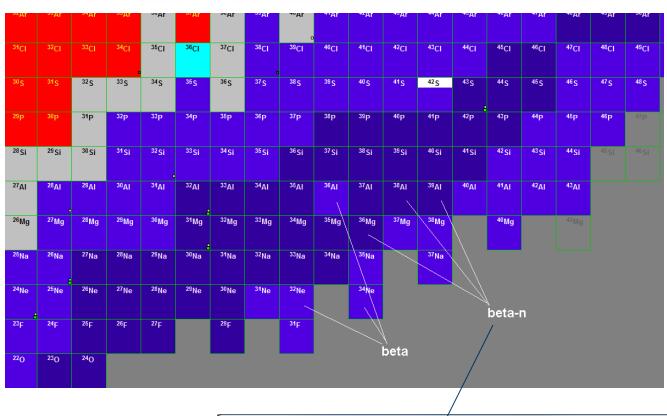
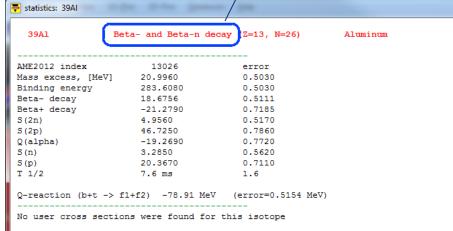


Decay Branching Ratio

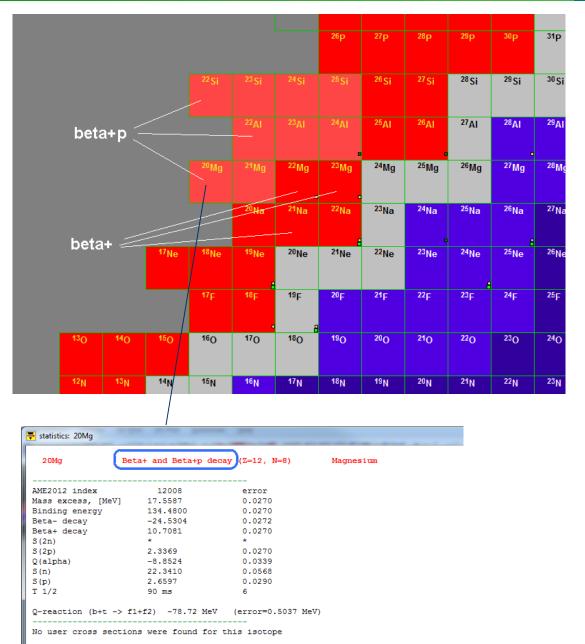
v.9.10.342 from 08/09/16

update

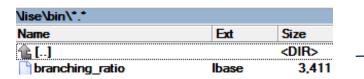

- 1. Beta-Delayed <u>Neutron</u> Emission is new decay mode in LISE⁺⁺
- 2. Beta-Delayed <u>Proton</u> Emission is new decay mode in LISE⁺⁺
- 3. Decay branching ratio database
- 4. Editor of Decay branching ratio database
- 5. Using the Decay branching ratio database in Radiation Residue calculations



Beta-Delayed Neutron Emission is new decay mode in LISE⁺⁺



Beta-Delayed Proton Emission is new decay mode in LISE++



Decay branching ratio database

File Edit Options Help

2006 8.4000000-01

3006 4.9500000-01

3008 1.3400000-01

4008 9.9500000-01

4010 1.3400000-01

5009 9.3960000-01

5010 3.2000000-03

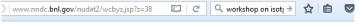
5012 3.7000000-01

P_n for $2 \le Z \le 28$ are taken from

Nuclear Data Sheets 128 (2015) 131-184

Evaluation of Beta-Delayed Neutron Emission Probabilities and Half-Lives for $\mathbf{Z} = \mathbf{2} - \mathbf{28}$

M. Birch, B. Singh, 1, * I. Dillmann, 2 D. Abriola, 3 T.D. Johnson, 4 E.A. McCutchan, 4 and A.A. Sonzogni 4 Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada 2 TRIUMF, Vancouver, British Columbia V6T 2A3, Canada 3 Department of Physics, TANDAR Laboratory, C.N.E.A., Buenos Aires, Argentina

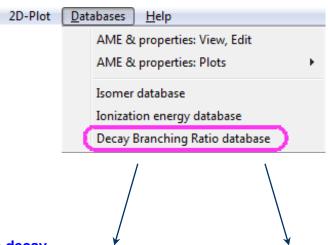

⁴ National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

We present an evaluation and compilation of β -delayed neutron probabilities and half-lives for nuclei in the region Z=2-28 ($^8{\rm He}-^{80}{\rm Ni}$). This article includes the recommended values of these quantities as well as a compiled list of experimental measurements for each nucleus in the region for which β -delayed neutron emission is possible. The literature cut-off for this work is August 15th, 2015. Some notable cases as well as new standards for β -delayed neutron measurements in this mass

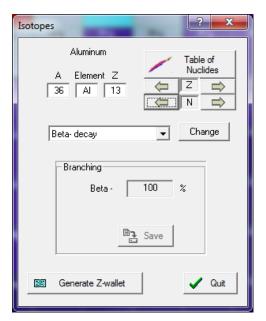
region are also discussed.

