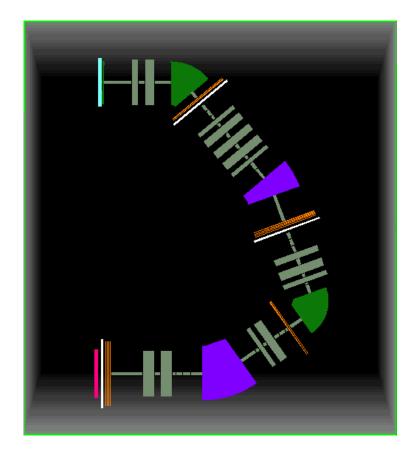


High Order extended configuration

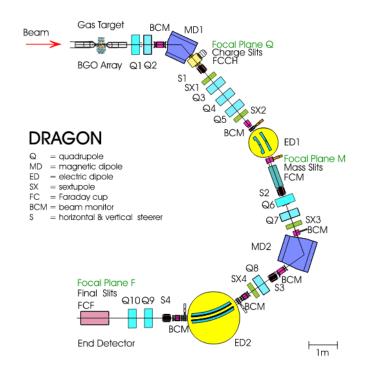

Version 9.10.142 from 07/22/2015

Link: Spectrometer "DRAGON" (TRIUMF)

MICHIGAN STATE

DRAGON2000 extended configuration

- DRAGON documentation
- DRAGON files location
- Optimization with LISE⁺⁺
- Alternative configuration
- 2015 settings vs. documentation 2000
- Angular Acceptance
- Momentum Acceptance
- □ Charge states selection
- **D** Experiment ¹⁵O(α,γ)¹⁹Ne
 - Fusion
 - De-excitation by gamma at low energies vs. kinematics
- Segmented configuration
- Open questions



- 1. THE DRAGON Recoil Separator Optics by The Recoil Group from January 3, 2001
- 2. D.A. Hutcheon et al. / Nuclear Instruments and Methods in Physics Research A 498 (2003) 190–210
- 3. Fax by D.A. Hutcheon from 09/01/2003 with GIOSP input
- 4. Commissioning the DRAGON facility at ISAC by S.Engel et al. from 06/23/2005
- 5. On-line DRAGON tools http://dragon.triumf.ca/DragonTools.php#md1
- 6. Unrike's comments

Finally, the DRAGON's extended configuration has been created mainly based on the first very detail document (THE DRAGON Recoil Separator Optics by The Recoil Group from January 3, 2001), so let's call this configuration as DRAGON2000, because there are some differences were found with other sources which will be discussed.

2

Table 1.1: Important parameters of DRAGON dipoles.

dipole	ho(cm)	$\phi(\text{deg})$	$\alpha(\text{deg})$	gap(cm)	$L_{eff}(\mathrm{cm})$
MD_1	100	50	5.8	10	87.27
ED_1	200	20	-	10	69.81
MD_2	81.3	75	29	12	106.42
ED_2	250	35	-	10	152.72

Table 1.2: Important parameters and status of DRAGON quads(Q), sextupoles(S) an steering magnets(SM).

device	$L_{eff}(\mathrm{cm})$	$L_{tot}(\mathrm{cm})$	aperture(inch)	status
$Q_{1,6}$	25.23	31.5	4.25	mapped/placed
Q_2	33.385	45(?)	6.25	mapped/placed
$Q_{9,10}$	46.7	58.2	5.91	SMIT-ELMA quads
				mapped
$Q_{35,7,8}$	33.38	45(?)	6.25	mapped/placed
$S_{1,2}$	18.75	21.6	6.26	mapped
$S_{3,4}$	19.9	23.5	6.26(4.49)	mapped
			X(Y)	asymmetric design
$SM_{3,4}$	25.9(?)	16.3	6.25	mapped(?)
$SM_{1,2}$	25.6	16.5	4.25	Chalk River
				mapped(rough)

Table 2.1: First-order optics properties of magnetic and electrostatic dipoles (file reso2000.dat 28 Sept 00).

[Element	Radius	Bend	Direction	Gap	Entry pole	Exit pole
		(m)	(deg)		(m)	angle (deg)	angle (deg)
Ī	MD1	1.00	50	Right	0.10	5.8	5.8
	ED1	2.00	20	Right	0.10	0.0	0.0
	MD2	0.813	75	Right	0.12	29.0	29.0
	ED2	2.50	35	Right	0.10	0.0	0.0

Table 2.2: Separator backbone segment lengths (GIOS output file reso 2000.dat 28 Sept 00).

Segment	Begins	Ends	Length (m)	
1	Target	MD1	3.0163	
2	MD1	ED1	4.7819	
3	ED1	MD2	4.4815	
4	MD2	ED2	4.1351	
5	ED2	Final focus	4.2975	orror?
All	Target	Final focus	10.2461 -	error?
			(90.346°)	

G

Table 2.3: E.M.S. element spacings in the first stage (file reso2000.dat 28 Sept 00). Distances are between effective field boundaries. The positioning bf beam position monitors (MON) and steering magnets (SM) could be modified slightly (i.e. a few cm either way) without serious effect.

	Segment 1			Segment 2			Segment 3	
Begin	End	Len (m)	Begin	End	Len (m)	Begin	End	Len (m)
Target	Q1 in	1.06885	Seg. beg.	MD1 out	0.4663	Seg. beg.	ED1 out	0.3527
Q1 in	Q1 out	0.2523	MD1 out	Ch. slit	0.3079	ED1 out	Mass slit	1.05
Q1 out	Q2 in	0.256925	Ch. slit	SM1 in	0.272			
Q2 in	Q2 out	0.33385	SM1 in	SM1 out	0.256			
Q2 out	MD1 in	0.638075	SM1 out	S1 in	0.1862			
MD1 in	Seg. end	0.4663	S1 in	S1 out	0.1875			
			S1 out	Q3 in	0.1614			
			Q3 in	Q3 out	0.3338			
			Q3 out	Q4 in	0.2162			
			Q4 in	Q4 out	0.3338			
			Q4 out	Q5 in	0.2162			
			Q5 in	Q5 out	0.3338			
			Q5 out	S2 in	0.1614			
			S2 in	S2 out	0.1875			
			S2 out	MON1	0.3092			
			MON	ED1 in	0.50			
			ED1 in	Seg. end	0.3527			
Тс	otal	3.0163	T	tal	4.7819		(next table)	
Oleg's check 3.0163					4.7819			

DRAGON2000a

Table 2.4: E.M.S. element spacings in the second stage (file reso2000.dat 28 Sept 00). Distances are between effective field boundaries. The positioning of beam position monitors (MON) and steering magnets (SM) could be modified slightly (i.e. a few cm either way) without serious effect. The quoted effective lengths of the steering magnets are not critical and could be reduced.

Segment 3		Segment 4		Segment 5				
Begin	End	Len (m)	Begin	End	Len (m)	Begin	End	Len (m)
Mass slit	SM2 in	0.277	Seg. beg.	MD2 out	0.6238	Seg. beg.	ED2 out	0.7883
SM2 in	SM2 out	0.256	MD2 out	MON3	0.56076	ED2 out	MON5 in	0.425
SM2 out	Q6 in	0.27085	MON3	SM3 in	0.1205	MON5 out	SM4 in	0.3155
Q6 in	Q6 out	0.2523	SM3 in	SM3 out	0.259	SM4 in	SM4 out	0.259
Q6 out	Q7 in	0.25695	SM3 out	Q8 in	0.24084	SM4 out	Q9 in	0.12
Q7 in	Q7 out	0.3338	Q8 in	Q8 out	0.3338	Q9 in	Q9 out	0.467
Q7 out	S3 in	0.1581	Q8 out	S4 in	0.1581	Q9 out	Q10 in	0.199
S3 in	S3 out	0.199	S4 in	S4 out	0.199	Q10 in	Q10 out	0.467
S3 out	MON2	0.098	S4 out	MON4	0.15	Q10 out	Final	1.176693
MON2	MD2 in	0.353	MON4	ED2 in	0.701			
MD2 in	Seg. end	0.6238	ED2 in	Seg. end	0.7883			
Total 4.4815		Total 4.1351		351 Total		4.2975		
4.4815					4.1301			4.2175

Conec	Corrections for Dipoles lengths.											
dipole $\rho(\text{cm}) \mid \phi(\text{deg}) \mid \alpha(\text{deg}) \mid \text{gap(cm)} \mid L_{eff}(\text{cm})$												
MD_1	100	50	5.8	10	87.27 -							
ED_1 MD_2	$200 \\ 81.3$	$\frac{20}{75}$	- 29	10 12	$69.81 \\ 106.42$							
ED_2	250	35	-	10	150.12 152.72							

Corrections for Dipolos longths:

DRAGON2000

seg1	seg2	seg3	seg4	seg5
1.06885	0.43635	0.34905	0.5321	0.7636
0.2523	0.3079	1.05	0.56076	0.425
0.256925	0.272	0.277	0.1205	0.3155
0.33385	0.256	0.256	0.259	0.259
0.638075	0.1862	0.27085	0.24084	0.12
0.43635	0.1875	0.2523	0.3338	0.467
	0.1614	0.25695	0.1581	0.199
	0.3338	0.3338	0.199	0.467
	0.2162	0.1581	0.15	1.176693
	0.3338	0.199	0.701	
	0.2162	0.098	0.7636	
	0.3338	0.353		
	0.1614	0.5321		
	0.1875			
	0.3092			
	0.5			
	0.34905			
2.9864	4.7483	4.3862	4.0187	4.1928

long	lengths								
leng	115	configurations							
		DRAGON2000A	DRAGON2000						
	Document	Check	With Corrected dipoles lengths						
seg1	3.016	3.016	2.986						
seg2	4.782	4.782	4.748						
seg3	4.482	4.482	4.386						
seg4	4.135	4.130	4.019						
seg5	4.298	4.217	4.193						
Total	20.712	20.627	20.332						

The configuration "DRAGON2000" is used for optimization and benchmarks. Lengths of drifts should be corrected for the new DRAGON2015 configuration!!!

Table 3.1: Limiting apertures and slit widths used for $^{19}\mathrm{Ne}$ acceptance calculations.

components	apertures(cm)
$Q_{1,6}$	10
$Q_{25}, Q_{7,8}$	15
S_{14}	15
$Q_{9,10}$	15
$Q_{9,10}$	15
MD_1	8(y)
MD_2	9(y)
ED_1	10(x)
ED_2	10(x)
gas target	diameter
collimators	in cm
entrance	0.8
exit	3.6
slit	full width
location	x(y) in cm
Q	2.32(2.2)
Μ	0.48(2.4)
F	0.92(1.2)

Table 2.5: Field strengths for rigidities 0.5 T·m and 8 MV scaled from the GIOS input file reso2000.dat Tunes must be obtained by scaling to the rigidities of a given reaction.Note that the sextupole strengths have been scaled to the new L_{eff} values listed in table 1.2.

