

Update of the TwinSol utility

version 8.3.45

See "Twinsol (solenoid) utility" [version 7.9] at http://groups.nscl.msu.edu/lise/paper/2006_june_utilities.pdf

Itilities 1D-Plot 2D-Plot Databases Help	TwinSol			X
Spectrometric Calculator by 1 Kantele	Twinsol settings	- 1-st solenoid block	Absorber	- defocusing solenoid
The code "CHARGE"	Use the second solenoid	(92 A. J. 1944 A. J. 194		
The code "GLOBAL"	Turingol C Antiparallel	1-st solenoid block settings	Absorber settings	Settings
Units Converter	operation mode Parallel	Gran Optical Matrix for setting fragment		Gen Optical Matrix
BI (search of 2-dimensional peaks)	Use the defocusing solenoid		Distance from 1 954 m	
Converter of FORTRAN-files to C-files	Use the absorber	Block Length = 1.954 m	target to absorber	Length = 1.954 m
	Use the "soft-edge" corrections	B = 3.5399 T	absorber (Z-0)	B = 1.8 T
PACE4 (rusion-evaporation code)	for solenoid matrix calculations			
PACEA's calculations plot MOTED (you typeing code)	A-C Twinsol optical matrix	- 2-nd solenoid block	Files	Utility
MOTED's calculations plot		2-nd solenoid lock settings	tuineel origin	Function of
No rek s calculations plot	Twinsol scheme		twinsol_oligin	19. matrix: X/X 🔹
Reaction's Characteristics	Twinsol Length = 5,862 m	660 Optical Matrix for setting fragment	🖹 🔁 Save file as	
Radiation length	Distance to plot rays = 7.4 m	Block Length = 1.954 m		from
Electromagnetic excitation plots		B - 24599 T	Load file	
Create an initial file for nucleon pick-up (beta)			🗖 Save for multidispay	
Plot of Fragment Range in material versus Energy	🗆 Initial Beam	Beam tracking		
Plot of Fragment Stopping Power (dE/dx) in material versus Energy		2-nd solenoid: x0	- Plot options. Show:	-1 71
Plot of Angular Straggling in material versus Energy	Eli Projectile	"Transport" (matin solution)	Transport: Beam Sigmas	at 7.4 m
Plot of Equilibrium Thickness versus Energy	Beam Initial ray	Bases Bay		Distance to plot rays 📃
Dance optimizer	emittance values	sigmas Values TRACE	I♥ Transport Hay Values	
Ges pressure optimization for aps-filled dipole	1.X 1 5 mm	1.X 10.71 17.79 19.37	IM Hay Irace	
ada presidere opumización non gazennea alpore	2. T 20 20 mrad	2. T 9.44 -11.63 -7.32	Scratch file data	😴 Calculate
Calculation of Angle on the LISE3 target	3.Y 1 -5 mm	3. Y 10.71 -0.03 -5.27	Selected plot 1. X	
MSP-144 utility	4. F 20 25 mrad	4.F 9.44 12.66 12.42	, <u> </u>	
Twinsol (solenoid) utility	1&3 B 1.41 7.07 mm	1&3 B 1514 1779 20.08		
ISOL catcher utility	28.4 A 28.28 32.02 min			1 a 45 a 1
User cross-sections analysis using Abrasion-Ablation model	204. A 20.20 32.02 Milad	204. 8 13.33 11.2 14.41		Save & Exit
Rate & transmission calculation: batch mode	40Ar18+ (10.00 MeV/u)	Energy (MeV/u) = 10	Plot	🗙 Quit
Stripper foil lifetime	P trnsprt 0.3038 GeV/c	Time of flight (ns) = 45.13		

The code operates under MS Windows environment and provides a highly user-friendly interface. It can be freely downloaded from the following internet addresses:

http://www.nscl.msu/edu/lise

Envelope (v.7.9). Example

Twin Sol

⁴⁰Ar¹⁸⁺ (E=30.00 MeV/u or Ptrans=0.529 GeV/c) Emittance:1,5,1,5 Init.Ray:2,-10,2,10 1st SOL: L1=0.9m L2=1.5m Coil=0.6m B0=3.540T Efield=No

Function (1) from (2) at (3)

