

v.11.0.64 04/16/19

LISE⁺⁺ example file: <u>fission2.lpp</u> http://lise.nscl.msu.edu/10_1/fission2.lpp

- Access to the Fission Kinematic MC Calculator
- New features of the Fission Kinematic MC Calculator
- <u>Plotting</u> two fission fragments simultaneously
- <u>Passing</u> two fission fragments simultaneously
 - Angular Acceptance
 - Momentum Acceptance
 - Angular Acceptance & Momentum Acceptance
- Using non-zero target thickness
- Acceptances and non-zero target thickness
- Some other plots.....

Calculations Utilities 1D-Plot 2D-Plot Databases Help

Access to the Fission Kinematic MC Calculator

BREAKUP (FISSION)Projectile238U (200.0 MeV/u)Target9BeFragment (C *)97Bb18.39Ex.energyResidual (D *)141CsQ-value (MeV)159.88 MeVExpected final fragmentsC_final95Bb: 49.5%C_final138Cs: 48.2%An>2.85TKE(CM) from systematics161.87TKE(CM) from calculations156.52PlotsCLabCVz & VxE & AC Vz & VxE & AC Vz & AxC & Brho (q=Z) & AC Vz & AxC & AyC Vz & AyV & ThiC Vz & AyC & AyC Vz & AyC & Z & AyC Vz & AyC &	tations ake from ystematics et manually in inematics calculator TKE plot TKE plot C Excited (C *) Expected final (C_final) add conjugated fragment (D) CM C Vz & Vx C Vz & Vx C Vz & Vx C Ax & Ay C A & phi	Acceptances (in case of C_final fragment of Angular Acceptance Angular acceptance shape Ellipse C © Rectangle Value Variance Horizontal ± 3000 0.5 mrad Vertical ± 3000 0.5 mrad Vertical ± 3000 0.5 mrad Take into account a target thickness No (fast) © C Yes Energy variation after the reaction due to stragging 0.1 MeV/u time if this value is more than 0 Warning: it trakes a lot of computing time if this value is more than 0	Image: Setting Brite Image: Setting Brite <td< th=""><th>Momentum acceptance instead the previous pseudo-energy acceptance</th></td<>	Momentum acceptance instead the previous pseudo-energy acceptance
rho" plots			Main new fea plotting and p fission fra simultan	ature to start bassing two agments beously

add conjugated

fragment (D)

Ax [Lab-mrad]

⁹⁵Rb & ¹³⁸Cs fragment kinematics (expected final)

- Brho (q=Z) & A (\mathbf{e})
- Brho (q=Z) & Ax \bigcirc

⁹⁵Rb & ¹³⁸Cs fragment kinematics (expected final)

 $^{238}U = 95Rb(^{97}Rb^*) + ^{138}Cs(^{141}Cs^*)$ (Projectile Energy : 200.00 MeV/u) Q reaction: 159.88 MeV (Excitations 20.0=>18.4+22.5); Angular Distribution (CM): Isotrop Rectangle Ang.Acceptance (mrad): H = 3000.0(0.5); V = 3000.0(0.5)

E. PELLEREAU et al. PHYSICAL REVIEW C 95, 054603 (2017)

Two-fission registration setups (SOFIA, SAMURAI) use a wide aperture magnet : large A_X angular acceptance, moderate A_Y (vertical gap), and large Brho-acceptance

Acceptances (in case of C_final fragment plane) Angular Acceptance	ot) "A" - angle, "V" - velocity, "E" - energy "CM" - center of mass, "LAB" - laboratory
Angular acceptance shape Ellipse C • Rectangle	"z" corresponds to the beam direction. No events with Vz<0 in the case of non-zero target thickness
Value Variance Horizontal ± 150 0.5 mrad Vertical ± 50 0.5 mrad BOTH fragments should pass	Momentum acceptance Setting Brho 5.612 T*m Acceptance ± 1000 % Angular and Momentum Acceptances

FIG. 4. Schematic view of the SOFIA setup to identify the nuclear mass and charge of both fission fragments in coincidence (top view, not on scale).