Element	Gap	Effective	Field
	or Diam.	length	
Q1	$10.8~{\rm cm}$	$25.23 \mathrm{~cm}$	-2.187 kG
Q2	$15.9~\mathrm{cm}$	$33.385~\mathrm{cm}$	+2.003 kG
SØ	$15.9~\mathrm{cm}$	$33.385~\mathrm{cm}$	+0.106 kG
MD1	$10 \mathrm{cm}$		$+4.991 \ kG$
S1	$15.9~\mathrm{cm}$	$18.75~\mathrm{cm}$	+0.425 kG
$\mathbf{Q3}$	$15.9~\mathrm{cm}$	$33.38~\mathrm{cm}$	+1.826 kG
$\mathbf{Q4}$	$15.9~\mathrm{cm}$	$33.38~\mathrm{cm}$	-2.412 kG
Q5	$15.9~\mathrm{cm}$	$33.38~\mathrm{cm}$	+1.329 kG
S2	$15.9~\mathrm{cm}$	$18.75~\mathrm{cm}$	+0.089 kG
ED1	$10 \mathrm{cm}$		$\pm 200. \text{ kV}$
$\mathbf{Q6}$	$10.8~{\rm cm}$	$25.23~\mathrm{cm}$	-1.181 kG
$\mathbf{Q7}$	$15.9~\mathrm{cm}$	$33.38~\mathrm{cm}$	$+1.696 \ kG$
S3	$16~{\rm cm}$	$19.9~\mathrm{cm}$	$+0.047 \ \rm kG$
MD2	12 cm		$6.139 \ \mathrm{kG}$
$\mathbf{Q8}$	$15.9~\mathrm{cm}$	$33.38~\mathrm{cm}$	+1.257 kG
S4	$16 \mathrm{~cm}$	$19.9~{ m cm}$	+0.360 kG
ED2	$10~{\rm cm}$		$\pm 160.~\mathrm{kV}$
$\mathbf{Q9}$	$15~{\rm cm}$	$46.7~\mathrm{cm}$	$-0.972 \ \mathrm{kG}$
Q10	$15~{\rm cm}$	$46.7~\mathrm{cm}$	$+1.087 \ kG$
			I]

In order to use these EM devices settings in LISE⁺⁺ an ion ³⁹Ca¹³⁺ has been selected with energy 1.34161 MeV/u what corresponds to Br=0.5 Tm and Er=8.047 MV

→		2 3			
	Energy C 1.34161	MeV/u	Energy O	1.3404	AMeV
	Brho 💿 0.5	Tm	TKE O	52.2741	MeV
	Erho 🔿 <u>8.04734</u>	MJ/C	Velocity O	1.60728	cm/ns

DRAGON settings in LISE⁺⁺

1 2 ∛ Block name or	3 Kind of Block	4 Start (m)	5 Length (m)	6 DriftMode Angle(*)*	7 B0(kG)	8 Br-corrsp Br-dip *	9 Rapp(cm) R(m)*	10) L_eff(m) Len(m)*	11 2nd order		13 AngAco mode	14 Slits shape	15 Xmin slit	16 Xmax slit	17 Ymin slit	18 Ymax slit	19 Appert shape	20 Xmin limit	21 Xmax limit	22 Ymin limi	23 Ymax t limit
l. tuning 2. t-g1	Dipole Drift	0.000 0.000	0.000 1.069	+0.0 * standard	+1.667	0.5000*	3.00*	0.00*	-			rectn rectn					ellps ellps	-50	+50	-50	+50
3. Q1 1. q1-q2	Drift Drift	1.069 1.321	0.252 0.257	multipole standard	-2.158	0.5000	5.40	0.25	yes	1		rectn rectn					ellps rectn	-50	+50	-50	+50
5. Q2 5. d3-md1	Drift Drift	1.578 1.912	0.334 0.638	multipole standard	+1.965	0.5000	7.94	0.33	yes	1		rectn rectn					ellps ellps	-75 -75	+75 +75	-75 -75	+75 +75
7. MD1 3. md1-slits	Dipole Drift	2.550 3.423	0.873 0.308	+50.0 * standard	+1.667	0.5000*	1.00*	0.87*	yes			rectn rectn					rectn rectn			-40	+40
9. Fit XT LO. Fit XX	Fit Fit	3.731 3.731	0.000	ovandard								rectn					ellps ellps				
l1. Fit YP L2. CHARGE slits	Fit Drift	3.731 3.731	0.000	SLITS								rectn					ellps rectn				
l3. slts-sm1 l4. SM1	Drift Drift	3.731 4.003	0.272 0.256	standard standard								rectn					ellps ellps	-50 -50	+50	-50	+50 +50
14. 571 15. sm1-s1 16. S1	Drift Drift	4.259	0.186 0.188	standard standard multipole	.0.000	0.5000	7.94	0.19	ves	1		rectn rectn					ellps ellps	-50 -75	+50 +50 +75	-50 -50 -75	+50 +75
l7. s1-q3 l8. Q3	Drift	4.632	0.161 0.334	standard multipole		0.5000	7.94	0.33				rectn					ellps	-74 -75	+74 +75	-74 -75	+74 +75
l9. q3—q4	Drift Drift	5.127	0.334 0.216 0.334	standard multipole		0.5000	7.94	0.33	yes	1		rectn rectn					ellps ellps	-74 -75	+74 +75	-75 -74 -75	+75 +74 +75
21 a4-a5	Drift Drift	5.344 5.677	0.216	standard					yes	1		rectn rectn					ellps ellps	-74	+74	-74	+74
22. Q5 23. q5-s2	Drift Drift	5.894 6.227	0.334	multipole standard		0.5000	7.94	0.33	yes	1		rectn rectn					ellps ellps	-75 -74	+75 +74 +75	-75 -74 -75	+75 +74 +75
24. 52 25. s2-mon1	Drift Drift	6.389 6.576	0.188	multipole standard	+0.000	0.5000	7.94	0.19	yes	1		rectn rectn					ellps rectn	-75	+/5	-75	+/5
26. mon1-ed1 27. ED1	Drift ElecDip	6.886 7.386	0.500		0.0kV	0.5000*	2.00*	0.70*	-			rectn rectn					rectn rectn	-50	+50		
28. ed1-slts 29. Mass_XA	Drift Fit	8.084 9.134	1.050 0.000	standard								rectn rectn					rectn ellps	-50	+50		
30. Mass_XD 31. Mass_PP	Fit Fit	9.134 9.134	0.000									rectn rectn					ellps ellps				
32. Mass TD 33. Mass YY	Fit Fit	9.134 9.134	0.000 0.000									rectn rectn					ellps ellps				
34. MASS Slits 35. slts-sm2	Drift Drift	9.134 9.134	0.000 0.277	SLITS standard								rectn rectn					rectn ellps	-50	+50	-50	+50
36. SM2 37. sm2-q6	Drift Drift	9.411 9.667	0.256 0.271	standard standard								rectn rectn					ellps ellps	-50 -50	+50 +50	-50 -50	+50 +50
38.Q6 39.q6-q7	Drift Drift	9.938 10.190	0.252 0.257	multipole standard	-1.459	0.5000	5.40	0.25	yes	1		rectn rectn					ellps ellps	-50 -50	+50 +50	-50 -50	+50 +50
10. Q7 11. q7-s3	Drift Drift	10.447 10.781	0.334 0.158	multipole standard	+1.752	0.5000	7.94	0.33	yes	1		rectn rectn					ellps ellps	-75 -74	+75 +74	-75 -74	+75 +74
12.53 13.s3-mon2	Drift Drift	10.939 11.138	0.199 0.098	multipole standard	+0.000	0.5000	7.95	0.20	yes	1		rectn rectn					ellps ellps	-75 -74	+75 +74	-75 -74	+75 +74
14. mon2-md2 15. MD2	Drift Dipole	11.236 11.589	0.353 1.064	standard +75.0 *	+1.667	0.5000*	0.81*	1.06*	ves			rectn rectn					ellps rectn	-75	+75	-50 -45	+50 +45
16. md2-mon3 17. Charge2 XT	Drift Fit	12.653 13.214	0.561 0.000	standard					-			rectn rectn					ellps ellps	-100	+100	-50	+50
18. Charge2 PP 19. Fit XX	Fit Fit	13.214 13.214	0.000 0.000									rectn rectn					ellps ellps				
50. mon3-sm3 51. SM3	Drift Drift	13.214 13.334	0.120 0.259	standard standard								rectn rectn					ellps ellps	-75 -75	+75 +75	-75 -75	+75 +75
52. sm3-q8 53. Q8	Drift Drift	13.593 13.834	0.241 0.334	standard multipole	+1.238	0.5000	7.94	0.33	ves	1		rectn rectn					ellps ellps	-74	+75 +74 +75	-74 -75	+74 +75
54. q8-s4 55. S4	Drift Drift	14.168 14.326	0.158 0.199	standard multipole		0.5000	7.95	0.20	ves	1		rectn rectn					ellps ellps	-74 -75	+74 +75 +75	-74 -75 -75	+74 +75
56. s4-mon4 57. mon4-ed2	Drift Drift	14.525 14.675	0.150 0.701	standard standard								rectn rectn					ellps rectn	-75	+75	-75	+75
58. ElecDip 2 59. ed2-mon5	ElecDip Drift	15.376 16.903	1.527 0.425		0.0kV	0.5000*	2.50*	1.53*	-			rectn rectn					rectn rectn	-50	+50		
50. mon5-sm4 51. SM4	Drift Drift	17.328 17.644	0.316 0.259	standard standard								rectn rectn					ellps ellps	-74 -74	+74 +74	-74 -74	+74 +74
52. sm4-q9 53. Q9	Drift Drift	17.903 18.023	0.120 0.467	standard multipole	-0.956	0.5000	7.51	0.47	ves	1		rectn rectn					ellps ellps	-74 -75	+74 +75	-74 -75	+74 +75
54. q9-q10 55. Q10	Drift Drift	18.490 18.689	0.199 0.467	standard multipole		0.5000	7.51	0.47	ves	1		rectn rectn				1	ellps ellps	-75 -75	+75 +75	-75 -75	+75 +75
56. q10-final 57. Fin XT	Drift Fit	19.156 20.332	1.177	standard				- · - ·		-		rectn rectn					ellps ellps	-75	+75	-75	+75
58. Fin XD 59. Fin YP	Fit Fit	20.332	0.000 0.000									rectn rectn					ellps ellps				
70. Fit XX 71. Fin TD	Fit Fit	20.332	0.000									rectn					ellps				
72. Final Slits	Drift		0.000	SLITS								rectn					rectn				

This settings list can be produced in LISE++ using menu "Experimental Settings -> Optics -> Optics settings: View and Print"

These aperture parameters are used to obtain angular and momentum acceptances of the separator. 6

