"Universal parameterization" (UP) consists from two main blocks

- Prefragment search
 - search direction,
 - excitation energy model
- Momentum distribution "Convolution" model
 - separation energy models

Active development of the LISE⁺⁺ Abrasion-Ablation (AA) model, that helped to understand reaction physics at intermediate energies, and results of comparison AA calculations with experimental data should be used to revise the UP model

UP has been created more than 20* years ago and some solutions were long overdue Some new experimental results in exotic regions demonstrated deviation from UP-2000 predictions

• search direction

More probable prefragments calculated with LISE⁺⁺ Abrasion-Ablation (AA) model show drastically differences with the UP search results

Method A. So C B. So width	of prefragment search earch in the N/Z beam dir earch a 'parent' uisng emi ns (W) and X-sections (EP	ection ssion AX)	Excitation E for prefragm Surface	nergy ent search (Geometrical)
		А	В	
	"Top" Prefragment	64Mn	63Co	
	"Bottom" Prefragment	63Cr	62Co	
	Final Prefragment mass	63.4	62.0	
	Energy excitation (MeV)	149.3	169.2	
	Probability	1.67e-06	4.55e-07	

32 mg 12 Table of Nuclides	157.33					
P 1 Hooldos	-	refragment	40S	39CI	42Si	
Beta- and Beta-n 🛛 🦰 🔽 📩	MeV	"Bottom" Prefragment	39P	38S	41AI	
Reaction Reaction	N	Final Prefragment mass	39.0	38.2	41.1	
48Ca+Be	Modify	Energy excitation (MeV)	112.7	125.2	83.2	
		Probability	1.70e-04	1.88e-04	4.26e-0	
O A. Search in the N/Z beam direction	nergy ent search	Corrected Probability		3.17e-03	1.11e-0	
B. Search a 'parent' uisng emission Withs (W) and X-sections (EPAX)	(Geometrical)	CS (EPAX 2.15) = 7.61e-03 m				
C. Search a 'parent' uisng emission widths (W) and Abrasion initial CS E* per ab (E* = coe	praded nucleon ef * dA_abr)	LISE mode: Projectile Fragmentation				

new search option : $P = W * CS_{geom} * factorial$ CS_{geom} – geometrical cross section to for production of prefragment with A-nucleons, factorial – probability for Z-protons and N-protons after projectile abrasion

- Prefragment search
 - excitation energy model

 The Previous prefragment search version was based only on geometrical "dSurface" excitation energy model (J.W.Wilson et al., NIM B18 (1986) 225),

although mainly J.-J. Gaimard and K.-H.Schmidt NPA531(1991)709 model used in LISE⁺⁺ Abrasion-Ablation crosssections calculations

A Element Z 32 mg 12 Table of Nuclides 157.33 Beta- and Beta-n Z Reaction Z 48Ca + Be Modify	A 40S 39P	B 39Cl 38S	C 42Si 41AI		
32 mg 12 Table of Nuclides 157.33 "Top" Prefragment 157.33 Beta- and Beta-n Z MeV "Bottom" Prefragment 157.33 Reaction Z MeV "Bottom" Prefragment 157.33 48Ca + Be Modify Modify Energy excitation (MeV) 1 Method of prefragment search Evolution Energy Probability 1.7	40S 39P	39CI 38S	42Si 41AI		
Beta- and Beta-n Image: Construction of prefragment search MeV "Bottom" Prefragment construction of prefragment mass Search of prefragment search Search of prefragment search MeV "Bottom" Prefragment construction of prefragment mass Search of prefragment search Search of prefragment search of prefragment search Search of pr	39P	385	4161		
Reaction Modify Final Prefragment mass C 48Ca + Be Modify Energy excitation (MeV) 1 Method of prefragment search Evolution Energy Probability 1.7	20.0		4181		
48Ca + Be Modify Energy excitation (MeV) 1 Method of prefragment search Evoltation Energy 1.7	39.0	38.2	41.1		
- Method of prefragment search - Excitation Energy - Probability 1.7	112.7	125.2	83.2		
	1.70e-04	1.88e-04	4.26e-03		
G A Search in the N/Z beam direction for prefragment search Corrected Probability		3.17e-03	1.11e-02		
C B. Search a 'parent' uisng emission widths (W) and X-sections (EPAX) C Surface (Geometrical) CS (E C C. Search a 'parent' uisng emission widths (W) and Abrasion initial CS E* per abraded nucleon (E* = coef * dA_abr) LISE mode	CS (EPAX 2.15) = 7.61e-03 mb LISE mode: Projectile Fragmentation				

