

Update of Fusion reaction mechanism in LISE⁺⁺

- 1. Fission barrier dialog modification
- 2. Fusion dialogs
 - Potential energy
 - Potential pocket,
 L critical , DIC
 - Fission barrier vanishing, L_{Bfis=0}, Fast Fission (FA)
 - Compound Formation, Quasi-Fission
 - Barrier penetration, Quasi-Elastic (QE)
 - Compound de-excitation : Fusion – Fission or Residue?
- 3. LISE⁺⁺ definitions and features of fusion mechanism
- 4. Examples:

```
<sup>238</sup>U (20 MeV/u) + Be, C

<sup>58</sup>Ni + <sup>60</sup>Ni

<sup>36</sup>S (12 MeV/u) + <sup>12</sup>C, <sup>238</sup>U

<sup>40</sup>Ar + <sup>208</sup>Pb
```

v.9.10.60 from 04/09/15

Purpose:			
implementation of angular momentun	n formalism int	o low-energy	reactions

Production Mechanism		_	×			
Reactions / Energy Loss, Straggling / Charge states / Databases: Masses, Isomers / 238U(20.0 MeV/u) + Be -> 161Nd						
^{A1} 21 ∪↓ ^{A0} 20	- Reactions	additior yields re	nally calculate for the next eactions			
11	Settings	C Projectile Fragmentation				
	Settings	 Fusion -> Residual 				
22 ¹	Settings	C Fusion -> Fission				
U U	Settings	C Coulomb fission				
	Settings	C Abrasion-Fission				
A 23		C Two Body Reactions				
<i>Fusion-Residual</i> A0 + A1 = A2 ≥ A3		C ISOL mode				
	🔲 Make default	🗸 ок 🗶 с	Cancel ? Help			

LISE⁺⁺ documentation:

- Fusion residue transmission v.5.15
- <u>Fusion-Fission v.7.8</u>
- <u>Angular momenta vs reaction channels</u>

- 2. New Fission barriers from P.Moller et al., PRC91(2015)024310
- 3. BarFac parameter for the SHE region
- 4. Sierk's fission barrier validity

247 Cm 96 Z Image: Cm Image: Cm <td< th=""><th>Barrier</th><th>vanishes at = 67 hbar ission Barrier Plot : f (A,Z,N)</th><th>Barfac = 2.1 factor to multiply the fission barrier (default value 1) ✓ Use LISE shell corrections for LDM ✓ Use odd-even corrections for LDM</th></td<>	Barrier	vanishes at = 67 hbar ission Barrier Plot : f (A,Z,N)	Barfac = 2.1 factor to multiply the fission barrier (default value 1) ✓ Use LISE shell corrections for LDM ✓ Use odd-even corrections for LDM
Hee in the code	Fission Barrier at L=0	Fission Barrier G.S. Energy at Lx = 10 at Lx (MeV)	Odd-Even Delta parameters default
0 - "Barfit" - A.J.Sierk, RBC33(1986)2039 1 - "FisRot" - S.Cohen et al. An.P 82(1974)	6.38	6.11 0.53 7.48 0.34	for Neutrons 2.5 2.5 MeV
C 2 - LDM - W.Myers_W.Swiatecki,NP81(1966) C 3 - FILE: A.Mamdouh et al.NPA679(2001)337	8.08 6.7	<u></u> in	For models #3,4 if FILE data are absent then use LDM model #
C 4 - FILE: Experimental barriers	6.12	- ○ out ● max (in,out)	1 - "FisRot" - S.Cohen et al.,An.P 82(1974)
C 6 - FILE: P.Moller et al., PRC91(2015)024310	7.11		1.Fission Barrier Plot: f(L) 2.Yrast Line

- 1. Fission barrier and Yrast line plots as function of L
- 2. New Fission barriers from P.Moller et al., PRC91(2015)024310
- 3. BarFac parameter for the SHE region
- 4. Sierk's fission barrier validity