Unchecked : at least one fragment Checked : BOTH fragments should pass to register this fission event

6

Se

Passing two fission fragments simultaneously (Angular acceptance)

₩ Se

⁹⁵Rb & ¹³⁸Cs fragment kinematics (expected final)

²³⁸U => ⁹⁵Rb(⁹⁷Rb^{*}) + ¹³⁸Cs(¹⁴¹Cs^{*}) (Projectile Energy : 200.00 MeV/u) Q reaction: 159.88 MeV (Excitations 20.0=>18.4+22.5); Angular Distribution (CM): Isotropic Rectangle Ang.Acceptance (mrad): H = 150.0(0.5); V = 50.0(0.5)

⁹⁵Rb & ¹³⁸Cs fragment kinematics (expected final) (BOTH fragments should

²³⁸U => ⁹⁵Rb(⁹⁷Rb^{*}) + ¹³⁸Cs(¹⁴¹Cs^{*}) (Projectile Energy : 200.00 MeV/u) Q reaction: 159.88 MeV (Excitations 20.0=>18.4+22.5); Angular Distribution (CM): Isotropic Rectangle Ang.Acceptance (mrad): H = 150.0(0.5); V = 50.0(0.5)

Let's use 4 Brho settings with ±5% momentum acceptance at Brho₀ = 5.1, 5.3, 5.5, 5.7 T*m

Ax [Lab-mrad]

Passing two fission fragments simultaneously : Brho = 5.1 Tm

Acceptances (in case of C_final fragment plot)			
Angular Acceptance	 A - angle, V - Velocity, E - energy "CM" - center of mass, "LAB" - laboratory "z " corresponds to the beam direction. No events with Var(0 in the case of 		
Ellipse C 📀 Rectangle	non-zero target thickness		
Value Variance	- Momentum acceptance		
Horizontal ± 3000 0.5 mrad	Setting Brho 5.1 T*m		
Vertical ± 3000 0.5 mrad	Acceptance ± 5 %		
BOTH fragments should pass Angular and Momentum Acceptances			

₩ se

⁹⁵Rb & ¹³⁸Cs fragment kinematics (expected final)

²³⁸U => ⁹⁵Rb(⁹⁷Rb^{*}) + ¹³⁸Cs(¹⁴¹Cs^{*}) (Projectile Energy : 200.00 MeV/u) Q reaction: 159.88 MeV (Excitations 20.0=>18.4+22.5); Angular Distribution (CM): Isotroj ctangle Ang.Acceptance (mrad): H = 3000.0(0.5); V = 3000.0(0.5); Momentum Acceptance : 5.00 % @

Acceptances (in case of C_final fragment plot)			
- Angular Acceptance	"A" - angle, "V" - velocity, "E" - energy		
Angular acceptance shape	"z " corresponds to the beam direction.		
Ellipse C 📀 Rectangle	non-zero target thickness		
Value Variance	Momentum acceptance		
Horizontal ± 3000 0.5 mrad	Setting Brho 5.1 T*m		
Vertical ± 3000 0.5 mrad	Acceptance ± 5 %		
■ BOTH fragments should pass Angular and Momentum Acceptances			

⁹⁵Rb & ¹³⁸Cs fragment kinematics (expected final) ^{BOTH fragments should}

Passing two fission fragments simultaneously : Brho = 5.3 Tm

Acceptances (in case of C_final fragment plot)

Rectangle

Variance

0.5 mrad

0.5 mrad

▼ BOTH fragments should pass Angular and Momentum Acceptances

95Rb & 138Cs fragment kinematics (expected final) BOTH fragments should

²³⁸U => ⁹⁵Rb(⁹⁷Rb^{*}) + ¹³⁸Cs(¹⁴¹Cs^{*}) (Projectile Energy : 200.00 MeV/u) Q reaction: 159.88 MeV (Excitations 20.0=>18.4+22.5); Angular Distribution (CM): Isotropic

- Angular Acceptance -

Horizontal ± 3000

Vertical ± 3000

Angular acceptance shape

Value.

Ellipse 🔿

MICHIGAN STATE

"A" - angle, "V" - velocity, "E" - energy

"CM" - center of mass, "LAB" - laboratory

"z " corresponds to the beam direction. No events with Vz<0 in the case of

non-zero target thickness

5.3 T*m

5 %

Momentum acceptance

Setting Brho

Acceptance ±

Acceptances (in case of C_final fragment plot)		
- Angular Acceptance	"A" - angle, "V" - velocity, "E" - energy	
Angular acceptance shape	"z " corresponds to the beam direction. No events with Vz<0 in the case of	
Ellipse O 💿 Rectangle	non-zero target thickness	
Value Variance	- Momentum acceptance	
Horizontal ± 3000 0.5 mrad	Setting Brho 5.3 T*m	
Vertical ± 3000 0.5 mrad	Acceptance ± 5 %	
BOTH fragments should pass Angular and Momentum Acceptances		

₩ se

⁹⁵Rb & ¹³⁸Cs fragment kinematics (expected final)

