

Wien filter revision

1

version 8.5.43

Contents:

- Setting Wien filter in LISE++
- "Transport" solution of Wien-filter optics
- "Classical" solution for the dispersion coefficient
- Dispersion as a function of fields, energies, lengths
- Revision of the Wien filter dispersion
- Examples of Wien filter selection

Requests from François de Oliveira, Christelle Stodel,

and Pedja (GANIL)

The following commands are valid only if the Wien filter has been enabled.

- Electric field: sets the electric field of the filter in kV/m (the user has to know the gap between the electrodes). Calculates the magnetic field for the best transmission of the selected fragment and the dispersion. All these calculations are then updated on the screen.
- Magnetic field: sets the magnetic field of the filter in Gauss, calculates the electric field for the best transmission of the selected fragment and the dispersion.
- Dispersion coefficient: coefficient used to calculate the velocity dispersion in mm/% according to the formula: D=K*E/(Brho2*beta) where E is the electric field in kV/m, Brho2 the Brho of the second section of the spectrometer in Tm, and the velocity of the particle. This coefficient depends on the field set on the quadrupoles used to focuse the beam after the filter.

See more for Wien-filter

LISE 3: a magnetic spectrometer—Wien filter combination for secondary radioactive beam production by Remy Anne, Alex C. Mueller

Nuclear Instruments and Methods in Physics Research Section B Volume 70, Issues 1-4, 1 August 1992, Pages 276-285 http://dx.doi.org/10.1016/0168-583X(92)95943-L

The code operates under MS Windows environment and provides a highly user-friendly interface. It can be freely downloaded from the following internet addresses:

Oleg B.Tarasov. 02/05/10, East Lansing, MI

http://www.nscl.msu/edu/lise

Setting Wien filter in LISE++: Lengths

http://groups.nscl.msu.edu/lise/8_5/wien/wien_test.lpp

Oleg B.Tarasov. 02/05/10, East Lansing, MI

$$\mathsf{E} = \beta \cdot \mathsf{v}_{\mathsf{c}} \cdot \mathsf{B} / \mathsf{R}_{\mathsf{L}_{\mathsf{E}}/\mathsf{L}_{\mathsf{B}}}$$

Calibration file	×									
Open file View file										
LISE_DFW.cal										
Columns = 3 Rows = 27 DK X Cancel										
_ Note										
The calibration file is in ASCII format. The first line contains 2 integer values describing the structure of the file : 1. Number of columns (either 2 or 3) 2. Number of rows [calibrated points]										
The next lines are the calibration data. The Columns can be separated by a Space, a Comma or a Tabulation. User can put comments after the data.										
1st column: the Current (I) required 2nd : Magnetic field (B read) from NMR required 3rd : set Magnetic filed (B set) optional										

E electric field [in KV/m]

β

Β

- setting fragment velocity
- V_c speed of light [as 29.979 cm/ns]
 - magnetic filed [in Gauss]
- R_{L_E/L_B} effective electric & magnetic lengths ratio

Oleg B.Tarasov. 02/05/10, East Lansing, MI

Optics : Wien filter ("Transport" solution)

Optics : Dispersion

D

 $D_{(A,Q)} = coef \cdot E / [B\rho_{(A,Q)} \cdot \beta_{(A,Q)}]$

D(A,Q)	fragment (A,Q) dispersion [in mm/%]
coef	dispersion coefficient (~ L^2)
E	electric field [in KV/m]
Βρ	magnetic rigidity corresponding to this part of the spectrometer [in Tm]
β(A,Q)	fragment (A,Q) velocity

^{10}B (21.2 MeV/u) , B = 400 G (E=25.2 KV/cm)

Optics : Dispersion (B=const, L=const)

"Transport" solution

The dispersion coefficient is almost constant in the energy region of interest

¹⁰B (21.2 MeV/u) B = *** G L = 3 m

"Transport" solution

The dispersion coefficient is constant with magnetic field change

LISE++ (version 8.5.24 and older) was using the setting fragment dispersion to calculate transmission of other ions.

Now, LISE++ (version 8.5.43) calculates a dispersion for each ion, so called "floating" optical matrix. It has been realized for the Distribution and Monte Carlo methods, Corrections have been done as well for the Ellipse and Pseudo Monte Carlo plots.

Therefore LISE fragment-separator configuration files should be revised too to have correct lengths and dispersion coefficients.

