

version 8.3.59

Requests of D.J.Morrissey (NSCL), G.Chubarian & © (TAMU)

두 Spectrometer	designing								×
Block	Given Name	Z·Q	Length,m	Enable		- Insert Mode	- Insert block	(
S 🔲 Drift	FP_slits		0	+		C hoforo	T	Target	
S 🔲 Drift	Beam Transport		5	+		o beiole	STO	Stripper after Target	1
Material	Degrader			+		 after 		suppor altor raigot	
Dipole	MonoDipole	0	12	+				Wedge	
W Vedge	MonoWedge			+	_		M	Material(Detector)	
Solenoid	Solenoid		1.95	+)	- Move element		Forodou oup	i I
S 🔲 Drift	Refocus		0	NO				Faladay cup	1
Material	FinalDegrader			NO			D	Dispersive (Dipole)	
GasFS	GasFS 1	0	0	NO		🤳 Down			
S Drift	ZeroLength		0	NO	\ ·		F	Wien velocity filter	
Material	GC_200mbar			NO	1		S 🗌	Drift (space)	
Material	dE_Si			+		effer e n		Poom Potation	11
Material	Stop			+		🔛 Edit	<u> </u>	beam hotation	11
1					1	🗶 Delete	E_= _	Electric dipole	
- Selected block -							G 🔜	Gas-filled separator	
Enable 🗾		Dispersiv	e (Dipole)	0 710		🗸 ок	C >	Compensating Dipole	i
Let call automat	ically I	BIOCK LI	engtn (m) nath after —	0.715		- Help	K + 1	BE separator	1
Block name = D)1	this	block [m]	8.719				in separator	
Charge State (Z-	Q) = 0	Total L	ength [m]	54.434		<u> </u>		Solenoid	IJ

The code operates under MS Windows environment and provides a highly user-friendly interface. It can be freely downloaded from the following internet addresses:

http://www.nscl.msu/edu/lise

MICHIGAN STATE UNIVERSITY LISE++

version 7.6.56 (03-MAR-2006)

http://groups.nscl.msu.edu/lise/paper/2006_june_utilities.pdf

Introduction : Update of the TwinSol utility

Function of	
19. matrix: X/X	•
01. beam sigma: X 02. beam sigma: T (X') 03. beam sigma: Y 04. beam sigma: P (Y') 05. beam sigma: R (X&Y) 06. beam sigma: A (P&T) 07. beam ray: X 08. beam ray: T (X') 09. beam ray: Y 09. beam ray: Y 09. beam ray: P (Y') 10. beam ray: P (Y') 11. beam ray: R (X&Y) 12. heam ray: R (X&Y) 13. ray trace: X 14. ray trace: Y 15. ray trace: Y 16. ray trace: P (Y') 17. ray trace: A (P&T) 18. ray trace: A (P&T) 19. matrix: X/Y 20. matrix: X/Y 21. matrix: X/Y 22. matrix: T/X 23. matrix: T/Y 24. matrix: T/P 27. matrix: Y/Y 28. matrix: Y/Y 30. matrix: Y/P 31. matrix: P/X 32. matrix: P/Y 33. matrix: P/P 34. matrix: P/P 35. matrix: P/P 36. matrix: P/P 37. matrix: P/P 38. matrix: P/P 39. matrix: P/P	
36. Field: BZ	

The coloriola: D_noia Main
1-st solenoid: B_field Max
1-st solenoid: I (Current)
1-st solenoid: Coil Length
1-st solenoid: Effective Radius
1-st solenoid: 1-st half
1-st solenoid: 2-nd half
2-nd solenoid: B_field Max 💦
2-nd solenoid: I (Current)
2-nd solenoid: Coil Length
2-nd solenoid: Effective Radius
2-nd solenoid: 1-st half
2-nd solenoid: 2-nd half
3-nd solenoid: B_field Max 💦 💦
3-nd solenoid: I (Current)
3-nd solenoid: Coil Length
3-nd solenoid: Effective Radius
3-nd solenoid: 1-st half
3-nd solenoid: 2-nd half
Fragment energy (MeV/u)

from

Let solepoid: B. field May

	1
2-nd solenoid: x0	1
T-st solenoid: xU 1-st solenoid: x1L 1-st solenoid: x1R 1-st solenoid: xC 1-st solenoid: x2L 1-st solenoid: x2R	
1-st solenoid: xF	
2-nd solenoid: x0 2-nd solenoid: x1L 2-nd solenoid: x1R 2-nd solenoid: xC 2-nd solenoid: x2L 2-nd solenoid: x2R 2-nd solenoid: xF	
8-nd solenoid: xU 3-nd solenoid: x1L 3-nd solenoid: x1R 3-nd solenoid: xC 3-nd solenoid: x2L 3-nd solenoid: x2R 8-nd solenoid: xF Bind solenoid: xF	