²³⁸U => ⁹⁵Rb(⁹⁷Rb^{*}) + ¹³⁸Cs(¹⁴¹Cs^{*}) (Projectile Energy : 200.00 MeV/u) Q reaction: 159.88 MeV (Excitations 20.0=>18.4+22.5); Angular Distribution (CM): Isotropic Rectangle Ang.Acceptance (mrad): H = 3000.0(0.5); V = 3000.0(0.5); Momentum Acceptance : 5.00 % @ Brho = 5.300

Passing two fission fragments simultaneously : Brho = 5.5 Tm

Acceptances (in case of C_final fragment plot)

Rectangle

⁹⁵Rb & ¹³⁸Cs fragment kinematics (expected final)

Variance

0.5 mrad

0.5 mrad

🔀 BOTH fragments should pass Angular and Momentum Acceptances

Angular Acceptance

Horizontal ± 3000

Vertical ± 3000

Angular acceptance shape

Value.

Ellipse 🔘

BOTH fragments should

"A" - angle, "V" - velocity, "E" - energy

"CM" - center of mass, "LAB" - laboratory

"z " corresponds to the beam direction."

No events with Vz<0 in the case of

non-zero target thickness

5.5 T*m

5 2

Momentum acceptance

Setting Brho

Acceptance ±

 238 U => 95 Rb(97 Rb^{*}) + 138 Cs(141 Cs^{*}) (Projectile Energy : 200.00 MeV/u) Q reaction: 159.88 MeV (Excitations 20.0=>18.4+22.5); Angular Distribution (CM): Isotropic

6

Se

⁹⁵Rb & ¹³⁸Cs fragment kinematics (expected final)

Passing two fission fragments simultaneously : Brho = 5.7 Tm

S NSCI

₩Se

⁹⁵Rb & ¹³⁸Cs fragment kinematics (expected final)

 $\begin{array}{l} & 2^{38} U => {}^{95} Rb({}^{97} Rb^{\star}) + {}^{138} Cs({}^{141} Cs^{\star}) & (\text{Projectile Energy : } 200.00 \text{ MeV/u}) \\ & \text{Q reaction: } 159.88 \text{ MeV (Excitations } 20.0=>18.4+22.5); & \text{Angular Distribution (CM): Isotropic} \\ & \text{Rectangle Ang.Acceptance (mrad): } H = 3000.0(0.5); V = 3000.0(0.5); & \text{Momentum Acceptance : } 5.00 \% @ Brho = 5.70 \\ \end{array}$

-Acceptances (in case of C_final fragment plo	ot)	
Angular Acceptance	"A" - angle, "V" - velocity, "E" - energy	
Angular acceptance shape	"z " corresponds to the beam direction. No events with Vz<0 in the case of	
Ellipse O 💿 Rectangle	non-zero target thickness	
Value Variance	Momentum acceptance	
Horizontal ± 3000 0.5 mrad	Setting Brho 5.7 T*m	
Vertical ± 3000 0.5 mrad	Acceptance ± 5 %	
BOTH fragments should pass Angular and Momentum Acceptances		

⁹⁵Rb & ¹³⁸Cs fragment kinematics (expected final) ^{BOTH fragments should}

 $\label{eq:constraint} \begin{array}{l} 2^{38}\mathsf{U} = \stackrel{> 95}{>} \ensuremath{\mathsf{Rb}}^{(97} \ensuremath{\mathsf{Rb}}^{*}) + \frac{138}{2} \ensuremath{\mathsf{Cs}}^{(141} \ensuremath{\mathsf{Cs}}^{*}) & \ensuremath{(\mathsf{Projectile Energy: 200.00 MeV/u)} \\ \ensuremath{\mathsf{Q}} \ensuremath{\mathsf{reaction: 159.88 MeV}} & \ensuremath{\mathsf{Excitations 20.0}} = 18.4 + 22.5); & \ensuremath{\mathsf{Angular Distribution (CM): Isotropic} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance (mrad): H = 3000.0(0.5); V = 3000.0(0.5); } & \ensuremath{\mathsf{Momentum Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.00 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.70 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.70 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.70 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.70 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang.Acceptance : 5.70 \% @ Brho = 5.70} \\ \ensuremath{\mathsf{Rectangle Ang$

Angular acceptance & Momentum acceptance @ Brho = 5.5 Tm

😽 "Se

⁹⁵Rb & ¹³⁸Cs fragment kinematics (expected final)

 238 U => 95 Rb(97 Rb^{*}) + 138 Cs(141 Cs^{*}) (Projectile Energy : 200.00 MeV/u) Q reaction: 159.88 MeV (Excitations 20.0=>18.4+22.5); Angular Distribution (CM): Isotropic Rectangle Ang.Acceptance (mrad): H = 150.0(0.5); V = 50.0(0.5); Momentum Acceptance : 5.00 % @ Brho = 5.5000