- Evanoration ontions

New radiobutton frame with new search option: "E* per abraded nucleon". The Previous search version was based only on the "dSurface" energy.

New default Settings "C1"

6

MICHIGAN STATE

UNIVERSITY

v.11.1.102

⁴⁸Ca (140 MeV/u) \rightarrow ³²Mg : options A, B & C

		-	-	•		-		-
⁴⁰ Ca	⁴¹ Ca	⁴² Ca	⁴³ Ca	⁴⁴ Ca	⁴⁵ Ca	⁴⁶ Ca	⁴⁷ Ca	⁴⁸ Ca
³⁹ K	⁴⁰ К В	⁴¹ K	⁴² K	⁴³ K	⁴⁴ K	⁴⁵ K	⁴⁶ K	⁴⁷ K
³⁸ Ar	³⁹ Ar	⁴⁰ Ar	⁴¹ Ar	⁴² Ar	⁴³ Ar	⁴⁴ Ar	⁴⁵ Ar	⁴⁶ Ar
³⁷ CI	³⁸ CI B	³⁹ CI 1	4ºCI	41CI	⁴² CI	⁴³ CI	⁴⁴ CI	⁴⁵ CI
³⁶ S	37 S	³⁸ S	³⁹ S	⁴⁰ S	41 _S	42 S	43 S	44S
35p	³⁶ P	37p	^{зар}	39p	40p	41p	42p	43p
³⁴ Si	³⁵ Si	³⁶ Si	37 Si	³⁸ Si	³⁹ Si	⁴⁰ Si	⁴¹ Si	⁴² Si
³³ AI	³⁴ AI	³⁵ AI	³⁶ AI	³⁷ AI	³⁸ AI	³⁹ AI	⁴⁰ AI	⁴¹ AI
³² Mg	³³ Mg	³⁴ Mg	³⁵ Mg	³⁶ Mg	³⁷ Mg	³⁸ Mg		⁴⁰ Mg

	А	В	С
"Top" Prefragment	40S	39CI	42Si
"Bottom" Prefragment	39P	38S	41AI
Final Prefragment mass	39.0	38.2	41.1
Energy excitation (MeV)	112.7	125.2	83.2
Probability	1.70e-04	1.88e-04	4.26e-03
Corrected Probability		3.17e-03	1.11e-02

Starting v.11.1.102 "C1" is recommended option!

#2 ○ Qg + dSurface

42.9

2.936

- Momentum distribution
 "Convolution" model
 - separation energy models

 $E_{S} = E_{0} * dA$

dA - number of abraded nucleons calculated by a module set in the Prefragment search dialog

New version

Update of the Convolution method dialog

0.153

222.7

255.2

22062

0.996

0.993

All new default parameters can be downloaded from "A1900_2019.lopt" file in the LISE⁺⁺ v.11.1.102 package

Projectile Isospin and Velocity fragment

Velocity of fragments : neutron-rich region

O.B. Tarasov et al. / Nuclear Instruments and Methods in Physics Research A 620 (2010) 578-584

Fig. 4. (Color online) Experimental mean ratios of the fragment velocities to the projectile velocity for neutron-rich isotopes (located along the line A=2.56q+1.6) produced by fragmentation of a ⁷⁶Ge beam at 132 MeV/*u* with beryllium targets. The atomic numbers are shown inside of rectangles. The solid line represents calculations using Morrissey's model [2] with default settings ($\sigma_0 = 87 \text{ MeV}/c$, $E_S = 8 \text{ MeV}$). See text for details. The dashed lines represent the convolution model results with separation energy modes as listed in Table 4.

the separation energy parameter for nuclei observed in the present work in the region $A_P/2 \le A_F \le A_P$ exhibits a linear decrease with the number of removed nucleons:

for DJM

 $E_S = 8 - 11.2\Delta A / A_P$

where $\Delta A = A_P - A_F$, A_P is the projectile mass number, and A_F is the fragment mass number.

