plotting two fission fragments simultaneously ($\mathbf{A}_{X} \& \mathbf{A}^{\text {vs. Brho) }}$

add compuated fragment [D]

${ }^{95} \mathrm{Rb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final)
$238 \mathrm{U}=>55 \mathrm{Fb}\left(9 \mathrm{PR}^{*}\right)+138 \mathrm{CS}\left({ }^{\left(141 \mathrm{CS}^{*}\right)} \quad\right.$ (Projectile Energy: $\left.200.00 \mathrm{MeV} / \mathrm{u}\right)$ Q reaction: 159.88 MeV (Excitations 20.0=>18.4+22.5); Angular Distribution (CM): Isotropic Rectangle Ang.Acceptance (mrad): $\mathrm{H}=3000.0(0.5$); $\mathrm{V}=3000.0(0.5)$
(- Brho $(\mathrm{q}=\mathrm{Z}) \& A$
CBrho $[q=Z] \& A$
${ }^{95} \mathrm{Rb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final)
${ }^{238 U}=>{ }^{95 R b}\left(97 R b^{*}\right)+138 \mathrm{CS}\left({ }^{141} \mathrm{Cs}^{*}\right) \quad$ (Projectile Energy : $200.00 \mathrm{MeV} / \mathrm{u}$)
Q reaction: 159.88 MeV (Excitations 20.0=>18.4+22.5); Angular Distribution (CM): Isotro|
Rectangle Ang. Acceptance (mrad): $\mathrm{H}=3000.0(0.5) ; \mathrm{V}=3000.0(0.5)$

Two-fission registration setups (SOFIA, SAMURAI) use a wide aperture magnet : large A_{X} angular acceptance, moderate A_{Y} (vertical gap), and large Brho-acceptance

FIG. 4. Schematic view of the SOFIA setup to identify the nuclear mass and charge of both fission fragments in coincidence (top view, not on scale).

Unchecked : at least one fragment Checked : BOTH fragments
should pass to register this fission event

Passing two fission fragments simultaneously (Angular acceptance)

${ }^{95} \mathrm{Rb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final)
${ }^{238 U}=>{ }^{95 R b}\left({ }^{97} \mathrm{Rb}^{\star}\right)+{ }^{138} \mathrm{Cs}\left({ }^{141} \mathrm{Cs} \mathrm{s}^{\star}\right) \quad$ (Projectile Energy : $200.00 \mathrm{MeV} / \mathrm{u}$)
Q reaction: 159.88 MeV (Excitations $20.0=>18.4+22.5$); Angular Distribution (CM): Isotropic Rectangle Ang.Acceptance (mrad): $\mathrm{H}=150.0(0.5) ; \mathrm{V}=50.0(0.5)$

${ }^{95} \mathrm{Rb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final) BOTH fragments shoula)
 Q reaction: 159.88 MeV (Excitations 20.0 $=>18.4+22.5$); Angular Distribution (CM): Isotropic Rectangle Ang. Acceptance (mrad): $\mathrm{H}=150.0(0.5) ; \mathrm{V}=50.0(0.5)$

Let's use 4 Brho settings with $\pm 5 \%$ momentum acceptance at $\mathrm{Brho}_{0}=5.1,5.3,5.5,5.7 \mathrm{~T}^{*} \mathrm{~m}$
${ }^{95} \mathrm{Rb}$ \& ${ }^{138} \mathrm{Cs}$ fragment kinematics (expected final)
${ }^{238} \mathrm{U}=>{ }^{95 R b}\left({ }^{97} \mathrm{Rb}^{\star}\right)+{ }^{138} \mathrm{Cs}\left({ }^{141} \mathrm{Cs}^{\star}\right) \quad$ (Projectile Energy : $200.00 \mathrm{MeV} / \mathrm{u}$)
Q reaction: 159.88 MeV (Excitations:20.0=>18.4+22.5); Angular Distribution (CM): Isotropic Recłangle Ang.Acceptarlce (mrad): $\mathrm{H}=3000^{\circ} \mathrm{O}(0.5) ; \mathrm{V}=3000.0(0.5)$