A Element Z Unknown N	Cohen barrier inform Barrier vanishes a	ation t = 52 hbar er Plot : f (A,Z,N)	For models # 0,1,2 Barfac = 9.9 factor to multiply the firston barrier (default value 1) ✓ Use LISE shell corrections for LDM ✓ Use odd-even corrections for LDM
Use in the code	Fission Barrier Fission B at L=0 at Lx =	arrier G.S. Energy 10 at Lx (MeV)	Odd-Even Delta parameters default
C 0 - "Barfit" -> invalid for this istope(AZ)	4.38		for Protons 9 9.0 MeV
• 1 - "FisRot" - S.Cohen et al. An.P 82(1974)	4.38 4.2	2 0.25	
C 2 - LDM - W.Myers W.Swiatecki,NP81(1966)	1.7		For models # 3,4
C 3 - FILE: A.Mamdouh et al,NPA679(2001)337	7.2 C in		if FILE data are absent then use LDM model #
C 4 · FILE: Experimental barriers	· • • • • • • • • • • • • • • • • • • •	in.out)	1 - "FisRot" - S.Cohen et al. An.P 82(1974) 💌
C 5 - FILE: P.Moller et al.,LANL-UR-08-4190	9.98		
C 6 - FILE: P.Moller et al., PRC91(2015)024310	9.58		1.Fission Barrier Plot: f(L)
🗸 Ok 🗶 Cancel	? Help	🔲 Make default	Z. Hast Une

It looks like a high Barrier value with AME2012 use.

But LISE⁺⁺ allows to load an user mass excess table

- 1. Fission barrier and Yrast line plots as function of L
- 2. New Fission barriers from P.Moller et al., PRC91(2015)024310
- 3. BarFac parameter for the SHE region
- 4. Sierk's fission barrier validity

Fission Barrier	Cohen by	arrier information		For models #012
A Element Z 202 FI 114 Unknown Unknown	Barrier	vanishes at = 5	2 hbar (A.Z.N)	For Indexin Work 2 Barfac = 3.9 [default value 1] ↓ Use LISE shell corrections for LDM ↓ Use gd even corrections for LDM
Use in the code	Fission Barrier at L=0	Fission Barrier at Lx = 10	G.S. Energy at Lx (MeV)	Odd I ven Delta parameters default
C 0 · "Barfit" → invalid for this istope(AZ)	4.38			for Protons 9 9.0 MeV
• 1 - "FisRot" - S.Cohen et al., An.P 82(1974)	4.38	4.22	0.25	
C 2 · LDM · W.Myers_W.Swiatecki,NP81(1966)	1.7			For models # 3,4
C 3 - FILE: A.Mamdouh et al,NPA679(2001)337	7.2	Cin	/	if FILE data are absent then use LDM model #
C 4 - FILE: Experimental barriers	·	 out max (in,out) 		1 - "FisRot" - S.Cohen et al. An.P 82(1974) 💌
C 5 - FILE: P.Moller et al.,LANL-UR-08-4190	9.98			
C 6 - FILE: P.Moller et al., PRC91(2015)024310	9.98			1.Fission Barrier Plot: f(L) 2.Yrast Line
V Ok X Cancel	? Help	/	Make default	

Barrier factor to describe experimental data or sophisticated calculations

Fission barrier value plays crucial role between particle evaporation and fission competition in de-excitation process

- 1. Fission barrier and Yrast line plots as function of L
- 2. New Fission barriers from P.Moller et al., PRC91(2015)024310
- 3. BarFac parameter for the SHE region
- 4. Sierk's fission barrier validity

Vanishing barrier factor for data from FILEs is based on selection from Sierk or Cohen models in the Fusion dialog

Fission barrier vanishing

✓ Take into account the Fission barrier vanishing with

- 0 "Barfit" A.J.Sierk, PRC33(1986)2039
- O 1 "FisRot" S.Cohen et al. An.P 82(1974)