FIG. 5. (Color online) Widths of the parallel momentum component as a function of the mass number of fragments produced in the reaction ⁸²Se beams with beryllium targets. Small diamonds denote calculations by the convolution model [38] with default settings for separation energy (E_s) option #1 in LISE⁺⁺. Solid green and dot-dashed black lines represent the best fit to the data for the Goldhaber [35] and Morrissey [36] models, respectively.

for DJM $E_S = 8 - 9.2\Delta A/A_P$,

The Universal parameterization fairly describes mean values and widths of velocity distributions in a neutron-rich region, whereas fragments are faster and distributions are narrow comparing to the DJM parameterization with default parameters.

⁸²Se

⁷⁸Kr (150 MeV/u) + Be(374 mg/cm²) @ NSCL

http://lise.nscl.msu.edu/paper/velocity/2019_05_17_78Kr_results.pdf

Both models with default parameters predict significantly <u>faster</u> fragments. DJM with E_s parameter equal to 10 (instead default 8) reproduce experimental data

Binding energies changes from west to east

http://lise.nscl.msu.edu/9_8/LISE_stability_plot.pdf

"Stability" plots + Coulomb option

"Stability" plots with Coulomb option demonstrate isotope ability to the evaporation cascade, because a charge evaporated particle should overcome Coulomb barrier

Protons (Z)

"Stability^{+Coulomb}" plot <Database: AME2016 (database) + LDM2>

N-Z=-50-200

Reduced value based on from S_{1n}, S_{2n}, S_{1p}+CB_p, S_{2p}+CB_{2p}, Barrier Fission -1