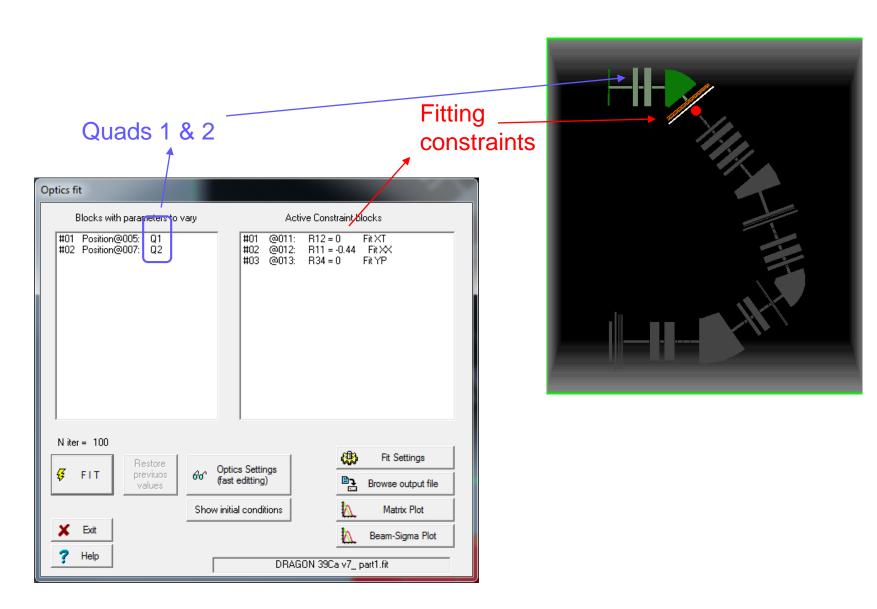
Iise.nscl.msu.edu/9_10/DRAGON/

Index of /9 10/DRAGON

Name Last modified Size Description

Parent Directory	1	-
Acceptances/	2015-07-22 14:33	-
ChargeStates/	2015-07-22 14:33	-
DRAGON.pdf	2015-07-22 14:21	11M
Eit/	2015-07-22 14:33	-
LISE package/	2015-07-22 14:33	-

http://lise.nscl.msu.edu/9_10/DRAGON/


[9_10] [] [DRAGON]			
$\overrightarrow{\mathbf{DRAGON}} \rightarrow This \ document$			
[Acceptances]			
AngAcc_fromMassS_FinalS AngAcc_fromTarget	lpp lpp lpp lpp	\rightarrow \rightarrow	Angular Accepta Angular Accepta Angular Accepta Momentum Acce
[ChargeStates] Fe_DRAGON2000_39Ca_beam_charge	lpp	\rightarrow	Beam charge sta
🗀 [Fit]			
e_DRAGON_fit_ part 1 e_DRAGON_fit_ part 2 e_DRAGON_fit_ part 3 e_DRAGON_fit_ part 4 e_DRAGON_fit_ part 1-4	lpp lpp lpp lpp lpp	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	DRAGON optics DRAGON optics DRAGON optics DRAGON optics DRAGON optics
(LISE_package)	\rightarrow	DRA	GON files in the l
<mark>₹</mark> e_DRAGON2000 ₹ s_DRAGON2000	lcn Icn		DRAGON extend DRAGON segme
🛅 [files]			
e_DRAGON2000_reaction e_DRAGON2000_39Ca_beam e_DRAGON2000a_39Ca_beam	lpp lpp lpp	\rightarrow \rightarrow	DRAGON extend DRAGON extend DRAGON extend
루 s_DRAGON2000_reaction	lpp	\rightarrow	DRAGON segme

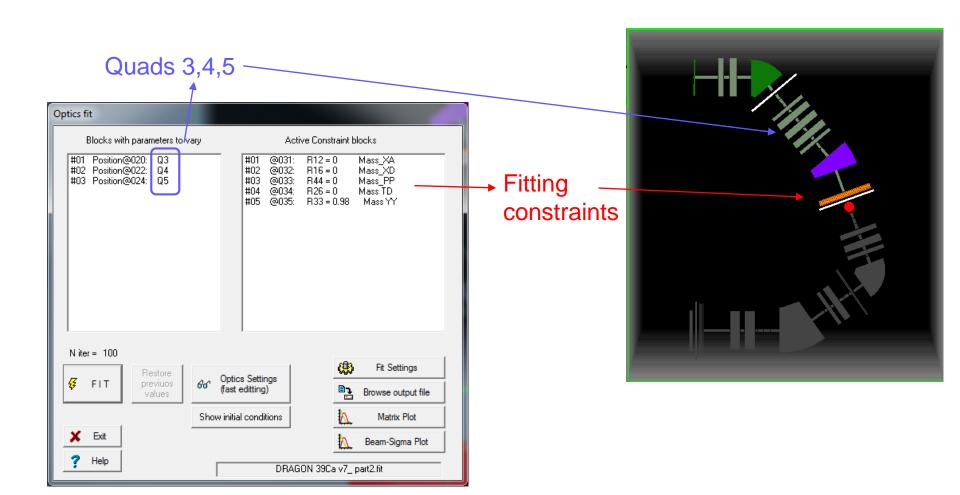
- tance analysis from the Charge Slits
- tance analysis from the Mass Slits
- tance analysis from the Target position
- ceptance analysis
- ates after thin target
- cs optimization : 1st sector
- cs optimization : 2nd sector
- cs optimization : 3rd sector
- cs optimization : 4th sector
- cs optimization : ALL sector
- *LISE*⁺⁺ *installation package*
- nded configuration
- nented configuration
- nded : ${}^{15}O(\alpha, \gamma){}^{19}Ne$
- *ided* : primary beam ³⁹Ca⁵⁺
- ded alternative configuration
- egmented : ${}^{15}O(\alpha, \gamma){}^{19}Ne$

Settings Fe_DRAGON_fit_part1 lpp

Results

THE DRAGON Recoil Separator Optics by The Recoil Group from January 3, 2001

Table 2.6: GIOS First-order transfer matrix elements at the four horizontal image points (file reso2000.dat 28 Sept 00): x is horizontal position (m); a is horizontal angle (rad); y is vertical position (m); b is vertical angle (rad); d is fractional energy difference; g is fractional mass difference; t is fractional difference in time-of-flight.


									·			
									Charge	Mass	Charge	Final
								$(\mathbf{x} \mathbf{x})$	-0.440	0.689	-0.580	0.980
SF++								$(\mathbf{x} \mathbf{a})$		0.000	0.000	0.000
SE								$(\mathbf{x} \mathbf{g})$	0.302	-0.472	-0.472	-1.828
– Global matri	iu (HARGE sli	1				Factor 2. it's correct	$(\mathbf{x} \mathbf{d})$		0.000	0.684	0.000
	· ·	.HANGE SI	6				Factor 2. Ite	(a x)	-1.648	1.147	-2.122	0.052
-0.44468	0	0	0	0	0.60425	[cm]		(a a)	-2.273	1.451	-1.725	1.020
-16.2785E	-2.24881	0	0	0	8.02329	[mrad]		(a g)		-0.321	1.589	1.303
	0	-3.63955	-0.00001	0	0	[cm]		(a d)		0.015	0.669	-0.022
			تسسيا		<u> </u>			(t x)		0.002	0.161	-0.002
	0	-17.27569	-0.27482	0		[mrad]		(t a)		0.000	0.179	0.000
-0.62685	-0.13588	0		1	-0.10662	[cm]		(t g)		0.504	0.462	0.515
0	0	0	0	0	1	[%]		(t d)	-0.485		-0.482	-0.477
/[cm]	/[mrad]	/[cm]	/[mrad]	/[cm]	/[%]			$(\mathbf{y} \mathbf{y})$		0.980	3.487	-1.767
, four	.[00]	. [on]	.[]	. four	.[.0]			(y b)	$0.018 \\ -1.563$	-	0.227	$0.000 \\ 1.657$
								$(\mathbf{b} \mathbf{y})$		2.307 0.008	-3.336	
								(b b)	-0.273	0.008	0.070	-0.566

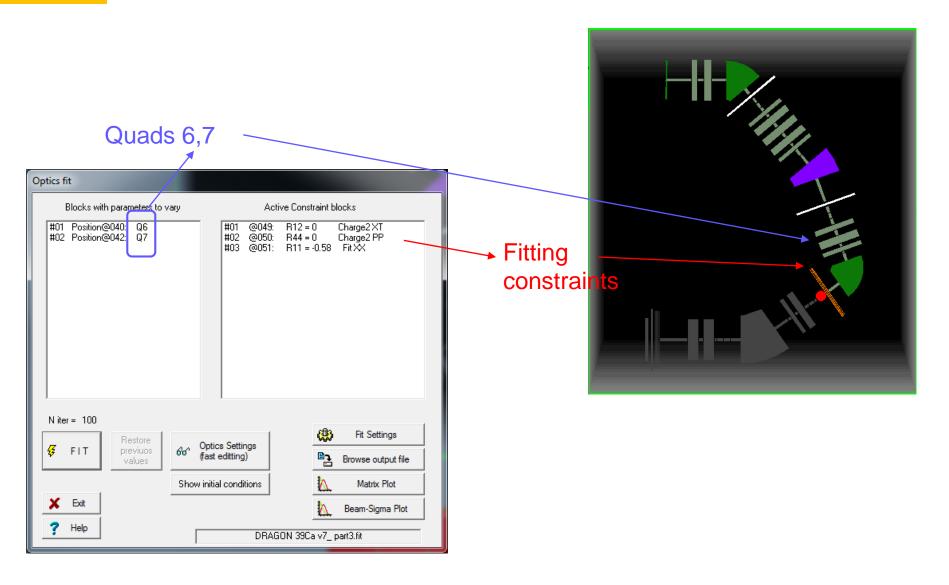
DRAGON optimization in LISE⁺⁺ : 2nd step

Settings Fe_DRAGON_fit_part2 lpp

Results

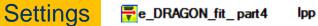
THE DRAGON Recoil Separator Optics by The Recoil Group from January 3, 2001

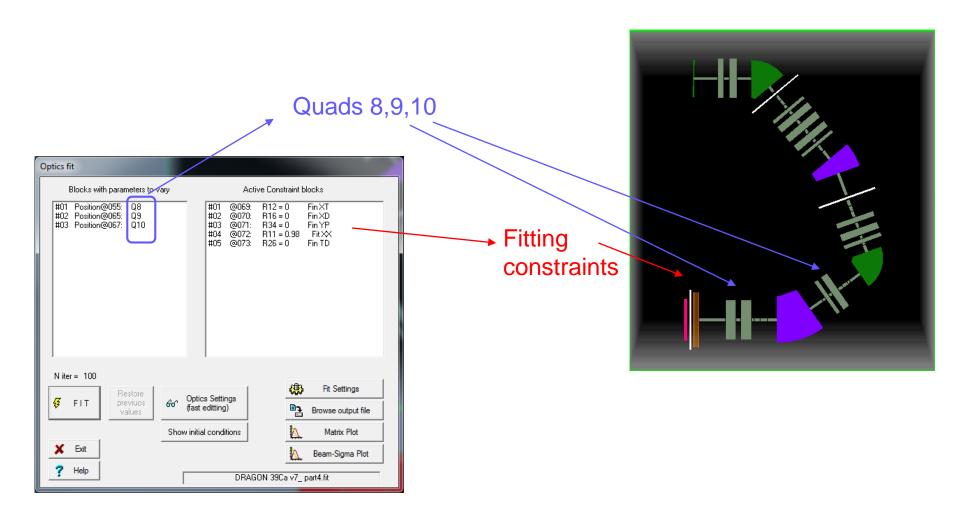
Table 2.6: GIOS First-order transfer matrix elements at the four horizontal image points (file reso2000.dat 28 Sept 00): x is horizontal position (m); a is horizontal angle (rad); y is vertical position (m); b is vertical angle (rad); d is fractional energy difference; g is fractional mass difference; t is fractional difference in time-of-flight.