05/30/08 version 8.3.45 http://groups.nscl.msu.edu/lise/8 3/TwinsolUtility v8 3 45.pdf

http://people.web.psi.ch/rohrer_u/trantext.htm#Solen

Urs C. Rohrer, PSI (SIN), CH-5232 Villigen-PSI, Switzerland

SOLENOID: Type code 19.0

Inside the solenoid, particles possessing a transverse velocity will describe an orbit which is helical in space. In order to study these movements, the beam centroid may be shifted and traced through the solenoid.

For B * L > Brho, the solenoid has to be divided into a sufficient amount of smaller elements in order to get an accurate image of the particle rays. But the R-matrix used in transport includes the fringe field effects at the entrance and exit of the solenoid.

First-order matrices for the solenoid:

1) Entrance face : 0 0 0 0 0 1 K O O O 0 01000 2 * K = B / BrhoRi = 000100 -K 0 0 0 0 1 0 00001 0 2) Exit face : 1 0 0 0 0 0 1 -K 0 0 0 0 Ro = 0 01000 к 0 0100 0010 0 0 0 0 0 0 0 1

3) Homogeneous field:

	1	S*C/K	0	S*S/K	0	0		
	0	2*C*C-1	0	2*5*0	0	0		
_	0		0	200	0	0		
Rh =	0	-S*S/K	1	S*C/K	0	0		
	0	-2*S*C	0	2*C*C-1	0	0		
	0	0	0	0	1	0		
	0	0	0	0	0	1		
C = cos(K*L)								
S =	: sir	1(K*L)						

'soft-edge' solenoid - edge effect

Alex Bogacz, Workshop on Muon Collider Simulations, Miami Beach, FL December 15, 2004

$$\mathbf{M}_{\text{soft sol}} = \mathbf{M}_{\text{edge}} \ \mathbf{M}_{\text{sol}} \ \mathbf{M}_{\text{edge}}$$

$$\mathbf{M}_{edge} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -\Phi_{edge} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\Phi_{edge} & 1 \end{bmatrix}$$

$$\Phi_{edge} = \frac{1}{2} \left(\int_{-\infty}^{\infty} B_z^2(s) \, ds - B_0^2 \, L \right) = -\frac{k^2 a}{8}$$

 $k = eB_0/pc$

The Solenoid block dialog

Calculation of setting fragment parameters in front of the solenoid and solenoid tuning are done by the "Distribution" method.

Phase space distributions and transmission with the Solenoid block are recommended with the Monte Carlo transmission method.

The Settings fragment parameters

Solenoid Tuning

Solenoid Tuning : Looking for nearest minimum

 $B_{curr} = max (B_{curr}, 0.1)$ * 0.05 $X_{min} = B_{curr}$ $X_{max} = B_{curr} * 20$ $coef = exp(ln(X_{max}/X_{min}) /$ NP Tune Plot) $X_i = Xmin * coef^i$ at B_{curr} i_{start} = NP_Tune_Plot / 2 Go to both directions (left & right) from istart Search for 1-st minimum #define NP Tune Plot 512 #define NP_Tune_fit 16

MICHIGAN STATE

UNIVERSITY

V = **Reduced Brho-value.** Beam sigma

Use Local matrix No "soft-edge" corrections

http://groups.nscl.msu.edu/lise/8_3/solenoid_test.lpp

MICHIGAN STATE UNIVERSITY LISE++

Local matrix. No "soft-edge" corrections

No "soft-edge" corrections

MICHIGAN STATE

150

50

1.4

1.8

2.2

2.6

B field max

3.4

3.8

Matrices as function of Energy and A,Z

¹⁰⁶In at 1.4 MeV/u

sk	matrix						ſ	- Global ma
<]	-0.9105	1.1786	-0.5655	0.7319	0	0		-0.9105
•	-1.1175	0.6539	-0.694	0.4061	0			-1.1175
1	0.5655	-0.7319	-0.9105	1.1786	0			0.5655
:	0.694	-0.4061	-1.1175	0.6539	0			0.694
-	0	0	0	0	1			0
	0	0	0	0	0	1		0
	/[mm]	/[mrad]	/fmm]	/[mrad]	/[mm]	/[%]		/[mm]