36	69Kr	70 Kr	71Kr 8.510	72 Kr	73Kr	74Kr	75Kr	76Kr	77Kr	78Kr 19.7	⁷⁹ Kr	⁸⁰ Kr	81 Kr 9.698	82 Kr	⁸³ Kr	⁸⁴ Kr 8.995
	67 Br	68 Br	⁶⁹ Br	⁷⁰ Br	71Br	72Br	⁷³ Br	74Br	75 Br	10.6	77Br	⁷⁸ Br	⁷⁹ Br 9.488	⁸⁰ Br	81 Br	⁸² Br
	65 Se	66 Se	67 Se	68 Se	69 Se	70 Se	71Se	72 Se	73 Se	74 Se	75 Se	76 Se	77 Se	⁷⁸ Se	79 Se	⁸⁰ Se
	63As	64As	65As	66As	67As	68As	69As	70As	71As	72As	73As	74As	75As	76As	77As	⁷⁸ As
32	61 Ge	62 Ge	63 Ge	64 Ge	65 Ge	66 Ge	67Ge	68Ge	69 Ge	70 Ge	71 Ge	72 Ge	73Ge	74 Ge	75 Ge	76 Ge
	⁵⁹ Ga	60 Ga	⁶¹ Ga	62 Ga	63Ga	64 Ga	65 Ga	66 Ga	67Ga	68Ga	⁶⁹ Ga	⁷⁰ Ga	71Ga	72 Ga	73Ga	74 Ga
	⁵⁷ Zn	⁵⁸ Zn	⁵⁹ Zn	⁶⁰ Zn	⁶¹ Zn	⁶² Zn	⁶³ Zn	⁶⁴ Zn	⁶⁵ Zn	⁶⁶ Zn	⁶⁷ Zn	⁶⁸ Zn	⁶⁹ Zn	⁷⁰ Zn	⁷¹ Zn	⁷² Zn
	55Cu	⁵⁶ Cu	57Cu	58Cu	⁵⁹ Cu	60Cu	61Cu	62Cu	⁶³ Cu	⁶⁴ Cu	65Cu	66Cu	67Cu	68Cu	69Cu	70Cu
28	⁵³ Ni	⁵⁴ Ni	⁵⁵ Ni	56Ni	57Ni	⁵⁸ Ni	⁵⁹ Ni	⁶⁰ Ni	⁶¹ Ni	62Ni	⁶³ Ni	⁶⁴ Ni	⁶⁵ Ni	66Ni	67Ni	68 Ni
	51 Co	52Co	⁵³ Co	⁵⁴ Co	55Co	⁵⁶ Co	57Co	58Co	⁵⁹ Co	⁶⁰ Co	61Co	62Co	⁶³ Co	⁶⁴ Co	65Co	66 Co
	⁴⁹ Fe	⁵⁰ Fe	⁵¹ Fe	⁵² Fe	⁵³ Fe	⁵⁴ Fe	⁵⁵ Fe	⁵⁶ Fe	⁵⁷ Fe	⁵⁸ Fe	⁵⁹ Fe	⁶⁰ Fe	⁶¹ Fe	⁶² Fe	63	12.9
	^{7,229} ⁴⁷ Mn	^{7,939} ⁴⁸ Mn	∍.₅24 ⁴⁹ Mn	⁵⁰ Mn	^{11.8} ⁵¹ Mn	^{12.0} ⁵² Mn	⁵³ Mn	^{10.2}	9.422 ⁵⁵ Mn	s.s₄s ⁵⁶ Mn	^{8.313} ⁵⁷ Mn	⁵⁸ Mn	^{7.199} ⁵⁹ Mn	e.so₄ ⁶⁰ Mn	61A	12.2
24	^{7.320} 45 Cr	46 Cr	9.740 47 Cr	⁴⁸ Cr	⁴⁹ Cr	^{12.1} ⁵⁰ Cr	^{11.3} 51Cr	^{10.5} 52 Cr	9.582 53 Cr	^{8.748} ⁵⁴ Cr	^{7.958}	56Cr	57 Cr	58Cr	59(11.5 10.8
	6.919 43 V	7.760 44 V	9.552 45 V	46 V	11.9 47 V	11.8 48 V	49 V	10.6 50 V	9.989 51 V	8.829 52 V	7.983 53 V	7.246 54 V	6.779 55 V	56V	5.8 57	10.1
	6.301 41 Ti	7.637 42 Ti	9.465 43 Ti	11.2 44Ti	12.0 45 TI	46 Ti	11.0 47ΤΙ	10.4 48 Ti	10.2 49 Ti	9.181 50 Ti	7.895 51 Ti	7.296 52 Ti	6.718 53 11	е.202 54 Ті	5.7 55	9.400
	5.710 39 Sc	6.603 40 Sc	8.547 41 Sc	10.9 42 Sc	43Sc	11.4 44Sc	45 Sc	46 Sc	9.885 47 Sc	9.541 48 Sc	8.656 49 Sc	7.090	6.620 51 Sc	6.1.47 52 Sc	5.4 53	8.000
20	6.026 37 Ca	7.177 38Ca	8.710 39 Ca	10.6	11.6 41Ca	10.9 42 Ca	10.5	10.0 44Ca	9.704 45 Ca	9.443 46 Ca	9.184 47 Ca	8.093 48 Ca	6.405 49 Ca	50Ca	5.9 51(7.300
20	6.219	7.063	9.294	11.2	12.0	9.922	9.707	9.532	9.273	8.907	8.837	8.614	7.549	5.754	5.5	6.600 5.900
	6.091	7.471	8.852	10.6	11.9	10.4	8.947	42K 8.815	*3K 8.579	8.451	8.091	7.888	7.620	6.507	5.0	5.200
	33 Ar 6.007	³⁴ Ar 6.993	³⁵ Ar 9.019	36 Ar 10.9	3/Ar 11.8	38 Ar 10.3	³⁹ Ar 9.219	40 Ar 8.234	41 Ar 7.984	42 Ar 7.763	43 Ar 7.542	44 Ar 7.197	45 Ar 6.952	46 Ar 6.621	47 5.8	4.500
	31 CI 5.704	32 CI 7.206	³³ Cl 8.896	34 CI 10.7	35 C 11.9	36 C 10.6	37 CI 9.445	³⁸ Cl 8.209	39 CI 7.091	40 Cl 6.951	41CI 6.825	42 CI 6.708	43 Cl 6.497	44 CI 5.848	45 5.1	3.800
16	29 S 5.874	30 S 6.746	31 S 9.012	32 S	33 S 11.8	34 S 10.0	35 S 9.201	36 S 8.438	37 S 7.096	38 S 6.170	39 5 6.204	40 S 6.060	41 S 5.994	42 S	43 4.6	2.400
	²⁷ P	²⁸ P	²⁹ P	³⁰ P	³¹ P	³² P	³³ P	³⁴ P	³⁵ P	³⁶ P	³⁷ P	³⁸ P	³⁹ P	⁴⁰ P	41	1.700
	-3		-1		1		3		5		7		9		11	