Passing two fission fragments simultaneously : Brho $=5.1 \mathrm{Tm}$

Acceptances fin case of C_final fragment pop	
- Angular Acceptance -Angular acceptance shape Ellipse © Rectangle	"A" - angle, "V" - velocity, "E" - energy "CM" - center of mass, "LAB" - laboratory " z " corresponds to the beam direction. No events with $v z<0$ in the case of non-zero target thickness
Value Varianc	Momentum acceptance
Horizontal $\pm 3000.0 .5 \mathrm{mrad}$	Setting Brho 5.1 T*m
Vertical $\pm \boxed{3000} 0.5 \mathrm{mrad}$	Acceptance ± 5
Γ BOTH fragments should pas	ngular and Momentum Acceptances

${ }^{95} \mathrm{Rb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final) ${ }^{238} \mathrm{U}=>{ }^{95} \mathrm{Rb}\left({ }^{97} \mathrm{Rb}^{\star}\right)+{ }^{138} \mathrm{Cs}\left({ }^{141} \mathrm{Cs}^{*}\right) \quad$ (Projectile Energy : $200.00 \mathrm{MeV} / \mathrm{u}$) Q reaction: 159.88 MeV (Excitations $20.0=>18.4+22.5$); Angular Distribution (CM): Isotro| ctangle Ang.Acceptance (mrad): H=3000.0(0.5); V = 3000.0(0.5); Momentum Acceptance : 5.00% @

${ }^{95} \mathrm{Rb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final) ${ }^{\text {BOTH fragments should }}$
 Q reaction: 159.88 MeV (Excitations 20.0=>18.4+22.5); Angular Distribution (CM): Isotropic Rectangle Ang.Acceptance (mrad): $H=3000.0(0.5)$); V=3000.0(0.5); Momentum Acceptance : 5.00% @ Brho $=5.10$

Passing two fission fragments simultaneously : Brho $=5.3 \mathrm{Tm}$

${ }^{95} \mathrm{Rb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final) ${ }^{238} \mathrm{U}=>{ }^{95} \mathrm{Rb}\left({ }^{97} \mathrm{Rb}^{*}\right)+{ }^{138} \mathrm{Cs}\left({ }^{141} \mathrm{Cs}{ }^{*}\right) \quad$ (Projectile Energy : $200.00 \mathrm{MeV} / \mathrm{u}$) Q reaction: 159.88 MeV (Excitations 20.0=>18.4+22.5); Angular Distribution (CM): Isotropic Rectangle Ang.Acceptance (mrad): $\mathrm{H}=3000.0(0.5) ; \mathrm{V}=3000.0(0.5) ;$ Momentum Acceptance : 5.00% @ Brho $=5.30 \mathrm{c}$

${ }^{95} \mathrm{Rb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final) ${ }^{\text {BOTH fragments should }}$ ${ }^{238} \mathrm{U}=>{ }^{95} \mathrm{Rb}\left({ }^{97} \mathrm{Rb}^{\star}\right)+{ }^{138} \mathrm{Cs}\left({ }^{141} \mathrm{Cs}^{*}\right) \quad$ (Projectile Energy : $200.00 \mathrm{MeV} / \mathrm{u}$)

Rectangle Ang.Acceptance (mrad): $\mathrm{H}=3000.0(0.5) ; \mathrm{V}=3000.0(0.5) ;$ Momentum Acceptance : 5.00% @ Brho $=5.3 \mathrm{C}$

Passing two fission fragments simultaneously : Brho $=5.5 \mathrm{Tm}$

${ }^{95} \mathrm{Rb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final) ${ }^{238} \mathrm{U}=>{ }^{95} \mathrm{Rb}\left({ }^{97} \mathrm{Rb}^{*}\right)+{ }^{138} \mathrm{Cs}\left({ }^{(141} \mathrm{Cs}^{*}\right) \quad$ (Projectile Energy : $200.00 \mathrm{MeV} / \mathrm{u}$)
Q reaction: 159.88 MeV (Excitations $20.0=>18.4+22.5$); Angular Distribution (CM): Isotropic Rectangle Ang.Acceptance (mrad): $\mathrm{H}=3000.0(0.5) ; \mathrm{V}=3000.0(0.5)$; Momentum Acceptance : 5.00% @ Brho $=5.5$