										`	
								Charge	Mass	Charge	Final
							$(\mathbf{x} \mathbf{x})$	-0.440	0.689	-0.580	0.980
ISE++							$(\mathbf{x} \mathbf{a})$	0.000	0.000	0.000	0.000
							$(\mathbf{x} \mathbf{g})$	0.302	-0.472	-0.472	-1.828
– Global mat	rix — M	ASS Slits					$(\mathbf{x} \mathbf{d})$	0.302		0.684	0.000
							(a x)	-1.648	1.147	-2.122	0.052
0.69251		U		0	0	[cm]	(a a)	-2.273	1.451	-1.725	1.020
11.33552	1.44388	0	0	0	0.33979	[mrad]	(a g)	0.401	-0.321	1.589	1.303
0	0	0.97923	-0.04018	0	0	[cm]	(a d)	0.401	0.015	0.669	-0.022
							(t x)	0.172	0.002	0.161	-0.002
0	0	24.28975	0.02465	0		[mrad]	(t a)	0.368	0.000	0.179	0.000
-0.02353	0	0	0	1	-0.13051	[cm]	(t g)	0.515	0.504	0.462	0.515
0	0	0		0	1	[%]	(t d)_	-0.485	I I	-0.482	-0.477
, /[cm]	, /[mrad]	/[cm]	, , /[mrad]	/[cm]	, /[%]		$(\mathbf{y} \mathbf{y})$	-3.554	I I	3.487	-1.767
Zenij	, funga)	Alouit	, [iiiiaa]	Acuit	<[/∾]		$(\mathbf{y} \mathbf{b})$	0.018		0.227	0.000
							$(\mathbf{b} \mathbf{y})$	-1.563	2.307	-3.336	1.657
							(b b)	-0.273	0.008	0.070	-0.566
										/	

DRAGON optimization in LISE⁺⁺ : 3rd step

Results

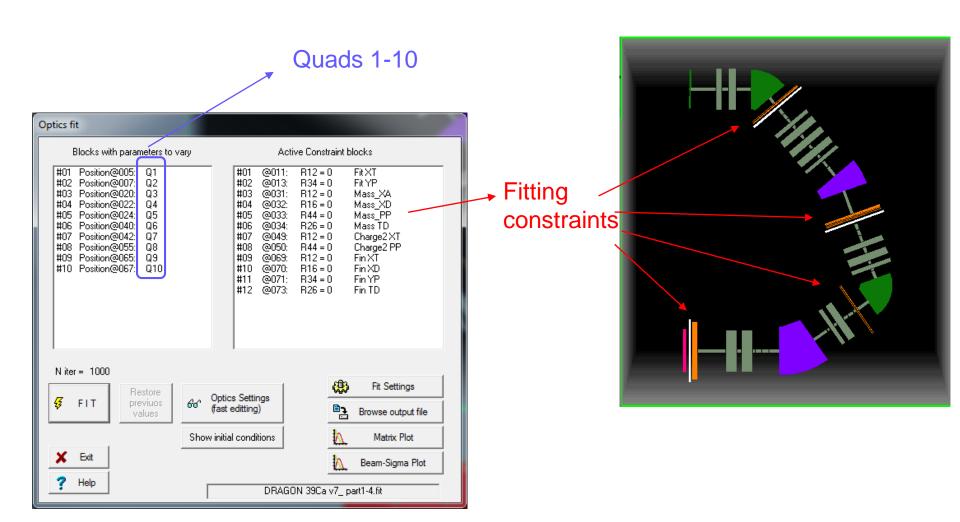

THE DRAGON Recoil Separator Optics by The Recoil Group from January 3, 2001


Table 2.6: GIOS First-order transfer matrix elements at the four horizontal image points (file reso2000.dat 28 Sept 00): x is horizontal position (m); a is horizontal angle (rad); y is vertical position (m); b is vertical angle (rad); d is fractional energy difference; g is fractional mass difference; t is fractional difference in time-of-flight.

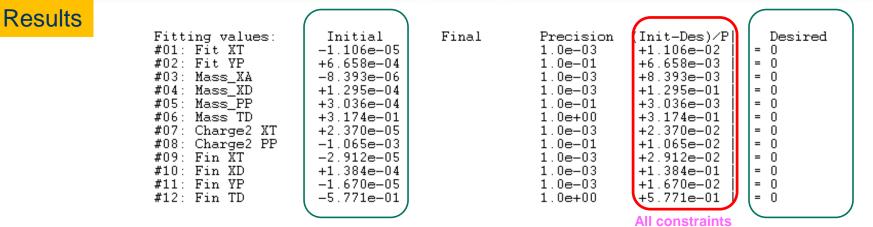
											·	
									Charge	Mass	Charge	Final
								$(\mathbf{x} \mathbf{x})$	-0.440	0.689	-0.580	0.980
ISE++								(x a)	0.000	0.000	0.000	0.000
								(x g)	0.302	-0.472	•	-1.828
– Global mati	iv — m	d2-mon3					ul serroct	(x d)	0.302	0.000		0.000
							Factor 2. it's correct	(a x)	-1.648	1.147	-2.122	0.052
-0.5614	0.0000	0	0	0	1.37453	¹ Cl		(a a)	-2.273	1.451	-1.725	
-21.90335	-1.78101	0	0	0	13.34855	[m		(a g)	0.401	-0.321	1.589	1.303
	0	, 3.32725	8.93882	0	0	[c		(a d)	0.401	0.015		-0.022
					<u></u>			(t x)	0.172	0.002	•	-0.002
0	0	-24.99532	0.0089	0	0	[m		(t a)	0.368	0.000	-	0.000
-2.26132	-0.24481	0	0	1	-8.46704	[C		(t g)	0.515	0.504		0.515
0	0	0	0	0	1	[%		(t d)	-0.485	-0.492	-0.482	
//aml	,	,			//%1			$(\mathbf{y} \mathbf{y})$	-3.554	0.980	- 1	-1.767
/[cm]	/[mrad]	/[cm]	/[mrad]	/[cm]	/[%]			(y b)	0.018	-0.430		0.000
								(b y)	-1.563	2.307	-3.336	1.657
								(b b)	-0.273	0.008	0.070	-0.566
											`'	,

Results

THE DRAGON Recoil Separator Optics by The Recoil Group from January 3, 2001


Table 2.6: GIOS First-order transfer matrix elements at the four horizontal image points (file reso2000.dat 28 Sept 00): x is horizontal position (m); a is horizontal angle (rad); y is vertical position (m); b is vertical angle (rad); d is fractional energy difference; g is fractional mass difference; t is fractional difference in time-of-flight.

					,
		Charge	Mass	Charge	Final
	$(\mathbf{x} \mathbf{x})$	-0.440	0.689	-0.5 80	0.980
ISE++	$(\mathbf{x} \mathbf{a})$	0.000	0.000	0.000	0.000
-15E **	(x g)	0.30 2	-0.472	-0.472	-1.828
Global matrix Final Slits	$(\mathbf{x} \mathbf{d})$	0.302	0.000	0.684	0.000
	(a x)	-1.648	1.147	-2.122	0.052
	(a a)	-2.273	1.451	-1.725	1.020
2.16241 1.06841 0 0 0 -0.56728 U	(a g)	0.401	-0.321	1.589	1.303
0 0 -1.49957 0 0 0 0	(a d)	0.401	0.015	0.669	-0.022
	(t x)	0.172	0.002	0.161	-0.002
0 0 -0.36975 -0.66686 0 0 1	(t a)	0.368	0.000	0.179	0.000
0.05309 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(t g)	0.515	0.504	0.462	0.515
	(t d)	-0.485	-0.492	-0.482	-0.477
/[cm] /[mrad] /[cm] /[mrad] /[cm] /[%]	$(\mathbf{y} \mathbf{y})$	-3.554	0.980	3.487	- 1
/[cm] /[mrad] /[cm] /[mrad] /[cm] /[%]	(y b)	0.018	-0.430	0.227	0.000
	(b y)	-1.563	2.307	-3.336	1.657
	(b b)	-0.273	0.008	0.070	-0.566


Settings Fe_DRAGON_fit_part 1-4 lpp

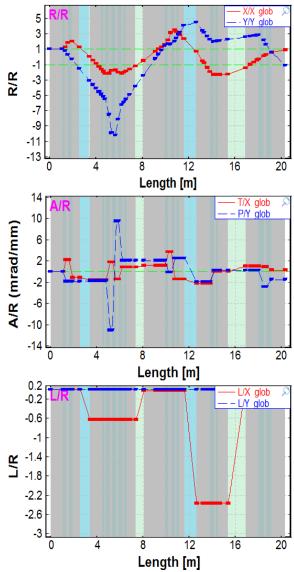
DRAGON optimization in LISE⁺⁺ : final step

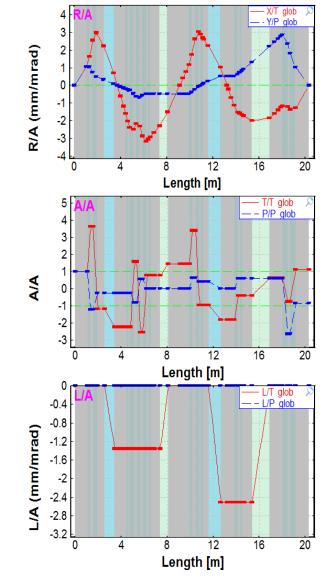
are good!

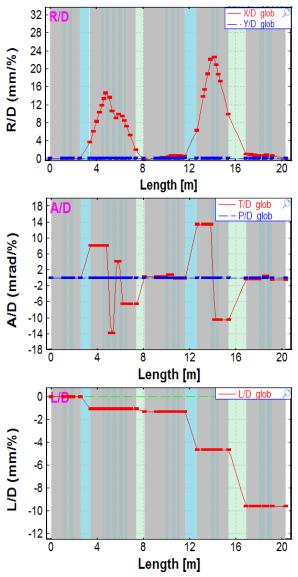
First order matrix elements ³⁹Ca (1.3 MeV/u); Settings on ³⁹Ca^{13+..13+}; Config: DSSSSSDSFFFSSSSSSSSSSSSSSSSSSSS - X/X glob - Y/Y glob X/T glob Y/P glob X/D glob Y/D glob 32 5 28 24 R/A (mm/mrad) R/D (mm/%) 20 -3 16 -5 12 -7 -9 -3 -11 -13 12 12 16 20 20 16 8 0 8 <u>1</u>2 0 4 4 0 4 8 Length [m] Length [m] Length [m] "Mass" selection

Four X-images

R/R






Results

First order matrix elements

Fe_DRAGON2000_39Ca_beam Ipp
Fe_DRAGON2000 Icn

THE DRAGON Recoil Separator Optics by The Recoil Group from January 3, 2001

Table 2.5: Field strengths for rigidities 0.5 T·m and 8 MV scaled from the GIOS input file reso2000.dat Tunes must be obtained by scaling to the rigidities of a given reaction.Note that the sextupole strengths have been scaled to the new L_{eff} values listed in table 1.2.