- 0. Sierk's fission barrier is operating up to $Z \le 110$ @ L=0 or $Z \le 102$ @ L>0
- So, if Sierck's fission barrier has been selected, and nucleus atomic number is higher 110 at L=0, than Cohen's barrier will be used.
- If if Sierck's fission barrier has been selected, and nucleus atomic number is higher 102 at L>0, then vanishing factor for Z=102 (with the same N/Z ratio) will be used,

where the Vanishing factor (L) is the ratio of Barrier(A,Z,L) / Barrier(A,Z,0)

Fusion-Residue and Fusion-Fission dialogs in LISE⁺⁺

Do not hesitate to use Low-Energy reaction computing centers as NRV for more sophisticated solutions with Channel Coupling, Langevin equations and so on

Coming back to the Eighties for definitions

Fig. 3 - Dissipative processes in heavy ion reactions : a) deep inelastic collisions,

- b) compound nucleus formation,
- c) fast fission,
- d) fast fission with very heavy systems or quasi fission.

Potential Energy

Critical momentum : L-value corresponds to potential energy when the pocket is washed out. No fusion

Fission Barrier Vanishing as f(L) \rightarrow Fast Fission (FA)

Angular momentum [hbar]

Compound formation, Quasi-Fission : ⁴⁸**Ca** + ²⁰⁸**Pb**

Compound formation, Quasi-Fission : ⁵⁸Fe + ²⁰⁸Pb

Barrier penetration, Quasi-Elastic (QE) : ²³⁸U(**5.4** MeV/u) + C

Barrier penetration, Quasi-Elastic (QE) : ²³⁸U(20.0 MeV/u) + C

1st step compound de-excitation plot

	2380(20.0 MeV/u) + 12C -> 2	50Cf* (Ex=20	4.5MeV)	
	E_LAB=4760.01 MeV, E_CM=22	8.40 MeV		
	Fusion -> Residues			
	Settings			
	Nuclear Potential			Wood-Saxon
	WS parameters			105.0,1.12,0.
	P_CN (probability of compou	nd formation	.)	Yes (take in
	P_CN at L=0			1.00e+00
	Fission barrier vanishing			Yes (take in
	Transmssion probabilty for	a 1-dimensio	nal barrier	Quantum-Mechai
	Curvature parameter of the p Fusion L-diffuseness	parabolic po	tential	1.00
	Nerrortum (bban)			
	Momentum (hDar)			
	L (Bfis=0)	63		
	L critical	87	(E crit=176.9 M	eV)
	L direct (AA)	105.3		
	L direct	99	used in calcula	tions
	L max (grazing)	116.5		
	L max (LISE)	117.1	used in calcula	tions
	Cross sections (mb)			
	Partial (LISE++)			
	Interaction	3.483e+03		
	Compound	1.016e+03		
	Quasi-Fission	2.237e-09		
\	Fast Fission	9.126e+02		
\mathcal{I}	Deep Inelastic	5.415e+02		
	Direct+QE	1.013e+03		
ſ	Compound 1st step de-excit	ation channe	els (LISE++)	
	Fusion-Residue	6.436e+01		
	Fusion-Fission	9.516e+02		
U	Fusion-Breackup	0.000e+00		
	Cross section used in calc	ulations (be	ginning of target)
	Complete Fusion	2.101e+03		
	Use this factor for rates	0.484		
	Bass cross section calcula	tions		
	Fusion cross section	2.101e+03	mb	
	Fusion barrier	64.22	MeV	
	Fusion radius	9.10	fm	
	Barrier position	11.55	fm	

Barrier amplitude and position as f(L): Barrier position

²³⁸U(20.0 MeV/u) + ¹²C -> ²⁵⁰Cf* (E_{CM}=228.4 MeV); h omega=5.0 L_{crit}=87; L_{max}^{Graz}=116.5; L_{max}^{USE}=117.1; Nuclear potential: WoodSaxon; WS params: 105.0,1.12,0. Vertical lines correspond to L critical & L maximum, Horizontal left line to E CM , H.right to (C p + C t) & R intera

What cross sections will be used in LISE⁺⁺ to get rates?