${ }^{95} \mathrm{Rb} \quad \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final) BOTH fragments should ${ }^{238} \mathrm{U}=>{ }^{95} \mathrm{Rb}\left({ }^{97} \mathrm{Rb}{ }^{*}\right)+{ }^{138} \mathrm{Cs}\left({ }^{141} \mathrm{Cs}^{*}\right) \quad$ (Projectile Energy : $200.00 \mathrm{MeV} / \mathrm{u}$) Q reaction: 159.88 MeV (Excitations $20.0=>18.4+22.5$); Angular Distribution (CM): Isotropic Rectangle Ang.Acceptance (mrad): $\mathrm{H}=3000.0(0.5) ; \mathrm{V}=3000.0(0.5) ;$ Momentum Acceptance : 5.00% @ Brho $=5.5 \mathrm{C}$

Passing two fission fragments simultaneously : Brho $=5.7 \mathrm{Tm}$

${ }^{95} \mathrm{Rb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final) ${ }^{238} \mathrm{U}=>{ }^{95} \mathrm{Rb}\left({ }^{97} \mathrm{Rb}^{*}\right)+{ }^{138} \mathrm{Cs}\left({ }^{141} \mathrm{Cs}{ }^{*}\right) \quad$ (Projectile Energy : $200.00 \mathrm{MeV} / \mathrm{u}$) Q reaction: 159.88 MeV (Excitations $20.0=>18.4+22.5$); Angular Distribution (CM): Isotropic Rectangle Ang.Acceptance (mrad): $\mathrm{H}=3000.0(0.5) ; \mathrm{V}=3000.0(0.5) ;$ Momentum Acceptance : 5.00% @ Brho $=5.70$

Angular acceptance \& Momentum acceptance @ Brho = 5.5 Tm

Acceptances (in case of C_final fragment plot)			
Angular Acceptance -Angular acceptance shape Ellipse C - Rectangle	"A" - angle, "V" - velocity, "E" - energy "CM" - center of mass, "LAB' - laboratory " z " corresponds to the beam direction. No events with $V_{z<0}$ in the case of non-zero target thickness		
Value Variance	Momentum accept		
Horizontal $\pm \boxed{150} 0.5 \mathrm{mrad}$	Setting Biho	5.5	$\mathrm{T}^{*} \mathrm{~m}$
Vertical $\pm \boxed{50} \bigcirc 0.5 \mathrm{mmad}$	Acceptance \pm	5	\%
Γ BOTH fragments should pass Angular and Momentum Acceptances			

${ }^{95} \mathrm{Rb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final)
 Q reaction: 159.88 MeV (Excitations 20.0=>18.4+22.5); Angular Distribution (CM): Isotropic Rectangle Ang.Acceptance (mrad): $\mathrm{H}=150.0(0.5) ; \mathrm{V}=50.0(0.5)$; Momentum Acceptance : 5.00% @ Brho $=5.5000$

${ }^{95} \mathrm{Rb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final) ${ }^{\text {BOTH fragments should }}$
 Q reaction: 159.88 MeV (Excitations $20.0=>18.4+22.5$); Angular Distribution (CM): Isotropic

Angular acceptance \& Momentum acceptance @ Brho = 5.5 Tm

The same like the previous page but another representation : Energy vs A_{Y}

${ }^{95} \mathrm{Rb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final)
 Q reaction: 159.88 MeV (Excitations $20.0=>18.4+22.5$); Angular Distribution (CM): Isotropic Rectangle Ang.Acceptance (mrad): $\mathrm{H}=150.0(0.5$); $\mathrm{V}=50.0(0.5$); Momentum Acceptance : 5.00% @ Br ho $=5.500 \mathrm{C}$
${ }^{95} \mathrm{Rb}$ \& ${ }^{138} \mathrm{Cs}$ fragment kinematics (expected final) ${ }^{\text {BOTH fragments should }}$
 Q reaction: 159.88 MeV (Excitations $20.0=>18.4+22.5$); Angular Distribution (CM): Isotropic Rectangle Ang. Acceptance (mrad): $\mathrm{H}=150.0(0.5$); $\mathrm{V}=50.0(0.5)$; Momentum Acceptance : 5.00% @ Brho $=5.500$