See example http://groups.nscl.msu.edu/lise/8_5/wien/wien_test.lpp

For simulations shown in the next slides following files have been used http://groups.nscl.msu.edu/lise/8_5/wien/78Kr2.lpp (from Pedja) http://groups.nscl.msu.edu/lise/8_5/wien/78Kr2.lpp (thin target, small initial emittance)

Read the new LISE++ option, which has been used to simulate several isotopes in the MC mode http://groups.nscl.msu.edu/lise/8_5/8_5_034__MC_isotope_group.pdf

Wien-filter selection : Distribution method

Wien 1-Yspace

⁷⁸Kr (1.7 MeV/u) + He (5e-2 mg/cm²); Settings on ⁸²Sr ²⁴⁺; Config: NMM dp/p=100.00%

📮 Statistics

Wien 1-Yspace										
78Kr (1.7 MeV/u)	+	He	(5e-2	mg/cm2):	Settings	on	82Sr	24+:	Config:	NMM
dp/p=100.00%			`		-				-	
Plot 3										

N	distribution	Ι	x-mean	x-max	max	deviation		FWHM	area	SumOfCounts	LeftPsigma	RightPsigma
01	82Sr 24+	!	0.005858	0.1062	22.21	1.525	!	3.647	85.88	202.3	1.631	1.466
02	82Sr 27+		-0.002614	0.1898	0.1894	1.543		3.69	0.7424	1.678	1.723	1.411
03	82Sr 26+	1	0.000154	0.1619	2.186	1.537		3.673	8.526	19.54	1.692	1.428
04	82Sr 25+		0.002952	0.134	10.7	1.531		3.658	41.54	96.53	1.661	1.446
05	82Sr 23+	1	0.008876	0.07832	19.55	1.519	1	3.638	75.31	180	1.602	1.488
06	82Sr 22+	1	0.01192	0.05046	7.298	1.513	1	3.629	28.02	67.92	1.573	1.51
071	82Sr 21+	i	0.01494	0.0226	i 1.152	1.522	i –	3.621	4.422	10.88	1.544	1.531
08 İ	82Sr 20+	i	0 01755	-0.005266	i 0.07732	İ 1.517	i –	3,613	0.2961	0.7391	1.516	i 1.553
09İ	78Kr[beam] 23+	i (-25.21	-25.12	1.705e+09	1.504	i i	3.609	6.518e+09	1.58e+10	1.606	1.459
101	78Kr[beam] 24+	i I	-26.31	-26.19	1.42e+09	1.509	i –	3.616	5.446e+09	1.302e+10	1.635	1.437
îĭi	78Kr[beam] 22+	i	-24 12	-24 06	7 694e+08	1 514	i –	3 603	2 939e+09	7 225e+09	1 578	1 482
12	78Kr[beam] 25+		-27 41	-27 26	4 453e+08	1 514	i i	3 627	1.714e+0.9	4 044e+09	1 663	1 417
13	78Vr[beam] 21+	1	-23 02	-22.99	1 310+08	1 51	1	3 596	1 99/0+08	1 2450+09	1 551	1 503
14	79Vx[beam] 26+		-29.51	-22.33	5 26a±07	1 1 5 1 9	1	3 64	2 033-+09	1 7330+09	1 693	1 3 9 9
1 0	79Vm[beam] 20+		-20.31	-20.33	0 4070+06	1 505		2 50	2.0338+00	0 0000+07	1 524	1 5 2 5
1.0	70Kr[been] 20+		20.61	-21.72	2 24-106	1 503	1	2 654	0.000-000	2 0000000707	1.324	1 201
121	70Kr[been] 27+		-27.01	-27.4	2.348+06	1.524		3.054	7.0000+00	1 00-100	1.722	1.301
171	/SKr[Deam] 19+		-20.82	-20.85	2.0310+05	1.501		3.584	/./14e+05	1.986+06	1.498	1.546
18	78Kr[beam] 28+		-30.71	-30.9	3.938e+04	1.529		3.658	1.53e+05	3.47e+05	1.393	1.714
19	78Kr[beam] 18+		-19.73	-19.78	1849	1.496		3.579	7011	1.826e+04	1.474	1.566
20	78Kr[beam] 29+		-31.8	-31.98	249.8	1.533		3.66	971.1	2174	1.414	1.695
21	78Kr[beam] 17+	11	-18.63	-18.72	6.336	1.492	1	3.576	24.01	63.49	1.45	1.587

Wien-filter selection : Ellipse and Pseudo MC plots

G