Function of			
19. matrix: X/X			
01. beam sigma: X			
02. beam sigma: T (X')			
03. beam sigma: Y			
04. beam sigma: P (Y')			
05. beam sigma: R (X&Y)			
Ub. beam sigma: A IP&I I			
10° , beam ray: \land			
100 , beam ray, $1(\wedge)$			
10 beam ray: P (Y')			
11. beam ray: R (X&Y)			
12 heam ray: A (P&T)			
13. ray trace: X			
14. ray trace: T (X')			
15. ray trace: Y			
16. ray trace: P (Y')			
17. ray trace: H (X&Y)			
18. ray trace: A IP&II			
20 matrix: X/T			
20. matrix: X/T 21. matrix: X/Y			
20. matrix: X/T 21. matrix: X/Y 22. matrix: X/P			
20. matrix: X/T 21. matrix: X/Y 22. matrix: X/P 23. matrix: T/X			
20. matrix: X/T 21. matrix: X/Y 22. matrix: X/P 23. matrix: T/X 24. matrix: T/T			
20. matrix: X/T 21. matrix: X/Y 22. matrix: X/P 23. matrix: T/X 24. matrix: T/T 25. matrix: T/Y			
20. matrix: X/T 21. matrix: X/Y 22. matrix: X/P 23. matrix: T/X 24. matrix: T/T 25. matrix: T/Y 26. matrix: T/P			
20. matrix: X/T 21. matrix: X/Y 22. matrix: X/P 23. matrix: T/X 24. matrix: T/T 25. matrix: T/Y 26. matrix: T/P 27. matrix: Y/X			
20. matrix: X/T 21. matrix: X/Y 22. matrix: X/P 23. matrix: T/X 24. matrix: T/T 25. matrix: T/Y 26. matrix: T/P 27. matrix: Y/X 28. matrix: Y/X			
20. matrix: X/T 21. matrix: X/Y 22. matrix: X/P 23. matrix: T/X 24. matrix: T/T 25. matrix: T/Y 26. matrix: T/P 27. matrix: Y/X 28. matrix: Y/Y 29. matrix: Y/Y			
20. matrix: X/T 21. matrix: X/Y 22. matrix: X/P 23. matrix: T/X 24. matrix: T/Y 25. matrix: T/Y 26. matrix: T/P 27. matrix: Y/Y 28. matrix: Y/Y 29. matrix: Y/Y 30. matrix: Y/P			
20. matrix: X/T 21. matrix: X/Y 22. matrix: X/P 23. matrix: T/X 24. matrix: T/Y 25. matrix: T/P 26. matrix: T/P 27. matrix: Y/X 28. matrix: Y/Y 29. matrix: Y/Y 30. matrix: Y/P 31. matrix: P/X 32. matrix: P/X			
20. matrix: X/T 21. matrix: X/Y 22. matrix: X/P 23. matrix: T/X 24. matrix: T/Y 25. matrix: T/Y 26. matrix: T/P 27. matrix: Y/X 28. matrix: Y/Y 30. matrix: Y/Y 30. matrix: Y/P 31. matrix: P/X 32. matrix: P/Y 33. matrix: P/Y			
20. matrix: X/T 21. matrix: X/Y 22. matrix: X/P 23. matrix: T/X 24. matrix: T/Y 25. matrix: T/Y 26. matrix: T/P 27. matrix: Y/Y 28. matrix: Y/Y 30. matrix: Y/Y 30. matrix: Y/P 31. matrix: P/X 32. matrix: P/Y 33. matrix: P/Y 34. matrix: P/P			
20. matrix: X/T 21. matrix: X/Y 22. matrix: X/P 23. matrix: T/X 24. matrix: T/Y 25. matrix: T/Y 26. matrix: T/P 27. matrix: Y/Y 28. matrix: Y/Y 29. matrix: Y/Y 30. matrix: Y/Y 30. matrix: P/Y 31. matrix: P/Y 33. matrix: P/Y 34. matrix: P/P 35. Field: BR			

from			
1-st solenoid: B_field Max 🛛 💌			
1-st solenoid: B_field Max			
1-st solenoid: I (Current)			
1-st solenoid: Coil Length			
1-st solenoid: Effective Radius			
1-st solenoid: 1-st half			
1-st solenoid: 2-nd half			
2-nd solenoid: B_field Max			
2-nd solenoid: I (Current)			
2-nd solenoid: Coil Length			
2-nd solenoid: Effective Radius			
2-nd solenoid: 1-st half			
2-nd solenoid: 2-nd balf			
3-nd solenoid: B_field Max			
3-nd solenoid: I (Current)			
3-nd solenoid: Coil Length			
3-nd solenoid: Effective Radius			
3-nd solenoid: 1-st half			
3-nd solenoid: 2-nd half			
Fragment energy (MeV/u) 💦 🌖			

at 1.877 m	
2-nd solenoid: x0	-
T-st solenoid: xU 1-st solenoid: x1L 1-st solenoid: x1R 1-st solenoid: xC 1-st solenoid: x2L 1-st solenoid: x2R	
1-st solenoid: xF	
2-nd solenoid: x0 2-nd solenoid: x1L 2-nd solenoid: x1R 2-nd solenoid: xC 2-nd solenoid: x2L 2-nd solenoid: x2R 2-nd solenoid: xF	
8-nd solenoid: xU 3-nd solenoid: x1L 3-nd solenoid: x1R 3-nd solenoid: xC 3-nd solenoid: x2L 3-nd solenoid: x2R 8-nd solenoid: xF	

Beam Sigma from **B_field_max** at 1xF

Beam Sigma from "1-st solenoid: B_field Max" 1-st solenoid: xF ; Z = 2.400 m

С

Matrix Rays from **B_field_max** at 1xF

MICHIGAN STATE UNIVERSITY LISE++

Matrix Rays from "1-st solenoid: B_field Max" 1-st solenoid: xF ; Z = 2.400 m

Trace Rays from B_field_max at 1xF

MICHIGAN STATE UNIVERSITY LISE++

Trace rays from "1-st solenoid: B_field Max" 1-st solenoid: xF ; Z = 2.400 m

Matrix coefficients from **B_field_max** at 1xF

Matrix Rays from Fragment Energy at 1xF

MICHIGAN STATE UNIVERSITY LISE++

Matrix Rays from "Fragment energy (MeV/u)" 1-st solenoid: xF ; Z = 2.400 m

Beam Sigma from 1-st half length at 1xF

1st half + 2nd half = Solenoid length = const Varying 1st half, we change 2nd half

Beam Sigma from 1-st half length at 1xC

Varying 1st half, or 2nd half, or Coil length we move x1L, x1R, xC, x2L, x2R points.

The code takes values (beam sigma, trace rays etc) at Z corresponding to initial x** point

MICHIGAN STATE