Element	Gap	Effective	Field
	or Diam.	length	
Q1	10.8 cm	$25.23 \mathrm{~cm}$	-2.187 kG
Q2	$15.9~\mathrm{cm}$	$33.385~\mathrm{cm}$	+2.003 kG
$\mathbf{S0}$	$15.9~\mathrm{cm}$	$33.385~\mathrm{cm}$	+0.106 kG
MD1	$10~{\rm cm}$		$+4.991 \ kG$
S1	$15.9~\mathrm{cm}$	$18.75~\mathrm{cm}$	$+0.425 \ \mathrm{kG}$
Q3	$15.9~\mathrm{cm}$	$33.38~\mathrm{cm}$	+1.826 kG
$\mathbf{Q4}$	$15.9~\mathrm{cm}$	$33.38~\mathrm{cm}$	-2.412 kG
Q5	$15.9~\mathrm{cm}$	$33.38~\mathrm{cm}$	+1.329 kG
S2	$15.9~\mathrm{cm}$	$18.75~\mathrm{cm}$	+0.089 kG
ED1	$10 \mathrm{~cm}$		$\pm 200.~\mathrm{kV}$
$\mathbf{Q6}$	$10.8~{\rm cm}$	$25.23~\mathrm{cm}$	-1.181 kG
$\mathbf{Q7}$	$15.9~\mathrm{cm}$	$33.38~\mathrm{cm}$	$+1.696 \mathrm{~kG}$
S 3	$16 \mathrm{~cm}$	$19.9~{\rm cm}$	$+0.047 \ \mathrm{kG}$
MD2	12 cm		$6.139 \ \mathrm{kG}$
$\mathbf{Q8}$	$15.9~\mathrm{cm}$	$33.38~\mathrm{cm}$	+1.257 kG
S4	$16~{\rm cm}$	$19.9~{\rm cm}$	+0.360 kG
ED2	$10~{\rm cm}$		$\pm 160.~\mathrm{kV}$
$\mathbf{Q9}$	$15~{\rm cm}$	$46.7~\mathrm{cm}$	$-0.972 \ \mathrm{kG}$
Q10	$15~{\rm cm}$	$46.7~{\rm cm}$	$+1.087~\mathrm{kG}$

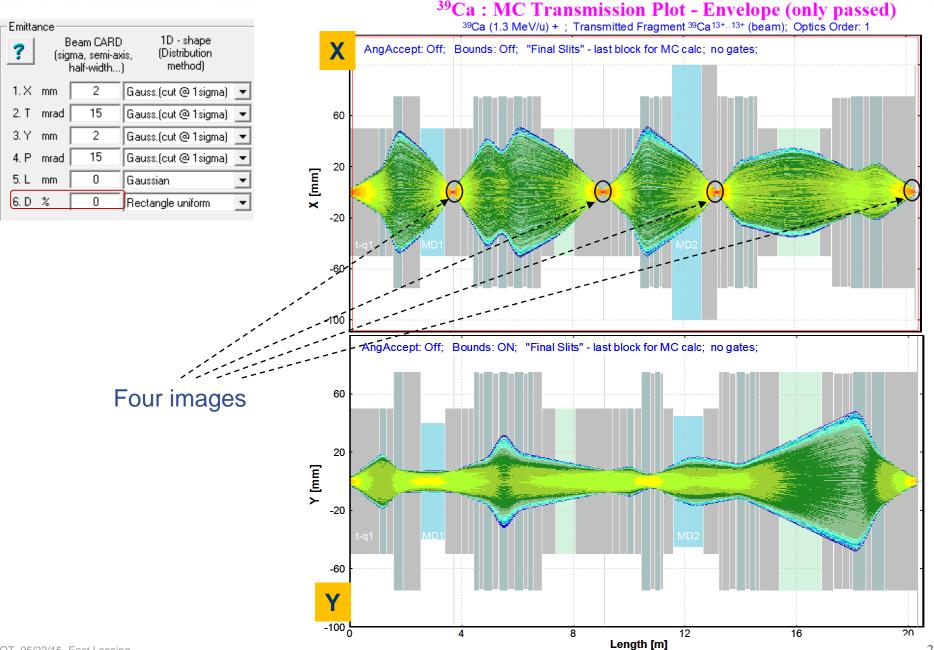
DRAGON2000 in LISE**

#01: Q1	-2.158	kG	
#02: Q2	1.965	kG	
S0	0.106	kG	not modified
MD1	5.000	kG	
S1	0.425	kG	not modified
#03: Q3	1.775	kG	
#04: Q4	-2.299	kG	
#05: Q5	1.263	kG	
S2	0.089	kG	not modified
ED1	402.4	kV	correspond to 39Ca13+
#06: Q6	-1.459	kG	
#07: Q7	1.752	kG	
S3	0.047	kG	not modified
MD2	6.105	kG	
#08: Q8	1.238	kG	
S4	0.360	kG	not modified
ED2	321.900	kG	correspond to 39Ca13+
#09: Q9	-0.956	kG	
#10: Q10	1.066	kG	

See page 4

Fe_DRAGON2000a_39Ca_beam Ipp

DRAGON2000a — configuration with additional drift blocks around dispersive elements corresponding to lengths in THE DRAGON Recoil Separator Optics by The Recoil Group from January 3, 2001


Parameters: Final #01: Q1 -2.127e+00 #02: Q2 +1.932e+00 #03: Q3 +1.822e+00 #04: Q4 -2.568e+00 #05: Q5 +1.352e+00 #06: Q6 -1.633e+00 #07: Q7 +1.745e+00 #08: Q8 +1.153e+00 #09: Q9 -8.220e-01 #10: Q10 +1.017e+00	Fitting values: #01: Fit XT #02: Fit YP #03: Mass_XA #04: Mass_XD #05: Mass_PP #06: Mass_PP #06: Mass_TD #07: Charge2 XT #08: Charge2 PP #09: Fin XT #10: Fin XD #11: Fin YP #12: Fin TD	-9.100e-05 +8.482e-02 +2.044e-01	Precision 1.0e-03 1.0e-01 1.0e-03 1.0e-03 1.0e-01 1.0e-03 1.0e-03 1.0e-03 1.0e-03 1.0e-03 1.0e-03 1.0e-03 1.0e+00	(Fin -Des)/P +7.494e-02 +7.661e-01 +3.167e-02 +9.100e-02 +8.482e-01 +2.044e-01 +3.320e-01 +8.067e-01 +1.135e-01 +1.669e-01 +5.317e-02 +1.608e+00	Desired = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0
--	---	--	--	--	---

==> "Fin TD" :	last fittin	g block glob	al optical m	atrix	and sigma ve	ctor
					[mm-mrad]	
		0 B A L ====	matrix ===			Beam(sigma)
+7.928e-01	-1.135e-04	0	0	0	-1.669e-04	1.59e+00
+5.936e-01	+1.261e+00	0	0	0	—1.608e+00	1.91e+01
0	0	-2.782e+01	-5.317e-05	0	0	i 4.17e+01
Ō	õ		-3.594e-02	õ	õ	4.57e+00
+1.274e-01	-4.561e-05	0	0	1.0	-1.181e+01	1.77e+01
0	0	ŏ	ŏ	õ	+1.000e+00	1.50e+00

DRAGON2000 X & Y envelopes : dp/p = 0%

Emittance

1.X mm

mrad

mm

mrad

2

2

0

0

2

0

?

2. T

3. Y

4. P

5. L mm

Emittance

1.X mm

mrad

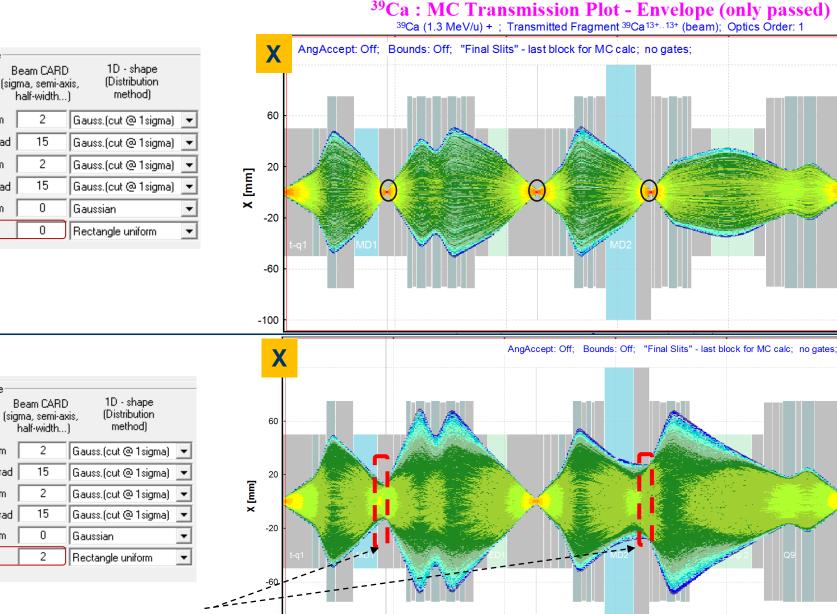
mrad

?

2. T

3. Y mm

4. P


5. L mm

6.D %

6.D %

DRAGON2000 X envelopes : dp/p = 0 & 2 %

4

8

12

l enath [m]

16

"charge" (momentum) slits -100

OT, 05/22/15, East Lansing

22

20

?