Isospin (N-Z)

"Stability" plots with Coulomb option demonstrate isotope ability to the evaporation cascade, because a charge evaporated particle should overcome Coulomb barrier

Repeat:

DJM's model with E_s parameter equal to 10 (instead default 8) reproduce ⁷⁸Kr beam experimental data

OT@MSU 09/11/2019

X-axis: A_{beam} - A_{fragment}

LISE_opt \rightarrow Brho-value corresponding to maximum yield from the convolution model $_{16}$

⁷⁸Kr (150 MeV/u) + Be(374 mg/cm²) experiment @ NSCL

6

₩ Se

X-axis: A_{beam} - A_{fragment}

LISE_opt \rightarrow Brho-value corresponding to maximum yield from the convolution model 17

MICHIGAN STATE UNIVERSITY

Momentum distributions as beam isospin function : - 10n

Convolution "C1"

"C1" – prefragment search # 2 – convolution model (120,1,-1) DJM – standard parameters (8,87) E= 100 MeV/u, very thin Be-target

Momentum distributions as beam isospin function : - 10p

Convolution "C1"

"C1" – prefragment search # 2 – convolution model (120,1,-1) DJM – standard parameters (8,87) E= 100 MeV/u, very thin Be-target

Momentum distributions as beam isospin function : - 10p - 10n

Convolution "C1"

"C1" – prefragment search # 2 – convolution model (120,1,-1) DJM – standard parameters (8,87) E= 100 MeV/u, very thin Be-target

Benchmarks of Universal parameterization prefragment search methods

⁴⁸Ca (140 MeV/u) \rightarrow A=42 : Prefragment search "A1"

g = 0.95 MeV/fm^2

MICHIGAN STATE

OT@MSU 09/11/2019

⁸⁶Kr (140 MeV/u) → A=76 : Prefragment search "A1"

shift

0.158

0.149

-1

120

MeV/c g = 0.95 MeV/fm^2 MICHIGAN STATE

OT@MSU 09/11/2019

6

S NSCI

++

⁸⁶Kr ($\frac{60}{100}$ MeV/u) \rightarrow A=76 : Prefragment search "A1"

coef

3

1

48.7

MeV

Excitaton from

 $\sigma_0^{conv} =$

the Abrasion model

120

MeV/c g = 0.95 MeV/fm^2 shift

0.158

0.149

-1

MICHIGAN STATE

Prefragment search "A1"

