

1

version 9.0.39

Contents:

- Drift block: Quadrupole and Sextupole options
- Construction of the A1900 expanded configuration
- Momentum acceptance
- Angular acceptance
- Comparison of different A1900 configurations
- Expanded configuration vs. Distribution method

The code operates under MS Windows environment and provides a highly user-friendly interface. It can be freely downloaded from the following internet addresses:

http://www.nscl.msu/edu/lise

Instead to import a transport matrix, now it is possible to calculate matrices 1^{st} and 2^{nd} orders. It allows to create faster "expanded" configurations (no joint blocks such as Q+Q+Q+D+Q+Q).

DRIFT block:

Charge state is not attributed to this optical block. Non-dispersive block

Beam-line : User can change the optical matrix values. Do not enter DISPERSON coefficients!!

StandDrift	×	Opt	tical m	natrix - S	itandDrift	1	1		1	1
Kind of Drift block (mode) C BEAM-LINE block. Non-dispersive optical block. User can change the optical matrix values. STANDARD DRIFT block as in the Transport code. Use this mode for a long Calculate	Optical block properties and data Length = 1 m Brho = 3 Tm		G _i = G - Glot Block m	L _i × G bal, L - Blo natrix	i i - 1 ock (Local)	Dime	nsion © © c		Matrices Block (loc	al) •
detector. The Optical matrix is determined by the code. QUADRUPOLE. The matrix can be calculated as in the Transport code with using block parameters (radius, effective length, magnetic field) Gettings	60° Optical matrix Image: Optical control Image: Optical matrix Image: Optical control Image: Optical control	1 2 3 - 4	1. × 2. T 3. Y 4. F 5. L	1 0 0 0	1 1 0 0			0 0 0 0 1		
C SEXTUPOLE. The matrix can be calculated as in the Transport code with using block parameters (radius, effective length, magnetic field)	 Show in the "Setup" window Block length Brho value 	-	5. D Det =	0 /[mm] 1.00000	0 /[mrad]	0 /[mm]	0 /[mrad]	0 /[mm]		2-nd order view
🗸 OK 🗶 Cancel 🍞 Help	Do not forget to recalculate the Optical matrix if you changed the DRIFT MODE!	-		Drift (sp	ace)	_		 ✓ 	Ok	🗙 Canc

DRIFT block: Quadrupole

"Transport"

QUADRUPOLE

Quadrupole

- Settings

Z

Optical matrix - Quad

Block matrix

3. Y [

4. F 0 0

5. L

6. D

 $G_{i} = L_{i} * G_{i-1}$

G · Global, L · Block (Local)

2. T -17.6672 -0.25219

Ω

0

Ω 0

0

/icm1 /ímradl

Det = 1.00024

 $k_{-}^{2} = (B_{0}/a)(1/B\rho_{0})$, where $(B\rho_{0}) =$ the magnetic rigidity (momentum) of the central trajectory.

Pay attention for Lengths:

- · Effective quadrupole length (it is used for optical calculations)
- · Block length (used for scheme, for ToF calculations, for MC envelope)

Drift (space)

DRIFT block: Sextupole

transport format [cm-mrad]

0

0

0

0

0

0

Π

0

õ

0 0

0

ō

0

Ō

0 0

+1.0000e+00

0

n.

Π

0

0

0

0

0

0

0

0

+1.0000e+00

Sextupole from optic point view is standard drift block + 2nd order matrix

"LOCAL"

Block: "Sext" Matrices: "LOCAL"

Matrices:

"Sext"

Block:

My Documents\LISE\config\NSCL \A1900_expanded.lcn My Documents\LISE\files \examples\A1900_expanded.lpp

66 blocks!!

No angular acceptance values

Dipole Block (Rot+Dip+Rot) matrices are taken from Transport calculations (1st order)

All drift block matrices have been calculated in LISE++

OT. 04/30/10, East Lansing, MI

Momentum Acceptance

Momentum Acceptance

MICHIGAN STATE UNIVERSITY LISE++

Momentum Acceptance

Brho	dp/pp	1st order	2order
2.900	-3.33%	0	0
2.910	-3.00%	0	0
2.920	-2.67%	2.2%	1.9%
2.925	-2.50%	51.2%	24.7%
2.930	-2.33%	97.6%	40.6%
2.940	-2.00%	99.9%	48.9%
2.950	-1.67%	99.9%	57.7%
2.970	-1.00%	99.9%	81.5%
2.985	-0.50%	99.8%	95.1%
3.000	0.00%	99.9%	99.8%
3.015	0.50%	100.0%	100.0%
3.030	1.00%	100.0%	100.0%
3.040	1.33%	100.0%	100.0%
3.050	1.67%	99.8%	99.8%
3.060	2.00%	99.9%	100.0%
3.070	2.33%	97.3%	93.7%
3.075	2.50%	51.3%	33.8%
3.080	2.67%	2.6%	0.7%
3.090	3.00%	0	0

emittance x=1 mm x'= 6 mrad y=1 mm y'= 8 mrad dp/p=0.07%

OT. 04/30/10, East Lansing, MI

Momentum Acceptance

MICHIGAN STATE UNIVERSITY LISE++

+1.67%

Order 1

99.8%

32

28

16

16

20

20

24

+1.67%

Order 2

100%

28

24

11

Angular Acceptance

Projection on Y-axis

to obtain an angualr acceptance of the second part of the fragment separator beam emittance x=y=0.01 mm, x'=y'=100 mrad, dp/p=0.0%

A1900 contains four dispersive blocks, whose angular acceptances are used in LISE++ calculations with the A1900 standard configuration

