## version 8.3.45

## See "Twinsol (solenoid) utility" [version 7.9] at http://groups.nscl.msu.edu/lise/paper/2006 iune utilities.pdf




Twin Sol
${ }^{40} \mathrm{Ar}^{18+} \quad(\mathrm{E}=30.00 \mathrm{MeV} / \mathrm{u}$ or Ptrans=0.529 GeV/c) Emittance:1,5,1,5 Init.Ray:2,-10,2,10 1 st SOL: $\mathrm{L} 1=0.9 \mathrm{~m}$ L2 $=1.5 \mathrm{~m}$ Coil $=0.6 \mathrm{~m} \quad \mathrm{BO}=3.540 \mathrm{~T}$ Efield=No







[^0]Function (1) from (2) at (3)

| Function of |  |
| :---: | :---: |
| 19. matrix $\mathrm{X} / \mathrm{X}$ |  |
| 01. beam sinma: X |  |
| 02. beam sigma: $T\left(X^{\prime}\right)$ |  |
| 03. beam sigma: $Y$ |  |
| 04. beam sigma: $\mathrm{P}\left(\mathrm{Y}^{\prime \prime}\right)$ |  |
| 05. beam sigma: $\mathrm{R}[\times 8 \mathrm{Y}\}]$ |  |
| 06, beam siama:A.(PkT |  |
|  |  |
|  |  |
| 09. beam ray: $Y$ |  |
| 10. beam ray: $\mathrm{P}\left(\mathrm{Y}^{\prime \prime}\right)$ |  |
| 11. beam ray: $\mathrm{R}[\mathrm{X} \% \mathrm{Y}]$ |  |
| 12 heam ray A (P\%T) |  |
|  |  |
| 14. ray trace: $T$ ( $\times$ ) |  |
| 15. ray trace: $Y$ |  |
| 16. ray trace: $\mathrm{P}\left(\mathrm{Y}^{\prime}\right)$ |  |
| 17. ray trace: R [ $\times 8 \mathrm{Y}$ Y $]$ |  |
| 18. rav trace: A (P\&T) |  |
| 19. matrix: $8 / X$ |  |
| 20. matrix $\times / T$ |  |
| 21. matrix: $X / Y$ |  |
| 22. matrix: $\times / P$ |  |
| 23. matrix: $T / /$ |  |
| 24. matrix: $T / T$ |  |
| 25. matrix. T/Y |  |
| 26. matrix: T/P |  |
| 27. matrix $Y / X$ |  |
| 28. matrix: $\mathrm{Y} / \mathrm{T}$ |  |
| 29. matrix: $Y / Y$ |  |
| 30. matrix: Y/P |  |
| 31. matrix: $P / X$ |  |
| 32. matrix. P/T |  |
|  |  |
|  |  |
| 34. matrix. P/P |  |
| 36. Field: BZ |  |


| from |
| :--- |
| 1-st solenoid: B_field Max |
| 1-st solenoid: B field Max |
| 1-st solenoid: I [Current] |
| 1-st solenoid: Coil Length |
| 1-st solenoid: Effective Radius |
| 1-st solenoid: 1-st half |
| 1-st solenoid: 2 -nd half |
| 2-nd solenoid: B_field Max |
| 2-nd solenoid: I [Current] |
| 2-nd solenoid: Coil Length |
| 2-nd solenoid: Effective Radius |
| 2-nd solenoid: 1-st half |
| 2-nd solenoid: 2-nd half |
| 3-nd solenoid: B_field Max |
| 3-nd solenoid: I [Current] |
| 3-nd solenoid: Coil Length |
| 3-nd solenoid: Effective Radius |
| 3-nd solenoid: 1-st half |
| 3-nd solenoid: 2-nd half |
| Fragment energy [MeV/u] |



## Beam Sigma from B_field_max at $1 \times F$

Beam Sigma from "1-st solenoid: B_field Max"
1-st solenoid: $x F ; \quad Z=2.400 \mathrm{~m}$




Matrix Rays from B_field_max at $1 \times{ }^{\prime}$
Matrix Rays from "1-st solenoid: B_field Max"
1-st solenoid: xF ; $\quad Z=2.400 \mathrm{~m}$


## Trace Rays from B_field_max at $1 \times$ ㅌ

Trace rays from "1-st solenoid: B_field Max"
1 -st solenoid: $x F ; \quad Z=2.400 \mathrm{~m}$




Matrix coefficients from "1-st solenoid: B_field Max"
1 -st solenoid: $x F ; \quad Z=2.400 \mathrm{~m}$





Matrix Rays from Fragment Energy at $1 \times{ }^{\prime}$
Matrix Rays from "Fragment energy (MeV/u)"
1-st solenoid: xF ; $\quad Z=2.400 \mathrm{~m}$


Beam Sigma from "1-st solenoid: 1-st half"
1 -st solenoid: $x F ; \quad Z=2.400 \mathrm{~m}$


$1^{\text {st }}$ half $+\mathbf{2}^{\text {nd }}$ half $=$ Solenoid length $=$ const
Varying $1^{\text {st }}$ half, we change $2^{\text {nd }}$ half



Varying $1^{\text {st }}$ half, or $2^{\text {nd }}$ half, or Coil length we move x1L, x1R, xC, x2L, x2R points.

The code takes values (beam sigma, trace rays etc) at $Z$ corresponding to initial $x^{* *}$ point



[^0]:    OT. 05/30/08, East Lansing, MI