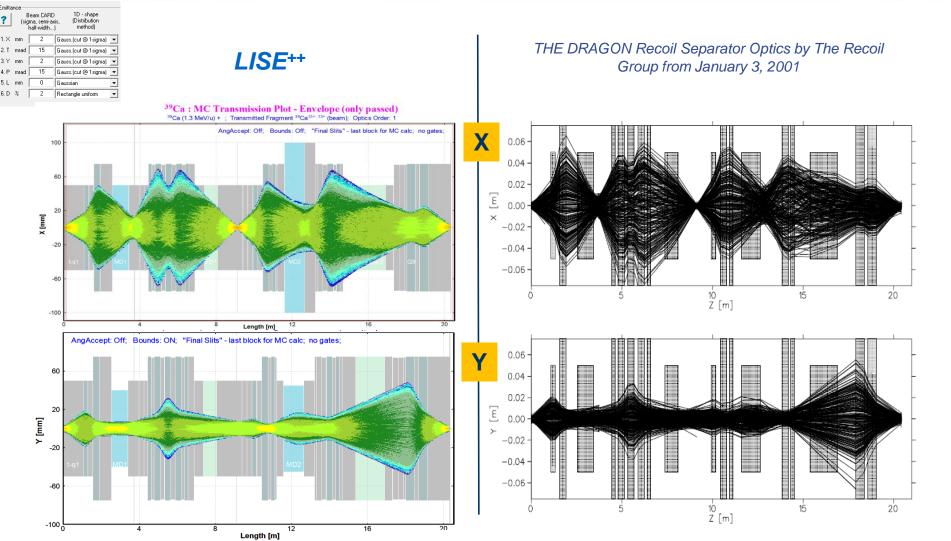


Figure 3.6: X and Y projections of 250 ¹⁹Ne trajectories from the full GEANT simu-

DRAGON2000 calculation comparison : initial distributions after target

• -

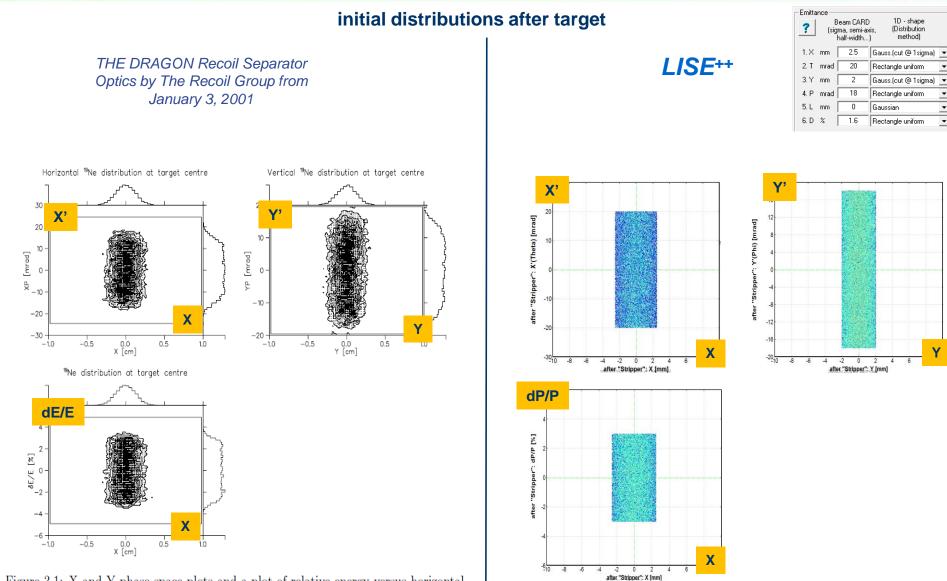
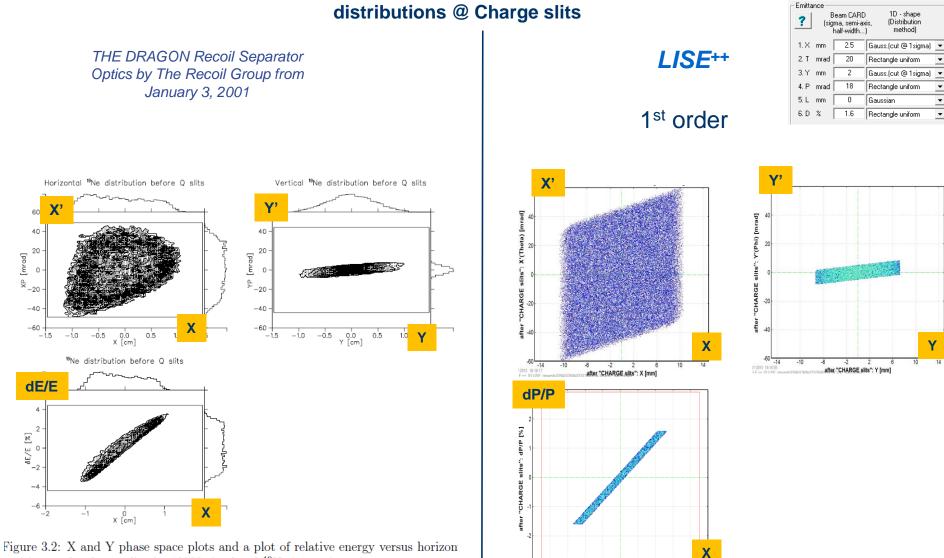


Figure 3.1: X and Y phase space plots and a plot of relative energy versus horizontal position at the gas target centre for 10000 simulated ¹⁹Ne ion trajectories.


DRAGON2000 calculation comparison : Charge slits

Ŧ

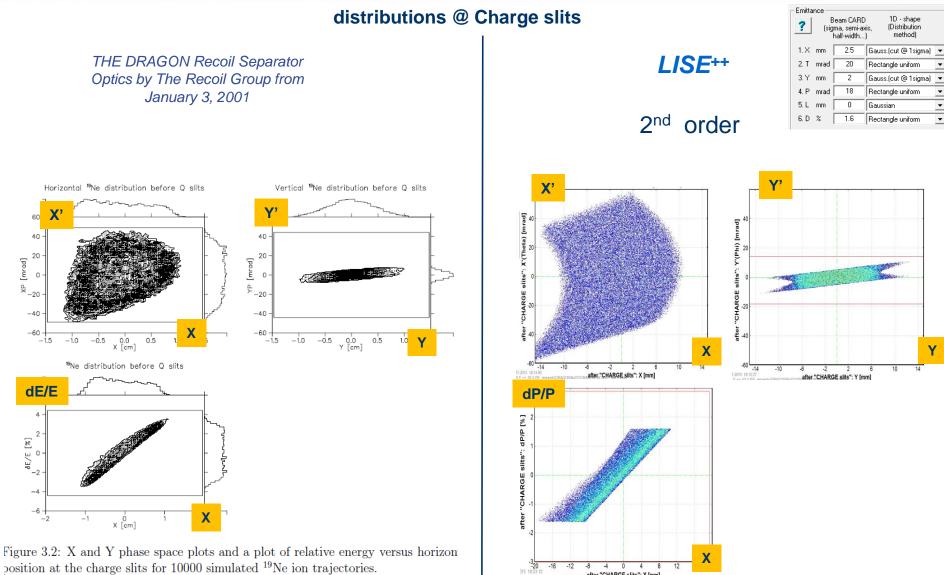
•

-

-4 -8

after "CHARGE slits": X [mm]

position at the charge slits for 10000 simulated ¹⁹Ne ion trajectories.


DRAGON2000 calculation comparison : Charge slits

Ŧ

•

-

after "CHARGE slits": X [mm]

DRAGON2000 calculation comparison : Mass slits

• •

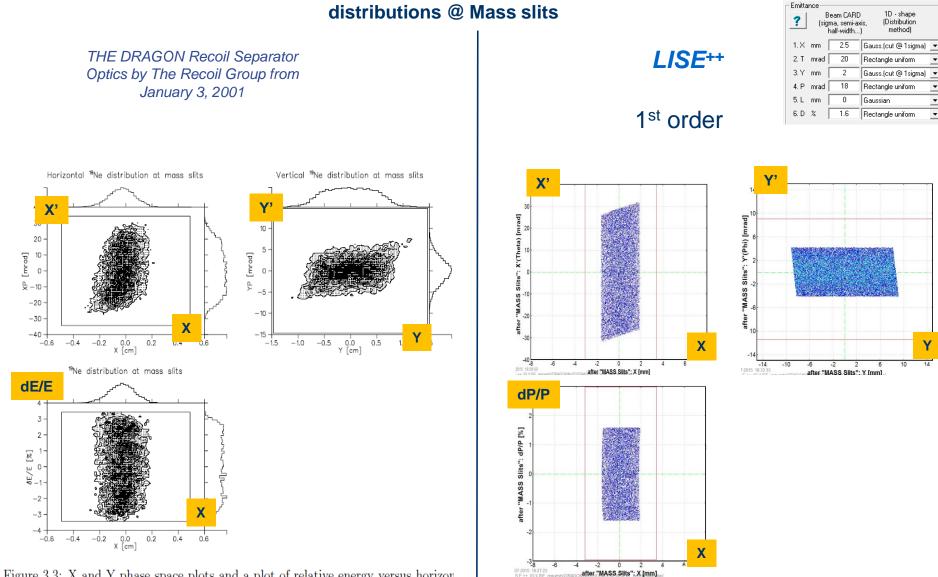
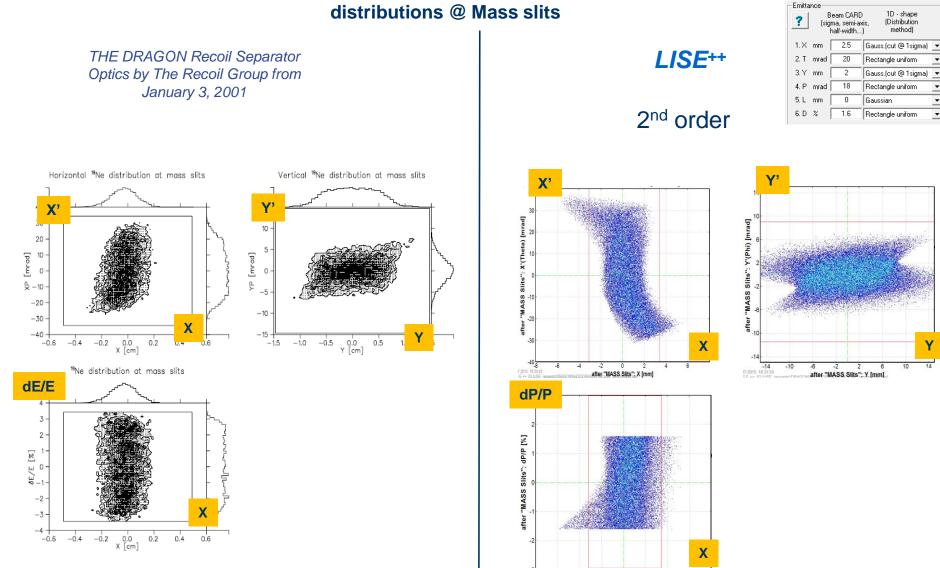


Figure 3.3: X and Y phase space plots and a plot of relative energy versus horizon position at the mass slits for 10000 simulated ¹⁹Ne ion trajectories.