-1	Global mat	rix						-Beam-
1	-0.9105	0.5413	-0.5655	0.3361	0	0	[mm]	12.654
1	-1.1175	-0.1283	-0.694	-0.0797	0	0	[mrad]	3.292
	0.5655	-0.3361	-0.9105	0.5413	0	0	[mm]	12.927
	0.694	0.0797	-1.1175	-0.1283	0	0	[mrad]	3.306
1	0	0	0	0	1	0	[mm]	
1	0	0	0	0	0	1	[%]	0.07
	/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]		

¹⁰⁶In at 1.0 MeV/u

ick	matrix —						1	- Global
×	-1.8574	0.1773	-4.4777	0.4273	0	0		-1.85
т [-1.3632	0.0511	-3.2863	0.1231	0	0		-1.36
Υ	4.4777	-0.4273	-1.8574	0.1773	0	0		4.47
F	3.2863	-0.1231	-1.3632	0.0511	0	0		3.286
ц	0	0	0	0	1	0		0
d	0	0	0	0	0	1		0
	/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]		/[mn

Global mat	rix						-Beam
-1.8574	-1.1229	-4.4777	-2.7071	0	0	[mm]	59.83
-1.3632	-0.9031	-3.2863	-2.1773	0	0	[mrad]	48.098
4.4777	2.7071	-1.8574	-1.1229	0	0	[mm]	57.823
3.2863	2.1773	-1.3632	-0.9031	0	0	[mrad]	46.476
0	0	0	0	1	0	[mm]	
0	0	0	0	0	1	[%]	0.07
/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]		

¹⁰²Rh at 1.4 MeV/u

	_ Global mat	rix ————————————————————————————————————						Г	Beam
	-0.0842	1.3685	-0.0341	0.5549	0	0	[mm]		29.009
	-0.6504	0.3711	-0.2637	0.1505	0	0	[mrad]		7.903
	0.0341	-0.5549	-0.0842	1.3685	0	0	[mm]		30.068
	0.2637	-0.1505	-0.6504	0.3711	0	0	[mrad]		8.181
	0	0	0	0	1	0	[mm]		0
	0	0	0	0	0	1	[%]		0.07
L	/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]			

	59.83
1	48.098
	57.823
1	46.476
	0
	0.07

Block	Block matrix									
1. X	-0.0842	1.4274	-0.0341	0.5788	0	0				
2. T	-0.6504	0.8264	-0.2637	0.3351	0	0				
3. Y	0.0341	-0.5788	-0.0842	1.4274	0					
4. F	J 0.2637	J-0.3351	-0.6504	0.8264	JU	0				
5. L	0	0	0	0	1	0				
6. D	0	0	0	0	0	1				
	/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]				

Tuning

Calculation of setting fragment parameters in front of the solenoid and solenoid tuning are done by the "Distribution" method.

Distribution method: Local solenoid matrix , and following recalculation of Global matrices for <u>average energy</u> of each ion. Non-zero X/T, T/X, X/Y, Y/X, X/P, P/X, T/Y, Y/T, X/P, P/X, Y/P, P/Y matrix coefficients wash out all structures.

Transmission

Monte Carlo method uses only local matrices. Solenoid local matrix is recalculated for EACH ray (for each fragment energy).

Phase space distributions and transmission calculations with the Solenoid block are recommended with the Monte Carlo transmission method.

Block matrix									Global matrix							Beam
1.	×	-0.0842	1.4274	-0.0341	0.5788	0	0		-0.0842	1.3685	-0.0341	0.5549	0	0	[mm]	29.009
2.	т [-0.6504	0.8264	-0.2637	0.3351	0	0		-0.6504	0.3711	-0.2637	0.1505	0	0	[mrad]	7.903
3.	Υ	0.0341	-0.5788	-0.0842	1.4274	0	0		0.0341	-0.5549	-0.0842	1.3685	0	0	[mm]	30.068
4.	F	0.2637	-0.3351	-0.6504	0.8264	0	0		0.2637	-0.1505	-0.6504	0.3711	0	0	[mrad]	8.181
5.	L	0	0	0	0	1	0		0	0	0	0	1	0	[mm]	0
6.	D	0	0	0	0	0	1		0	0	0	0	0	1	[%]	0.07
		/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]		/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]		

Methods of Transmission calculation: X vs Y

Distribution method

Monte Carlo method

Methods of Transmission calculation: X vs TOF

After solenoid

Distribution method

Monte Carlo method

Methods of Transmission calculation: X vs TOF

Transmission 10.5%

С

Function of Field

MICHIGAN STATE UNIVERSITY LISE++

B_{solenoid} = 2.55 T

Working with Solenoid: Beam Stopper

106In transmission 15% 102Rh transmission 3% For 2% momentum acceptance