Envelope for selected Angle

Zoom of first region Continue Continue ⁰Ar : MC Transmission Plot - Envelope (only passed) ⁴⁰Ar : MC Transmission Plot - Envelope (only passed) Plot - Envelope (only passed) ⁴⁰Ar (84.3 MeV/u) + Be (1e-4 µm): Transmitted Fragment ⁴⁰Ar (beam); Öptics Order: 1 dptp=6.99%; Brho(Tm): 3.0000 "Imaget(037)" - last block for dC calculation; no gates; Configuration: SSSSSSDSSSSSSS ⁴⁰Ar (84.3 MeV/u) + Be (1e-4 µm); Transmitted Fragment ⁴⁰Ar (beam); Optics Order: dp/p=6.99%; Brho(Tm); 3.0000 (037)": X'(Theta) [mrad]: window projection --- ⁴⁰Ar (84.3 MeV/u) + Be (1e-4 µm); Transmitted Fragment ⁴⁰Ar (beam); dp/p=6.99%; Brho(Tm): 3.0000 2 3.470e+03 CPU speed 0 pps 1e+ I(037)": X'(Theta 86+ mage ufter 28+ 0.12 0.16 after "Image1(037)": X'(Theta) [mrad]: window projection after "Image1(037)": L [m] after "Image1(037)": L [m]

OT. 04/30/10, East Lansing, MI

Angular Acceptance: 1st dispersive block

Angular Acceptance: 2nd dispersive block

MICHIGAN STATE

LIS

Angular Acceptance: 3rd dispersive block

OT. 04/30/10, East Lansing, MI

Angular Acceptance: 4th dispersive block

Angular Acceptance

Μ	IC	CH	110	37	١N	S	T	AT	Ē
U	Ν	I	۷	E	R	s	I	Т	Y
I	6	I		5	I	£,			

	A1900 s	tandard	This work		
Blocks	Χ'	Υ'	Χ'	Υ'	
1	60	40	66	40.5	
2	30	60	29.5	66	
3	30	55	29.3	57	
4	28	50	29.4	53.5	

Should be replayed with single rays.

Compare standard and expanded version

- | D | X | - | D | X | Continue 0 Continue ⁴⁰Ar : MC Transmission Plot - Envelope (only passed) ⁴⁰Ar : MC Transmission Plot - Envelope (only passed) ⁴⁰Ar (84.3 MeV/u) + ; Transmitted Fragment ⁴⁰Ar (beam); Optics Order: 1 ⁴⁰Ar (84.3 MeV/u) + ; Transmitted Fragment ⁴⁰Ar (beam); Optics Order: 1 1<u>1</u> dp/p=5.07% ; Wedges: 0; Brho(Tm): 3.0000, 3.0000, 3.0000, 3.0000 dp/p=5.07% ; Wedges: 0; Brho(Tm): 3.0000, 3.0000, 3.0000, 3.0000 "FP_slits" - last block for MC calculation; no gates; Configuration: DDSWDDMMSMM "FP slits" - last block for MC calculation; no gates; Configuration: DDSWDDMMSMM Contour standard Sum 5.1e+05 Max 737 250 <X> 17.9 <Y>-0.125 dX 10.2 dY 37.9 (Y 4.5e-01 dY 8.46 Y -8.4e-02 60 150 1.578e+04 1.724e+03 after "FP_slits": X [mm] [mm] CPU speed CPU speed 0 pps 0 pps slits": Y 20 50 Ë after -50 -20 -150 -60 -250 -100 16 20 24 28 32 12 16 20 24 28 32 0 30-04-2010 13:44:07 LISE++ [Wintranet.r 30-04-2010 13:43:47 LISE++ [Nintranet.r after "FP slits": L [m] after "FP slits": L [m] _ 🗆 🗵 <u>_ | | ×</u> ⁴⁰Ar : MC Transmission Plot - Envelope (only passed) Continue Continue ⁴⁰Ar : MC Transmission Plot - Envelope (only passed) ⁴⁰Ar (84.3 MeV/u) + ; Transmitted Fragment ⁴⁰Ar (beam); Optics Order: 1 ⁴⁰Ar (84.3 MeV/u) + ; Transmitted Fragment ⁴⁰Ar (beam); Optics Order: 1 dp/p=5.07%; Brho(Tm): 3.0000, 3.0000, 3.0000, 3.0000 dp/p=5.07%; Brho(Tm): 3.0000, 3.0000, 3.0000, 3.0000 dec Contour um 2.08e+ 250 Max 5.38e+ <X> 17.8 <u>ی</u> ا <Y>-0.22 140 dX 10.2 dY 30.2 dY 14.1 (Y 1.2e-0) Y -1.7e-01 150 "Image4(104)": X [mm] 100 1.905e+03 "Image4(104)": Y [mm] 7.0130+03 CPU speed CPU speed 0 pps 0 pps 60 50 20 -20 after -50 after -60 -150 -100 -140 -250 -180 12 20 24 28 32 n 12 28 32 30-04-2010 13:46:2 LISE ++ (Nintranet 2.84e+ 20 after "Image4(104)": L [m] 30-04-2010 13:45:1 LISE++ (Nintranet after "Image4(104)": L [m]

OT. 04/30/10, East Lansing, MI

MICHIGAN STATE

luon methoa LISE

<u>Michigan State</u>

Initial Phase space: \pm 6 mrad (x), \pm 8 mrad (y), \pm 0.07 % (dp/p)

Initial Phase space: \pm 6 mrad (x), \pm 8 mrad (y), \pm 2.5 % (dp/p)

OT. 04/30/10, East Lansing, MI

MICHIGAN STATE

Initial Phase space: \pm 60 mrad (x), \pm 40 mrad (y), \pm 2.5 % (dp/p)

OT. 04/30/10, East Lansing, MI

MICHIGAN STATE