OT@MSU 09/11/2019

6

++

⁷⁸Kr (140 MeV/u) \rightarrow A=70 : Prefragment search "A1"

shift

0.158

0.149

-1

3

1

MeV

the Abrasion model

120

MeV/c g = 0.95 MeV/fm^2

 $\sigma_0^{conv} =$

MICHIGAN STATE

Prefragment search "A1"

OT@MSU 09/11/2019

6

S NSCI

++

😽 "Se

⁸⁶Kr (140 MeV/u) → A=76 : Prefragment search "C1"

Version 11.1.102 default settings

MICHIGAN STATE

UNIVERSITY

⁸⁶Kr (140 MeV/u) → A=76 : Prefragment search "C1"

OT@MSU 09/11/2019

⁷⁸Kr (140 MeV/u) → A=70 : Prefragment search "C1"

MICHIGAN STATE

Version 11.1.102 default settings

⁴⁸Ca (140 MeV/u) \rightarrow ³²Mg : <u>A0</u> prefragment search options

OT@MSU 09/11/2019

6

30

⁴⁸Ca (140 MeV/u) \rightarrow ³²Mg : <u>A1</u> prefragment search options

6

MICHIGAN STATE UNIVERSITY

6 S) NSCI ₩ se

⁴⁸Ca (140 MeV/u) \rightarrow ³²Mg : <u>C1</u> prefragment search options

41AI

41.0

37.1

4.07e-02

the Abrasion model

120

=

MeV/c

MeV

"Bottom" Prefragment

Final Prefragment mass

Energy excitation (MeV)

Corrected Probability

Probability

Momentum distributions

Momentum distributions

⁴⁸Ca (140 MeV/u) + Be, Settings on ³²Mg Velocity: Convolution #1-> v/v0(mean)=0.991 and Calculation(DJM) -> v/v0=0.983 Momentum width: "Convolution" & "[1] D.J.Morrissey"; SigmaM=87.0; Correction: Coulomb energy=No; Projectile ma: - Convolution #0 : S0(FWHM)=103, S0(right side)=87 Convolution #1 : S0(FWHM)=89, S0(right side)=77 Convolution #2 : S0(FWHM)=79, S0(right side)=70 : S0(FWHM)=121, S0(right side)=115 1e+2 Gaussian 1e+1 1e+0 Yields [%] 1e-1 1e-2 1e-3 1e-4 16500 15000 15500 16000 17000 17500 P [MeV/c] Method of prefragment search Exc.Energy to prefragment search-42Si "Top" Prefragment

Surface (Geometrical)

 $E^* = c^* dAabr$

Œ

E* per abraded nucleon

⁴⁸Ca (140 MeV/u) + Be, Settings on ³²Mg Velocity: Convolution #1-> v/v0(mean)=0.991 and Calculation(DJM) -> v/v0=0.983 Momentum width: "Convolution" & "[1] D.J.Morrissey"; SigmaM=87.0; Correction: Coulomb energy=No; Projectile mas

A. Search in the N/Z beam direction.

B. Search a 'parent' uisng emission

C. Search a 'parent' uisng emission

widths (W) and Abrasion initial CS

widths (W) and X-sections (EPAX)