Other branching ratios and P_n for $38 \le Z$ are taken from NNDC

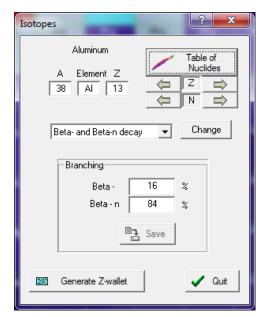
Ratios for higher Z will be entered soon.


Results for Z=38

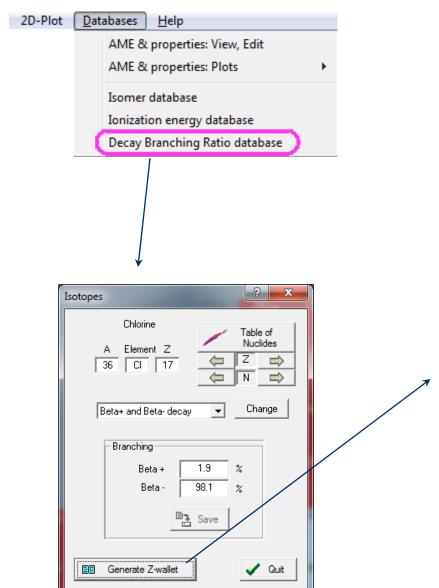
Nucleus	E(level) (MeV)	Jπ	Δ(MeV)	T _{1/2}	Abundance	Decay Modes
73 38	0.0000		-31.9500 Syst	> 25 ms		ε: 100.00 % εp > 0.00 %
74 38	0.0000	0+	-40.8270 Syst	> 1.2 µS		٤
75 38 ^{Sr}	0.0000	(3/2-)	-46.6186	88 ms 3		ε: 100.00 % εp: 5.20 %
76 38	0.0000	0+	-54.2476	7.89 s 7		ε: 100.00 % εp: 3.4E-5 %
⁷⁷ 38	0.0000	5/2+	-57.8034	9.0 s 2		ε: 100.00 % εp < 0.25 %
⁷⁸ Sr	0.0000	0+	-63.1739	160 s 8		ε: 100.00 %
79 38 ^{Sr}	0.0000	3/2(-)	-65.4768	2.25 m 10		ε: 100.00 %
80 38	0.0000	0+	-70.3114	106.3 m 15		ε: 100.00 %
81 38 ^S r	0.0000	1/2-	-71.5281	22.3 m 4		ε: 100.00 %
82 38	0.0000	0+	-76.0099	25.34 d 2		ε: 100.00 %
83 38 ^{Sr}	0.0000	7/2+	-76.7976	32.41 h 3		ε: 100.00 %
83m 38	0.2591	1/2-	-76.5385	4.95 s 12		IT : 100.00 %
84 38 ^S r	0.0000	0+	-80.6493	STABLE	0.56% 1	
85 38	0.0000	9/2+	-81.1032	64.850 d 7		ε: 100.00 %
85m 38	0.2387	1/2-	-80.8645	67.63 m 4		IT : 86.60 % ε : 13.40 %
86 38	0.0000	0+	-84.5232	STABLE	9.86% 1	
87 38	0.0000	9/2+	-84.8800	STABLE	7.00% 1	
^{87m} Sr	0.3885	1/2-	-84.4915	2.815 h 12		IT : 99.70 % ε: 0.30 %