Using non-zero target thickness

${ }^{95} \mathrm{Rb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final)
${ }^{238} \mathrm{U}=>{ }^{95} \mathrm{Rb}\left({ }^{97} \mathrm{Rb} \mathrm{b}^{*}\right)+{ }^{138} \mathrm{C}$ ($\left.{ }^{(141} \mathrm{Cs}^{*}\right) \quad$ (Projectile Energy : $200.00 \mathrm{MeV} / \mathrm{u}$)
Target: Be (1 mm); Q reaction: 159.88 MeV (Excitations $20.0=>18.4+22.5$); Angular Distribution (CM): Isotrop
Rectangle Ang.Acceptance (mrad): $H=150.0(0.5) ; \quad \mathrm{V}=50.0(0.5)$

Acceptances and non-zero target thickness

Acceptances lin case of C final fragment plot)

${ }^{95} \mathrm{Rb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final) ${ }^{238} \mathrm{U}=>{ }^{95} \mathrm{Rb}\left({ }^{97} \mathrm{Rb}^{*}\right)+{ }^{138} \mathrm{Cs}\left({ }^{141} \mathrm{Cs}^{*}\right) \quad$ (Projectile Energy : $200.00 \mathrm{MeV} / \mathrm{u}$)
Target: $\operatorname{Be}(1 \mathrm{~mm})$; $\quad Q$ reaction: 159.88 MeV (Excitations $20.0=>18.4+22.5$); Angular Distribution (CM): Isotror Rectangle Ang.Acceptance (mrad): $\mathrm{H}=150.0(0.5) ; \mathrm{V}=50.0(0.5)$; Momentum Acceptance : 5.00% @rho $=5.300$

Acceptances [in case of C final fragment plot]

${ }^{95} \mathrm{Rb} \quad \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final) ${ }^{\text {BOTH fragments should }}$ ${ }^{238} \mathrm{U}=>{ }^{95} \mathrm{Rb}\left({ }^{97} \mathrm{Rb}^{\star}\right)+{ }^{138} \mathrm{Cs}\left({ }^{141} \mathrm{Cs}^{\star}\right) \quad$ (Projectile Energy: 200.00 MeV/u)
Target: Be (1 mm); \quad Q reaction: 159.88 MeV (Excitations $20.0=>18.4+22.5$); Angular Distribution (CM): Isotrop Rectangle Ang. Acceptance (mrad): $\mathrm{H}=150.0(0.5$); $\mathrm{V}=50.0(0.5)$); Momentum Acceptance : 5.00% @ Brho $=5.300 \mathrm{C}$

Some other plots.....
$\frac{\text { MICHIGAN STATE }}{\text { UNIVERSITY }}$

${ }^{9} \mathrm{Rbb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final)

Q reaction: 159.88 MeV (Excitations $20.0=>18.4+22.5$); Angular Distribution (CM): Isotropic
Ellipse Anq. Acceptance (ṇrad): $\mathrm{H}=100.0\left(0.5\right.$); $\mathrm{V}=40.0\left(0.5\right.$); Momentum Acceptance : 7.00% \% Brrho $=5.2000 \mathrm{~T}^{\mathrm{*}} \mathrm{m}$
${ }^{95} \mathrm{Rb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final) BOTH fragments should pas
 Q reaction: 159.88 MeV (Excitations $20.0=>18.4+22.5$); Angular Distribution (CM): Isotrop

${ }^{95} \mathrm{Rb}$ \& ${ }^{138} \mathrm{Cs}$ fragment kinematics (expected final) BOTH fragments should p

${ }^{96} \mathrm{Rb} \&{ }^{140} \mathrm{Cs}$ fragment kinematics (expected final) ${ }^{\text {BOTH fragments should pa }}$ $238 \mathrm{U}=>9 \mathrm{~Pb}_{\mathrm{Rb}\left(7 \mathrm{Rb}^{*}\right)+140 \mathrm{Cs}\left({ }^{141} \mathrm{C} \mathrm{C}^{*}\right)}^{(\operatorname{expected}}$ (Projectile Energy): $\left.140.00 \mathrm{MeV} / 4\right)$
 Elipse Ang Acceptance (mrad): $\mathrm{H}=90.0(0.5) ; \mathrm{V}=75.00(5)$: Momentum Acceptance : 6.00% @ Brho $=4.6000 \mathrm{~T}^{*} \mathrm{~m}$

${ }^{95} \mathrm{Rb} \&{ }^{138} \mathrm{Cs}$ fragment kinematics (expected final)