DRAGON2000 calculation comparison : Mass slits

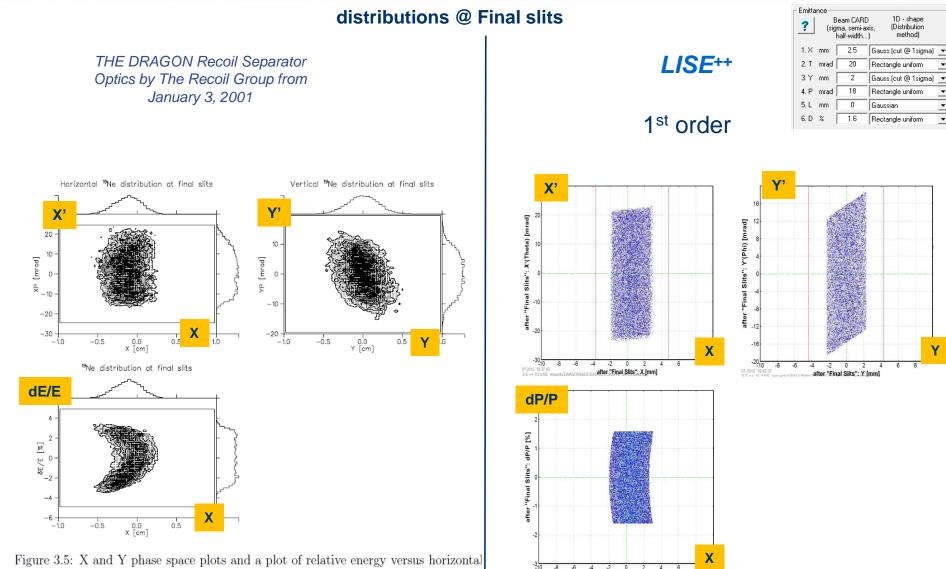
•

•

-6 -4 -2

after "MASS Slits": X [mm]

7-2015 18:28:28 E ++ (G:USE)


Figure 3.3: X and Y phase space plots and a plot of relative energy versus horizon position at the mass slits for 10000 simulated ¹⁹Ne ion trajectories.

DRAGON2000 calculation comparison : Final slits

• -

after "Final Slits": X [mm]

position at the final slits for 10000 simulated ¹⁹Ne ion trajectories.

DRAGON2000 calculation comparison : Final slits

• -

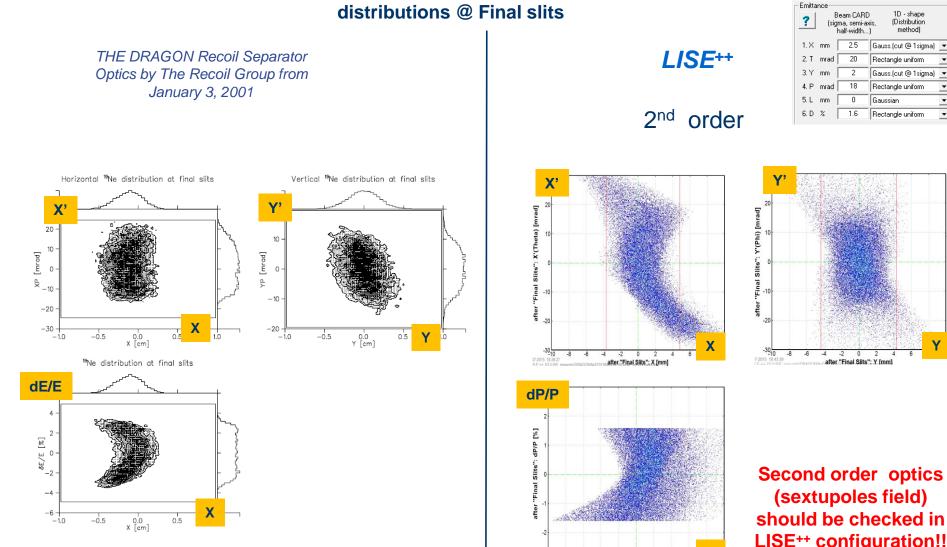
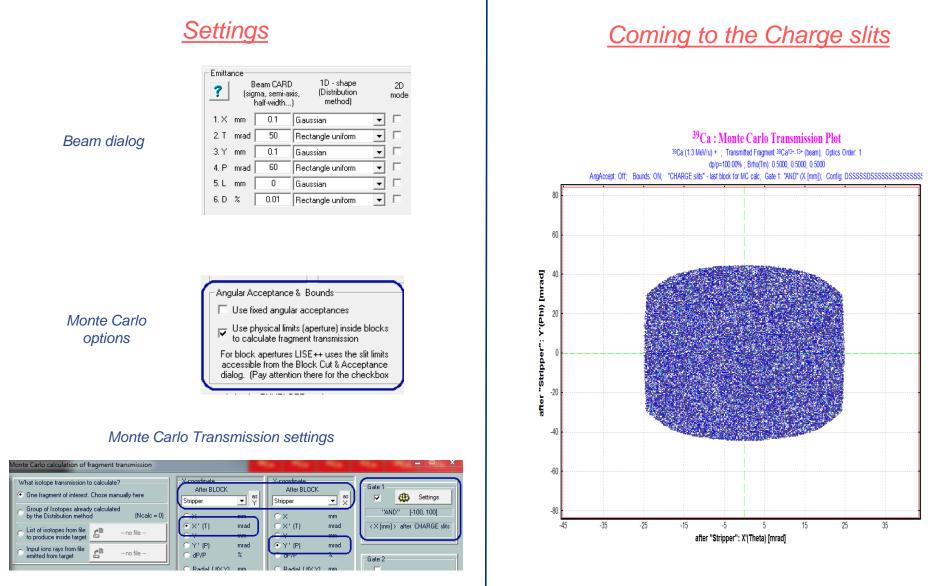
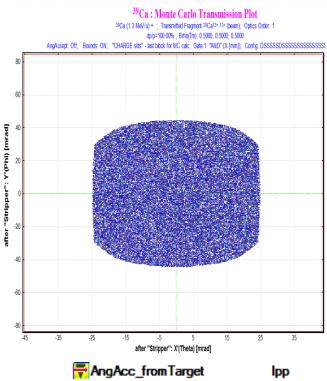
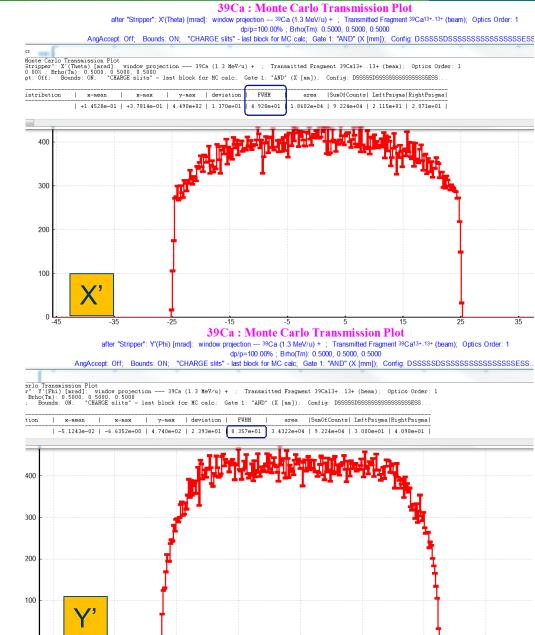


Figure 3.5: X and Y phase space plots and a plot of relative energy versus horizontal position at the final slits for 10000 simulated ¹⁹Ne ion trajectories.


Second order optics (sextupoles field) should be checked in LISE⁺⁺ configuration!!

after "Final Slits": X [mm]


See details for angular acceptance with the next link http://lise.nscl.msu.edu/9_8/SE_blocks.pdf#page=5



Angular Acceptance : Target-Charge slits

Angualr acc	Angualr acceptance "Target - Charge slits"							
	1st order							
Χ'	24.6	mrad						
Υ'	41.8	mrad						

-60

-40

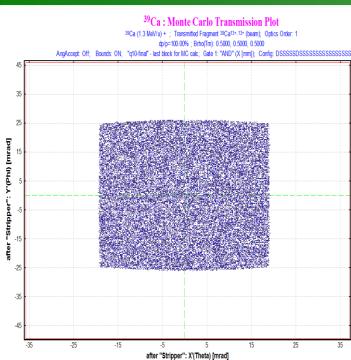
-20

20

after "Stripper": Y'(Phi) [mrad]: window projection

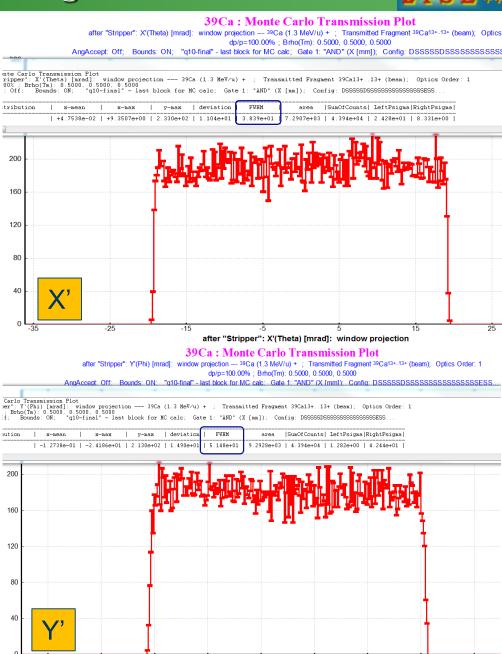
40

Angular Acceptance: Target - Final slits


-45

-35

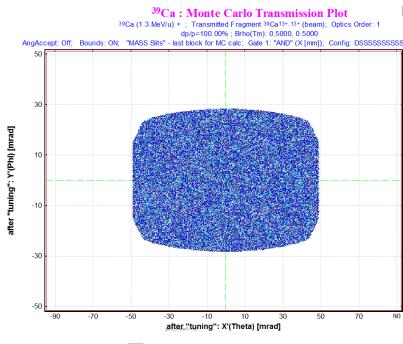
-25



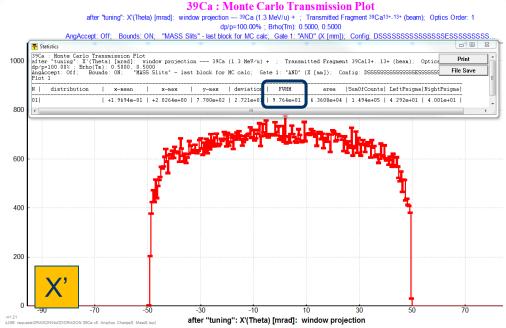
25

Angular acceptance "Target - Final slits"		
	1st order	
Χ'	19.2	mrad
Υ'	25.7	mrad

These values are recommended to use in calculations by the Distribution method in the case of use of one angular acceptance.


-5

after "Stripper": Y'(Phi) [mrad]: window projection


Angular Acceptance: Charge Slits - Mass slits

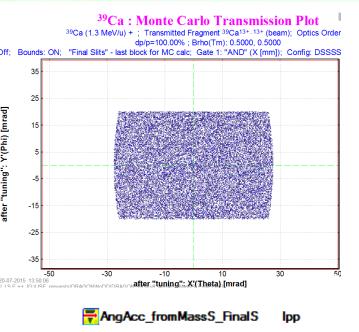
Angular acceptance "Charge Slits - Mass slits"			
	1st order		
Χ'	48.8	mrad	
Υ'	26.5	mrad	


39Ca : Monte Carlo Transmission Plot

after "tuning": Y'(Phi) [mrad]: window projection --- 39Ca (1.3 MeV/u) + ; Transmitted Fragment 39Ca13+..13+ (beam); Optic dp/p=100.00% ; Brho(Tm): 0.5000, 0.5000

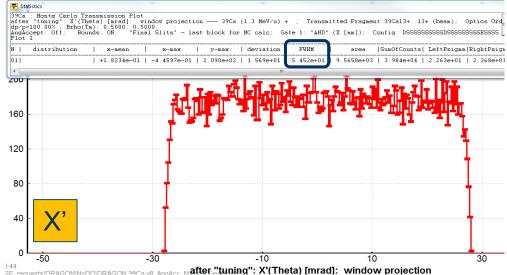
AngAccept: Off; Bounds: ON; "MASS Slits" - last block for MC calc; Gate 1: "AND" (X [mm]); Config: DSSSSSSSSSSSSSSSSSSSSS

tics Monte Carlo Transmission Plot "tuning": V'(Phi) [mrad]: vindow projection --- 39Ca (1.3 MeV/u) + ; Transmitted Fragment 39Ca13+..13+ (beam); Optics Order: 1 00.00%; Brho(Tm): 0.5000, 0.5000 ept: Off; Bounds: ON; "MASS Slits" - last block for MC calc; Gate 1: "AND" (X [mm]); Config: DSSSSSSSSSSSSSSSSSSSSSS...