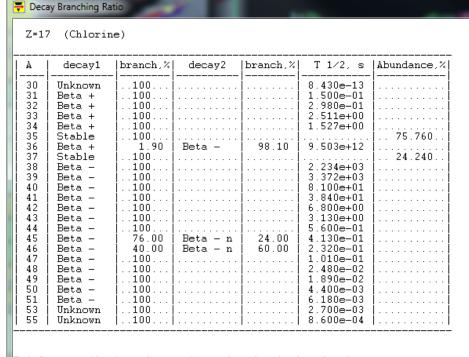


Decay Branching Ratio Database Editor



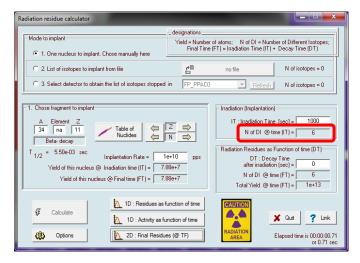
One branch decay


Two branches decay

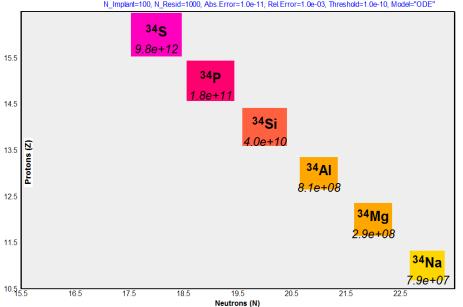


Decay Branching Ratio Database Editor: Z-wallet

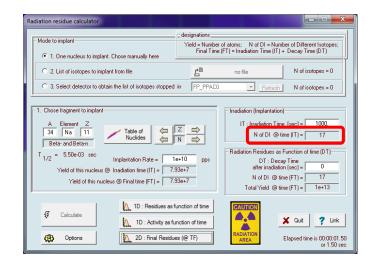
T 1/2 : compilation of experimental and calculated values. See the AME dialog for details



Using the Decay branching ratio database in Radiation Residue calculations

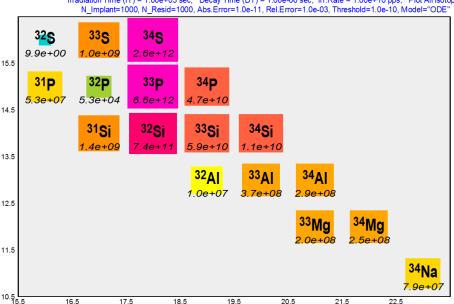


v.9.10.331. No Decay Branch Database



Radioactive decay residues Initial isotope: 34Na

Irradiation Time (IT) = 1.00e+03 sec; Decay Time (DT) = 1.00e-06 sec; Irr.Rate = 1.00e+10 pps; Plot All isotopes N Implant=100, N Resid=1000, Abs.Error=1.0e-11, Rel.Error=1.0e-03, Threshold=1.0e-10, Model="ODE"

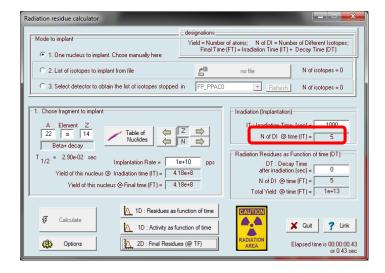

v.9.10.341. With Decay Branch Database

Radioactive decay residues

Initial isotope: 34Na

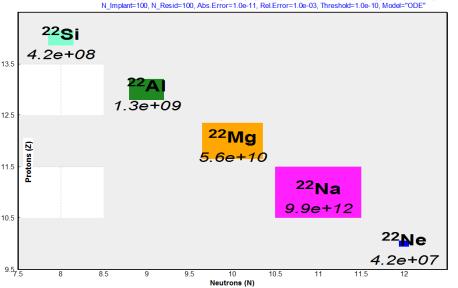
Irradiation Time (IT) = 1.00e+03 sec; Decay Time (DT) = 1.00e-06 sec; Irr.Rate = 1.00e+10 pps; Plot All isotop

Neutrons (N)

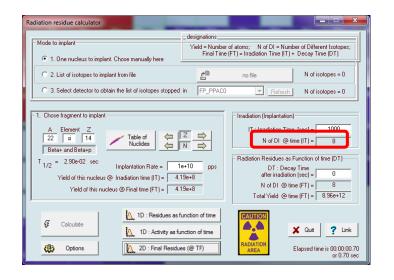

Using the Decay branching ratio database in Radiation Residue calculations

2e+07 1e+07

v.9.10.331. No Decay Branch Database

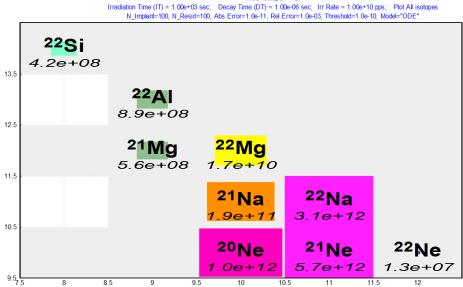


Radioactive decay residues


Initial isotope: \$\frac{2}{2}\$Si

Irradiation Time (IT) = 1.00e+03 sec; Decay Time (DT) = 1.00e-06 sec; Irr.Rate = 1.00e+10 pps; Plot All isotopes

N Implant=100. N Resid=100. Abs.Error=1.0e-11. RelError=1.0e-03. Threshold=1.0e-10. Model="ODE"



v.9.10.341. With Decay Branch Database

Radioactive decay residues

Initial isotope: 22Si

Neutrons (N)