Acceptances (in case of C_final fragment plo Angular Acceptance Angular acceptance shape Ellipse C	ot) "A" - angle, "V" - velocity, "E" - energy "CM" - center of mass, "LAB" - laboratory "z" corresponds to the beam direction. No events with Vz<0 in the case of non-zero target thickness	
Value Variance	Momentum acceptance	
Horizontal ± 150 0.5 mrad	Setting Brho 5.5 T*m	
Vertical ± 50 0.5 mrad	Acceptance ± 5 %	
K BOTH fragments should pass Angular and Momentum Acceptances		

95Rb & 138Cs fragment kinematics (expected final) BOTH fragments should

 $2^{38}U = 9^{95}Rb(^{97}Rb^*) + 1^{38}Cs(^{141}Cs^*)$ (Projectile Energy : 200.00 MeV/u) Q reaction: 159.88 MeV (Excitations 20.0=>18.4+22.5); Angular Distribution (CM): Isotropic Rectangle Ang.Acceptance (mrad): H = 150.0(0.5); V = 50.0(0.5); Momentum Acceptance : 5.00 % @ Brho = 5.500

Angular acceptance & Momentum acceptance @ Brho = 5.5 Tm

Rectangle Ang Acceptance (mrad): H = 150.0(0.5); V = 50.0(0.5); Momentum Acceptance : 5.00 % @ Brho = 5.500C

S NSC

₩Se

Acceptances (in case of C_final fragment plot)			
- Angular Acceptance	"A" - angle, "V" - velocity, "E" - energy		
Angular acceptance shape	"z" corresponds to the beam direction.		
Ellipse 🔿 💿 Rectangle	non-zero target thickness		
Value Variance	- Momentum acceptance		
Horizontal ± 150 0.5 mrad	Setting Brho 5.5 T*m		
Vertical ± 50 0.5 mrad	Acceptance ± 5 %		
K BOTH fragments should pass Angular and Momentum Acceptances			

⁹⁵Rb & ¹³⁸Cs fragment kinematics (expected final) ^{BOTH fragments should}

 $2^{38}U = 9^{95}Rb(^{97}Rb^*) + 1^{38}Cs(^{141}Cs^*)$ (Projectile Energy : 200.00 MeV/u) Q reaction: 159.88 MeV (Excitations 20.0=>18.4+22.5); Angular Distribution (CM): Isotropic Rectangle Ang.Acceptance (mrad): H = 150.0(0.5); V = 50.0(0.5); Momentum Acceptance : 5.00 % @ Brho = 5.500

Using non-zero target thickness

Acceptances and non-zero target thickness

⁹⁵Rb & ¹³⁸Cs fragment kinematics (expected final)

 $2^{38}U \Rightarrow {}^{95}Rb({}^{97}Rb^*) + {}^{138}Cs({}^{141}Cs^*)$ (Projectile Energy : 200.00 MeV/u) Target: Be (1 mm); Q reaction: 159.88 MeV (Excitations 20.0=>18.4+22.5); Angular Distribution (CM): Isotrop Rectangle Ang.Acceptance (mrad): H = 150.0(0.5); V = 50.0(0.5); Momentum Acceptance : 5.00 % @ Brho = 5.300(

Acceptances (in case of C_final fragment plot)		
Angular Acceptance	"A" - angle, "V" - velocity, "E" - energy	
Angular acceptance shape	"z " corresponds to the beam direction. No events with Vz<0 in the case of	
Ellipse 🔿 💽 Rectangle	non-zero target thickness	
Value Variance	Momentum acceptance	
Horizontal ± 150 0.5 mrad	Setting Brho 5.3 T*m	
Vertical ± 50 0.5 mrad	Acceptance ± 5 %	
BOTH fragments should pass Angular and Momentum Acceptances		

⁹⁵Rb & ¹³⁸Cs fragment kinematics (expected final) BOTH fragments should

 $2^{38}U = 9^{5}Rb(^{97}Rb^*) + 1^{38}Cs(^{141}Cs^*)$ (Projectile Energy : 200.00 MeV/u) Target: Be (1 mm); Q reaction: 159.88 MeV (Excitations 20.0=>18.4+22.5); Angular Distribution (CM): Isotrop Rectangle Ang.Acceptance (mrad): H = 150.0(0.5); V = 50.0(0.5); Momentum Acceptance : 5.00 % @ Brho = 5.3000

Some other plots.....

