

Version 11.0.79 05/29/19

- Plotting and passing two fission fragments v.11.0.64
- <u>Creation</u> of input ZN-file for the FisFrag Batch Mode
- Initialization of the Kinematics Calculator before launch the FisFrag Batch Mode
- The Fission Fragment Batch Mode dialogue
- First element of the list: initialization of 2D Monte Carlo calculation settings
- Calculation settings discussion
- Results :
 - o no energy loss in a target, 6% momentum acceptance
 - **no** energy loss in a target, **100**% momentum acceptance
 - with energy loss in a target , 6% momentum acceptance
- Final fragment iterations

http://lise.nscl.msu.edu/10_1/11_0_64_FissionKinematics.pdf

1st step : Creation of input ZN file (a)

Abrasion-Fission			2		
238U (200.0 MeV/u) + Be					
Energy region definitions					
Excitation energy region	LOW	MIDDLE	HIGH		
Choose a primary reaction	(·	С	C		
Perform transmission calculations for this energy region	M	Г			
Choose FISSILE nucleus	238U	232Th	226R-a		
Excitation energy (MeV)	20	100	250		
Cross section (mb)	1000	-			

				_		
1D- <u>P</u> lot	2D-Plot	<u>D</u> atabases	<u>H</u> elp	4		
Block selection distributions						
Angular distributions						
Horizontal (X) space distributions						
Verti	Vertical (Y) space distributions					
Mon	nentum dist	tributions			>	
Ener	gy distribut	ion			>	
Tota	Kinetic Ene	ergy distributio	ons		>	
Elect	rostatic rigi	dity distributio	ons		>	
Bean	Beam and Setting fragment charge state distributions					
Debu	ug distributi	ons			>	
Debu	ug informat	ion				
Brho	selection p	lot				
Wed	ge selectior	n plot				
Isom	Isomeric Gamma spectrum					
Tran	smission ch	aracteristics				
Rang	je distributi	ons				
Char	ge distribut	ions				
Aver	age lonic cł	narge plot				
Cros	s Section di	stributions				
Syste	ematic distri	ibutions (Q-g,	Q-gg, dBE, dl	BEsn)	>	
	THE O. F.	200 B B				

1st step : Creation of input ZN file (a)

MICHIGAN STATE

OT@MSU 05/29/2019

1. LISE⁺⁺ fills out the Beam parameters (A,Z,energy), the user should provide manually an excitation value corresponding to an input ZN-file

_ **_** X Kinematics calculator (relativistic) -A. Beam Reactions Heavy ion Neutron 🔿 Gamma TWO BODY B(A,C)D reaction Participants ME Excitation [MeV Energy SCATTERING B(A, C=A)D=B Beam 238U 47.31 20 Beam energy = 200.0 MeV/u B Target 9Be BREAKUP x(A,CD)x (FISSION) arget thickness = 300 mg/cm2 (gamma-emission) C* Fragment 120Sn -91.1 0 Q_value = +191.04 MeV D * Residual 118Mo -32.63 0 Fission (breakup) Batch mode Reaction takes place at the • MIDDLE of the target ENTRANCE of the target EXIT of the target 3. After Beam and Target Set-up fragment (C) residual (D) Search an angle in CM initialization steps Press the 100 cm. 100 from 0 degrees and up 1 cm "Fission batch mode" button to C from 180 degrees and down 2 cm download the corresponding For Kinematics Plots use energy values 2.64 2.959 50 130 In after reaction Anale (dea) = fragment (C) residual (D) residual (D) C at entrance of detectors LAB CM Calculations Kinematics plots Counting in monitor = 1.01e+6 9.41e+5 pps This button is shown if the h Rutherford plot Differential Cross Section = 4.04e+04 3.7e+04 100 100 mb/sr "Break-up (Fission)" Energy after reaction = 198.107 165.612 0.7923 0.819 MeV/u** 2D fragment plot Δ Energy at the entrance (Monte Carlo) 156.166 radiobutton is selected in the of detectors = 186.372 MeV/u (** for gamma [MeV]) 3.68 Maximum Angle = -3.62 deg × Quit ? Reactions group, and reaction Help 75.2 msr Solid Angle = 0.198 80.6 3-body kinematics Q-value is positive delta Theta = 0.573 0.573 14.1 14.6 deg

2. Input target thickness, if you are interested to take energy loss into account

dialog.