Eurion Details	_		
	and the state of the state	-	
238U(24.0 MeV/u) + 12C -	-> 250Cf* (Ex=25)	D.2MeV)	
E_LAB=5712.01 MeV, E_CM	1=274.08 MeV		
Fusion -> Residues			
Settings			
Nuclear Potential			Wood-Saxor
WS parameters			105.0,1.12
P_CN (probability of com	npound formation)	No (No Qi
Fission barrier vanishin	ıg		Yes (take
Transmssion probabilty f	for a 1-dimension	nal barrier	Quantum-Me
Curvature parameter of t	he parabolic pot	tential	5.00
Fusion L-diffuseness			1.00
Momentum (hbar)			
I (Bfig=0)	63		
L critical	87	(E_crit=176.9	MeV)
L direct (AA)	115.4		
L direct @ CpCt	110	used in calcu	lations
L max (grazing)	131.7		
L max (LISE@Rint)	132.3	used in calcu	lations
Cross sections (mb)			
Destini (ITCRII)			
Interaction	3 700++03		
Compound	8.469e+02		
rast rission	7.605e+02		
Deep Inelastic	9.112e+02		
Direct+QE	1.181e+03		
Compound 1st step de-es	citation channe		to use this
Fusion-Residue	5.333e+01	Tou nuve	
Fusion-Fission	7.935e+02	calculated	factor later
rusion-Breackup	0.000e+00	to take int	o account
Cross section used in a	algulations (be	to take in	
Complete Fusion	2,184e+03	the analys	is of partial
Use this factor for rate	s 0.388	Cross s	ections
Bass cross section calc	culations		
Fusion cross section	2.184e+03	mb	
Fusion barrier	64.22	MeV	
Fusion radius	9.10	im	
Barrier position	11.55	IM	

²³⁸U (20.6 MeV/u) with Be vs. C targets

average for 1	7-24 MeV/u range		
		Tar	gets
Fission Barrier Vanishing	Reactions	Ве	с
	DIC+FA	19%	42%
Sierk	Fusion-Fission	56%	29%
	QE	25%	29%
	DIC+FA	8%	29%
Cohen	Fusion-Fission	66%	41%
	QE	25%	29%

Carbon target.. 50% split... Why? This is due to difference of moments of inertia between C+U and Be+U just above where fission barrier go to zero

MICHIGAN STATE

R

SITY

Partial cross sections ²³⁸U(24.0 MeV/u) + ⁹Be -> ²⁴⁷Cm* (E_{CM}=208.3 MeV); [with P_{CN}, Penetration^{Q.M}] Cross Sections[mb] : Intr=3.69e+03; Comp=1.66e+03; QF=1.54e-07; FA=4.16e+02; DIC=5.36e+02; QE=1.08e+03; L_{crit}=75; L_{max}Graz=99.9; L_{max}^{LISE}=100.3; L_{B fis=0}=67; Verticalical lines correspond to L_{crit} & L_{max} nteraction Compound Quasi-Fission ast Fission 80 direct (Bfis=0) crit 70 Partial cross section [mb] 60 50 40 30 20 10 0 0 40 60 80 100 Angular momentum [hbar] Compound fission ~100% Partially go to fission Sequential fission after DIC Fissile Z = 96Fissile Z~92 Fissile Z < 92 **High Excitation Energy** Low Excitation Energy **High Excitation Energy**