MeV/c

MeV/c

MeV/c

⁴⁸Ca (140 MeV/u) \rightarrow ³²Mg : options A & B

MICHIGAN STATE

				Settings for convolution
		"Top" Prefragment	38P	
	Exc.Energy to prefragment search	"Bottom" Prefragment	37Si	C 0 Energy from Qg 38.7 3.344 0.158 340.8 255.9 16780 0.994 0.99
4.0	 Surface (Geometrical) 	Final Prefragment mass	37.0	C 1. Excitation from dSurface 77.3 3 0.149 361.8 324.6 16733 0.993 0.98
AO	C E [*] per abraded nucleon	Energy excitation (MeV)	77.3	C 2. Excitaton from 153.2 1 -1 311.3 152.3 16711 0.987 0.98
- Method of prefragme	E^ = C ^ dAabr	Probability	3.04e-04	MeV MeV/c MeV/c
		Corrected Probability		$\sigma_0^{\text{max}} = $ 120 MeV/c
A. Search in N/Z	beam direction			
B. Search a pare emission widths a	ent' nucleus uisng	"Top" Prefragment	40S	EWHM / Vf/Vb
	Exc.Energy to prefragment search—	"Bottom" Prefragment	39P	Separation EnergyEscoefshift2.355 (*) tauP(Ymax)peakmean
Δ1	C Surface (Geometrical)	Final Prefragment mass	39.0	O 0. Energy from Qg 33.5 3.344 0.158 318.8 244.6 16787 0.994 0.991
	E* per abraded nucleon	Energy excitation (MeV)	55.0	C 1. Excitation from dSurface 55.0 3 0.149 328.8 281.2 16761 0.993 0.989
	E [×] = c * dAabr	Probability	1.18e-04	C Excitation from 125.1 1 -1 288.8 141.3 16728 0.988 0.987
	-	Corrected Probability		G ^{60XV} = 120 MeV/c MeV/c MeV/c MeV/c
		conceted i robability		
				40Ca 41 Ca 42 Ca 43 Ca 44 Ca 45 Ca 46 Ca 47 Ca 48 Ca
		"Top" Prefragment	36S	39K 40 K 41 K 42 K 43 K 44 K 45 K 46 K 47 K
	Exc.Energy to prefragment search	"Bottom" Prefragment	35P	
DU	 Surface (Geometrical) 	Final Prefragment mass	35.9	³⁸ Ar ³⁹ Ar ⁴⁰ Ar ⁴¹ Ar ⁴² Ar ⁴³ Ar ⁴⁴ Ar ⁴⁵ Ar ⁴⁶ Ar
DU	E* per abraded nucleon	Energy excitation (MeV)	104.6	
Method of prefragm	ent search — E [×] = c [×] dAabr	Probability	1.60e-04	37CI 38CI 39CI 40CI 41CI 42CI 43CI 44CI 45CI
CLA Search in NZ	Z beam direction	Corrected Probability	7.05e-04	B1
B Search a 'par	ent nucleus usna			36S 37S 38S 39S 40S 41S 42S 43S 44S
emission widths	and cross-section	UT U. Dester	2001	
	Exc.Energy to prefragment search—	"Top" Pretragment	3901	35p 36p 37p 38p 39p 40p 41p 42p 43p
R1	O Surface (Geometrical)	Bottom Pretragment	38CI	
	E* per abraded nucleon	Final Prefragment mass	38.0	34 Si 36 Si 36 Si 38 Si 39 Si 40 Si 41 Si 42 Si
	E [×] = c [×] dAabr	Energy excitation (MeV)	65.6	
		Probability	7.12e-05	³³ AI ³⁴ AI ³⁵ AI ³⁶ AI ³⁷ AI ³⁸ AI ³⁹ AI ⁴⁰ AI ⁴¹ AI
		Corrected Probability	1.05e-03	