Fission Fragment Batch Mode dialogue

The user has an opportunity to modify 2D fission fragments Monte Carlo plot settings once at the beginning of batch calculations

Continue calculations

6

++

Se

Results : no energy loss in a target

Two 2D (N vs Z) will appear immediately after the batch calculations end

Fission fragment registration efficiency Input ZN batch file: C:\user\c\lise pp 11\CrossSections\238U Ex20.zn

ALC: NOT THE OWNER OF TAXABLE INC.

_

ZN Output File

Lister - [C:\user\c\lise_pp_11\CrossSections\238U_Ex20_out.zn]

•7	м		waat Eff	9 FinalViold		
:2 95	30	2 280-02	7 200+01	6 FINGLITELU 6 FINGLITELU		
25	57 Ji (1	2.30e-02 3.7ho-02	2.200-01	9.240-03 0 650-03		
5	40 11	1 200-02	2.30e-01	2 05e-03		
26	38	1 670-02	1 63e+01	2.720-03		
26	30	6 000-02	1 880+01	1 140-02		
26	57 40	2 20e-01	1 050+01	h 20e-02		
26	40 Д1	8 080-02	2 420+01	9 17e-02		
26	41 42	1 hhe-01	2.4201	3 83e-02		
26	42 43	2 L1e-02	2.05C+01	5 17e-03		
7	39	6.28e-02	1.840+01	1.16e-82		
7	40	2.45e-01	1.840+01	4.520-02		
	41	5.610-01	1.900+01	1.07e-01		
	42	7.38e-01	2.19e+01	1.62e-01		
27	43	4.97e-01	2.53e+01	1.26e-01		
27	44	2.06e-01	2.45e+01	5.04e-02		
27	45	2.38e-02	2.05e+01	4.88e-03		
28	39	2.49e-02	2.07e+01	5.15e-03		
28	40	1.73e-01	1.86e+01	3.22e-02		
28	41	7.04e-01	1.94e+01	1.36e-01		
28	42	1.64e+00	1.91e+01	3.14e-01		
28	43	1.87e+00	2.04e+01	3.82e-01		
28	44	1.50e+00	2.33e+01	3.48e-01		
28	45	2.91e-01	2.66e+01	7.73e-02		
28	46	1.30e-01	2.37e+01	3.09e-02		
28	47	8.62e-02	1.72e+01	1.48e-02		
28	48	1.82e-01	1.18e+01	2.16e-02		
28	49	6.45e-02	2.86e+00	1.85e-03		
28	50	2.47e-02	0.00e+00	0.00e+00		

Results : with energy loss in a target

MICHIGAN STATE

Results : with energy loss in a target \rightarrow Brho = 4.9 Tm

26

Protons (Z)

OT@MSU 05/29/2019

MICHIGAN STATE

Results : with energy loss in a target \rightarrow Brho = 5.0 Tm

,**Li** ↔↔

₩ se

MICHIGAN STATE

OT@MSU 05/29/2019

15

Results : NO energy loss in a target; 100% momentum acceptance

S NSCI

₩ Se

MICHIGAN STATE UNIVERSITY

Final fission fragments are used in an input ZN-file. But initially in the Kinematics Calculator excited C* and D* fragments are used. For example we need to calculate a ¹¹⁵Pd fragment transmission:

Regular mode

Batch mode

– Part	icipants		ME [MeV]
Α	Beam	238U	47.31
В	Target	9Be	
C*	Fragment	115Pd	-80.43
D *	Residual	123Pd	-60.43

2D fragment plot (Monte Carlo)				
BREAKUP (FISSION)				
Projectile 238U (200.0 MeV/u)				
Target 9Be				
Ex.energy				
Fragment (C *) 115Pd 21.99				
Residual (D *) 123Pd 20.78				
Q-value (MeV) 165.88 MeV				
Expected final fragments				
C_final 113Pd: 48.1% <dn> 2.36</dn>				
D_final 120Pd: 59.7% <dn> 2.68</dn>				
TKE(CM) from systematics 167.75				
TKE(CM) from calculations 162.42				

BREAKUP (FISSION)				
Projectile 238U (200.0 MeV/u)				
Target	Target 9Be			
Ex.energy				
Fragment (C ×) 11	8Pd 22.11			
Residual (D *) 12	:0Pd 21.84			
Q-value (MeV) 169.52 MeV				
Expected final fragments				
C_final 115Pd: 19.9%	<dn> 3.36</dn>			
D_final 118Pd: 54.5%	<dn> 2.46</dn>			
TKE(CM) from systemati	cs 167.75			
TKE(CM) from calculation	ns 163.15			