22

MICHIGAN STATE

Partial cross sections ³⁶S(12.0 MeV/u) + ¹²C -> ⁴⁸TI⁺ (E_{CM}=108.0 MeV); [with P_{CN}, Penetration^{Q,M}] Cross Sections[mb] : Intr=2.34e+03; Comp=1.06e+03; QF=1.49e-03; FA=2.81e+02; DIC=1.33e+02; QE=8.67e+02; L_{cit}=44; L_{max}^{craz}=58.0; L_{max}^{LISE}=58.3; L_{B_fis}=0=39; Verticalical lines correspond to L_{cit} & L_{max}

Cross sections (mb)

Partial (LISE++)	
Interaction	2.338e+03
Compound	1.057e+03
Quasi-Fission	1.494e-03
Fast Fission	2.809e+02
Deep Inelastic	1.334e+02
Direct+OF	8 671e+02

Co	mpound	1st	step	de-excitat	ion	channels	(LISE++)
Fus	sion-Re	sidu	э		8.67	78e+02	
Fus	sion-Fi	ssio	1		1.89	90e+02	
Fus	sion-Br	eack	ap	1	0.00	00e+00	
Ba	ass cro	ss se	ection	calculati	ons		

Fusion cross section	1.044e+03	mb
Fusion barrier	14.49	MeV
Fusion radius	5.50	fm
Barrier position	8.80	fm

Grazing Angle (deg)

Center-of-mass system	8.60
Laboratory system	2.14

Partial cross sections

³⁶S(12.0 MeV/u) + ²³⁸U -> ²⁷⁴Hs* (E_{CM}=374.7 MeV); [with P_{CN}, Penetration^{Q,M}] Cross Sections[mb]: Intr=3.33e+03; Comp=2.19e+02; QF=3.64e-01; FA=1.12e+03; DIC=9.41e+02; QE=1.05e+03; L_{cit}=154; L_{max}^{Graz}=241.5; L_{max}^{USE}=243.0; L_{B_fite=0}=62; Verticalical lines correspond to L_{cit} & L_{max}

Cross sections (mb)

Partial (LISE++)

Interaction	3.328e+03	
Compound	2.191e+02	
Quasi-Fission	3.641e-01	
Fast Fission	1.121e+03	mh
Deep Inelastic	9.407e+02 ~ 2.04e3	an
Direct+QE	1.047e+03	

Compound 1st step	de-excitation channels	(LISE++)
Fusion-Residue	1.772e+01	
Fusion-Fission	2.014e+02	
Fusion-Breackup	0.000e+00	

Bass cross section calculations

Fusion cross section	2.116e+03	mb
Fusion barrier	159.12	MeV
Fusion radius	10.40	fm
Barrier position	12.40	fm

Grazing Angle (deg)

Center-of-mass system	30.97
Laboratory system	26.99

23

$^{40}Ar + ^{208}Pb$

				cross sections				
Energy, Lab	Energy, CM	Bass barrier	ECM/ B -1	Compound	QF	FA	DI	QE
MeV/u	MeV	MeV	%	mb	mb	mb	mb	mb
4.8	160.8	161.9	-0.7%	1.5E-02	1.9E-02	0	0	1.1E+02
5.1	170.8	161.9	5.5%	1.6E+02	5.0E+01	0	0	2.2E+02
5.3	177.5	161.9	9.7%	3.1E+02	4.6E+01	4.4E+01	0	2.3E+02
5.6	187.6	161.9	15.9%	3.3E+02	5.0E+00	2.8E+02	0	2.7E+02
6.1	259.7	161.9	60.4%	3.1E+02	6.2E-01	6.2E+02	0	3.4E+02

⁴⁰Ar(5.3 MeV/u) + ²⁰⁸Pb

Interaction
Compound
Quasi-Fission

- Fast Fission

Direct+QE

100 0

Elastic

I would like to acknowledge to Profs. D.J.Morrissey, M.Thoennessenn, Z.Kohley (NSCL/MSU), Dr.G.Knyazheva (FLNR/Dubna), for fruitful discussions.