33

37Mg

³⁸Mg

⁴⁰Mg

³⁶Mg

³⁵Mg

³⁴Mg

³²Mg ³³Mg

v.11.1.102

⁴⁸Ca (140 MeV/u) \rightarrow ³²Mg : options A, B & C

		-		•		8		
⁴⁰ Ca	⁴¹ Ca	⁴² Ca	⁴³ Ca	⁴⁴ Ca	⁴⁵ Ca	⁴⁶ Ca	⁴⁷ Ca	⁴⁸ Ca
₃₉ K	⁴⁰ К В	⁴¹ K	⁴² K	⁴³ K	⁴⁴ K	⁴⁵ K	⁴⁶ K	⁴⁷ K
³⁸ Ar	³⁹ Ar	⁴⁰ Ar	⁴¹ Ar	⁴² Ar	⁴³ Ar	⁴⁴ Ar	⁴⁵ Ar	⁴⁶ Ar
³⁷ CI	³⁸ CI	³⁹ CI 1	⁴⁰ CI	41CI	⁴² CI	⁴³ CI	⁴⁴ CI	⁴⁵ CI
³⁶ S	37 S	³⁸ S	³⁹ S	⁴⁰ S	41S	42 S	43 S	44S
35p	³⁶ P	37p	^{зар}	39p	⁴⁰ P	41p	42p	43p
³⁴ Si	³⁵ Si	³⁶ Si	37 Si	³⁸ Si	³⁹ Si	⁴⁰ Si	⁴¹ Si	⁴² Si
³³ AI	³⁴ AI	³⁵ AI	³⁶ AI	³⁷ AI	³⁸ AI	³⁹ AI	⁴⁰ AI	⁴¹ AI
³² Mg	³³ Mg	³⁴ Mg	³⁵ Mg	³⁶ Mg	³⁷ Mg	³⁸ Mg		⁴⁰ Mg

	Α	В	С
"Top" Prefragment	40S	39CI	42Si
"Bottom" Prefragment	39P	38S	41AI
Final Prefragment mass	39.0	38.2	41.1
Energy excitation (MeV)	112.7	125.2	83.2
Probability	1.70e-04	1.88e-04	4.26e-03
Corrected Probability		3.17e-03	1.11e-02

Starting v.11.1.102 "C1" is recommended option!

⁷⁸Kr \rightarrow ⁷¹Se : Convolution version & DJM vs. Energy

⁷⁸Kr \rightarrow ⁷¹Se : Convolution version (A1 & C1) & DJM vs. Energy

 $(\bigcirc$

÷÷

₩ Se

"UP" = Universal Parameterization

Version 11.1.100

09/05/19

UPDATE:

v.11.1.102

09/09/19

o UP dialog

- UP method #2 re-make: Separation energy now from Abrasion Excitation Energy
- Update of UP plot (4 curves)
- UP modification for high energy
- UP modification for the "result_factor" value

o Prefragment Search dialog

- New option (abrasion) for excitation energy to search a prefragment
- Modification of N/Z algorithm search
- Prefragment search parameters: write/read to/from to user file
- Prefragment search parameters: new default values
- Modification of "B" searching method for prefragment
- New method "C" to search a prefragment

o Momentum distribution as function of beam isospin

o Error function modification

- Error function algorithm revision.
- Implementation of "erfc" array: increasing argument range from 4.2 up to 20

1e+2

1e+1

1e+0

1e-1

1e-2

1e-3

Update of UP plot (4 curves) : σ_{conv}=90 MeV/c

(*) - with Gamma-factor

Update of UP plot (4 curves) : σ_{conv} =120 MeV/c

MICHIGAN STATE

MICHIGAN STATE

78 Kr $\rightarrow ^{68}$ Zn* $\rightarrow ^{58}$ Fe

Initial Prefragments Plot for ⁵⁸Fe (3.27e+00 mb)

ABRASION-ABLATION - ⁷⁸Kr + Be: more probable ⁶⁸Zn(2.14e-01 mb); <-dZ>=4.26 <-dN>=5.79 Excit.Energy Method:< 2 >; <E*>:16.0*dA MeV Sigma:9.60; No Intrin.Thermalztn; LimitTemp: No NP=32; SE:"DB0+Cal2" Density:"auto" GeomCor:"Off" Tunlg:"auto" FisBar=#1 BarFac=1.00 Modes=^{1010 1000 110}

Initial Prefragments Plot for ⁶⁶**Fe (6.17e-03 mb)**

ABRASION-ABLATION - ⁸⁶Kr + Be: more probable ⁷⁵Fe(1.20e-03 mb); <-dZ>=1.09 <-dN>=8.39 Excit.Energy Method:< 2 >; <E*>:16.0*dA MeV Sigma:9.60; No Intrin.Thermalztn; LimitTemp: No NP=32; SE:"DB0+Cal2" Density:"auto" GeomCor:"Off" Tunlg:"auto" ^{Fis}Bar=#1 Bar^{Fac}=1.00 Modes=^{1010 1000 110}