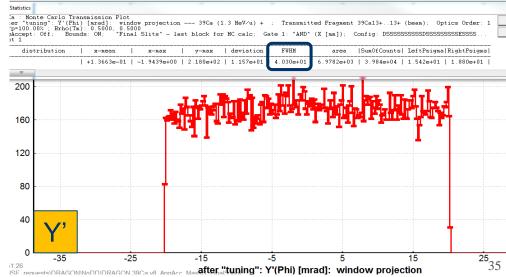
Angular Acceptance: Mass Slits - Final slits

Angular acce	Angular acceptance "Mass Slits - Final slits"			
	1st order			
Χ'	27.3	mrad		
Υ	20.2	mrad		


There is not vertical focus at these slits! It is impossible to use vertical angular acceptance here

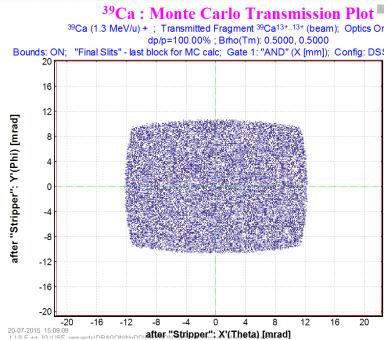
OT, 05/22/15, East Lansing

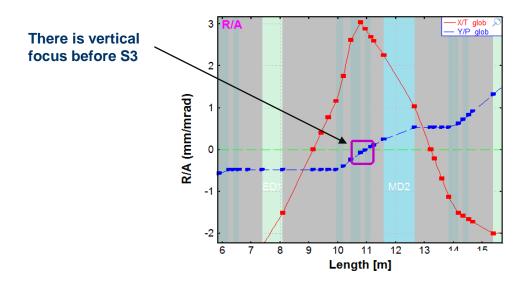
after "tuning": X'(Theta) [mrad]: window projection --- ³⁹Ca (1.3 MeV/u) + ; Transmitted Fragment ³⁹Ca^{13+..13+} (t dp/p=100.00% ; Brho(Tm): 0.5000, 0.5000


vccept: Off; Bounds: ON; "Final Slits" - last block for MC calc; Gate 1: "AND" (X [mm]); Config: DSSSSSSSS

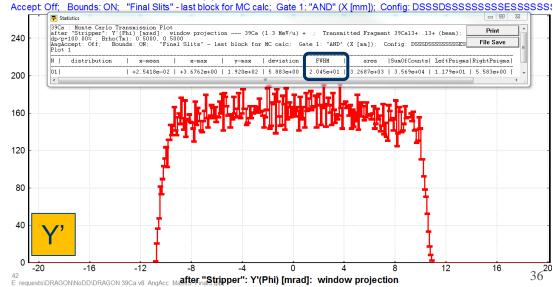
39Ca : Monte Carlo Transmission Plot

after "tuning": Y'(Phi) [mrad]: window projection --- ³⁹Ca (1.3 MeV/u) + ; Transmitted Fragment ³⁹Ca^{13+..13+} (bear dp/p=100.00% ; Brho(Tm): 0.5000, 0.5000


Accept: Off; Bounds: ON; "Final Slits" - last block for MC calc; Gate 1: "AND" (X [mm]); Config: DSSSSSSSSS



Angular Acceptance: S3 - Final slits



39Ca : Monte Carlo Transmission Plot

after "Stripper": Y'(Phi) [mrad]: window projection --- ³⁹Ca (1.3 MeV/u) + ; Transmitted Fragment ³⁹Ca^{13+, 13+} (beam); Optics Order: dp/p=100.00% ; Brho(Tm): 0.5000, 0.5000

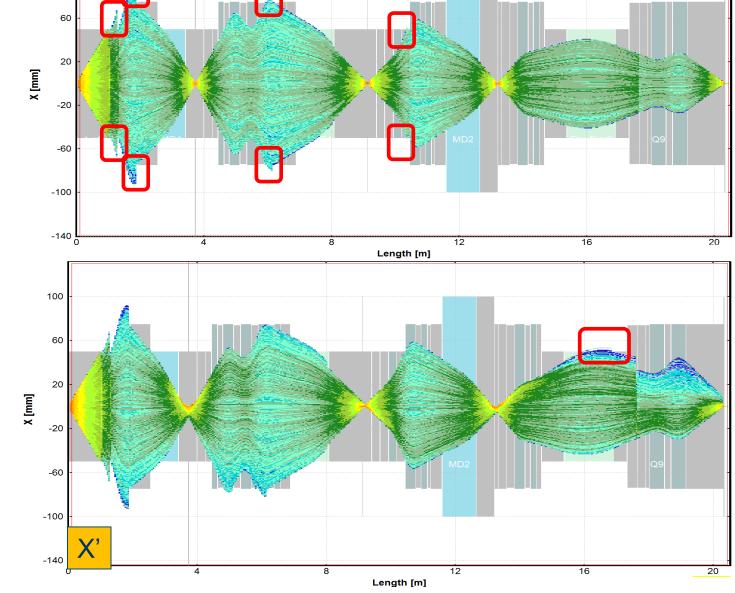
 Angular acceptance "S3 - Final slits"

 1st order

 X'
 mrad

 Y'
 10.2
 mrad

OT, 05/22/15, East Lansing


Horizontal Angular Emittance Loss

X

10

2nd order

Vertical Angular Emittance Loss

4

100

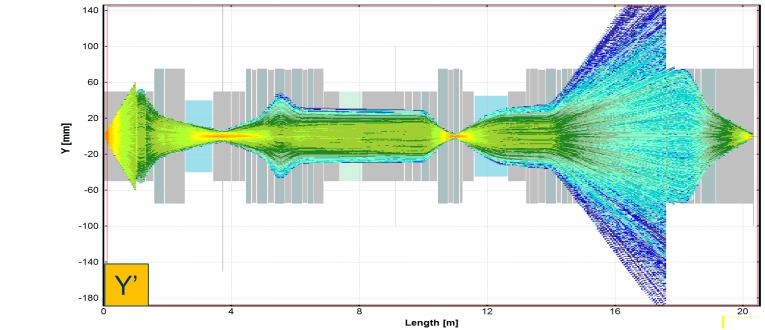
60

20

-20

-60

-100


0

Y [mm]

20

8

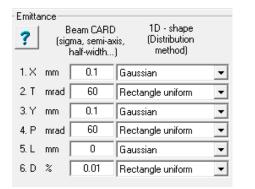
12

Length [m]

16

2nd order

Angular Acceptances in the Configuration file


	Angu	ılar accep	ptanc	es are use	d in the	DRAGO	12000	configura	tion				
-				rget- rgeSlits		rgeSlit- assSlits		MassSlits- FinalSlits		S3- alSlits			
	Χ'		2	4.6	4	48.8		27.3			mr	ad	
	Υ'		4	1.8		26.5			1	0.2	mr	ad	
					/			/	/				
or 	Block	(m)	(m)	Angle(*)*		Br-dip*	R(m)*	Len(m)*	order	Mode	- COR	shape	slit
1. tuning 2. t-q1 3. Q1 4. q1-q2 5. Q2 6. d3-md1 7. MD1 8. md1-slits 9. Fit XT 10. Fit XX 11. Fit YP 12. CHARGE slits 13. slts-sm1 14. sm1 15. sm1-s1 16. S1 17. s1-q3 18. Q3 19. q3-q4 20. Q4 21. q4-q5 22. Q5 23. q5-s2 24. S2 25. s2-mon1 26. mon1-ed1	Dipole Drift Drift Drift Drift Drift Drift Fit Fit Fit Drift Drift Drift Drift Drift Drift Drift Drift Drift Drift Drift Drift Drift Drift Drift Drift Drift	$\begin{array}{c} 0.000\\ 1.069\\ 1.321\\ 1.578\\ 1.912\\ 0\\ 3.423\\ 0\\ 3.731\\ 0\\ 3.731\\ 0\\ 3.731\\ 0\\ 3.731\\ 0\\ 3.731\\ 0\\ 3.731\\ 0\\ 3.731\\ 0\\ 3.731\\ 0\\ 4.259\\ 0\\ 4.445\\ 0\\ 4.632\\ 0\\ 4.445\\ 0\\ 4.632\\ 0\\ 5.344\\ 5.677\\ 0\\ 5.344\\ 5.677\\ 0\\ 5.344\\ 0\\ 0\\ 5.344\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	0.000 0.000 0.252 0.334 0.638 0.873 0.308 0.000 0.000 0.000 0.000 0.256 0.186 0.256 0.186 0.256 0.188 0.256 0.188 0.216 0.334 0.216 0.334 0.216 0.334 0.216 0.334 0.216 0.334 0.216 0.334 0.216 0.334 0.216 0.334 0.216 0.334 0.216 0.334 0.216 0.334 0.216 0.334 0.216 0.334 0.216 0.334 0.216 0.334 0.216 0.334 0.216 0.334 0.216 0.309 0.309 0.309	+0 0 * standard multipole standard multipole standard +50.0 * standard standard standard multipole standard multipole standard multipole standard multipole standard multipole standard multipole standard	+1.667 -2.158 +1.965 +5.000 +0.000 +1.775 -2.299 +1.263 +0.000	0.5000* 0.5000 0.5000* 0.5000* 0.5000 0.5000 0.5000 0.5000 0.5000	3.00* 5.40 7.94 1.00* 7.94 7.94 7.94 7.94 7.94	0.00* 0.25 0.33 0.87* 0.19 0.33 0.33 0.33 0.19	- yes yes yes yes yes yes yes	1 1 1 1 1 1 1 1	HV 	rectn rectn	
26. monl-ed1 27. ED1 28. ed1-slts 29. Mass_XA 30. Mass_XD 31. Mass_PP 32. Mass TD 33. Mass YY 34. Micc cliis 35. slts-sm2 36. SH2 37. sm2-q6 38. Q6 39. q6-q7 40. Q7 41. q7 -2 42. S3 43. ss-monz 44. mon2-md2 45. MD2 15/22(15. East Lansing	Drift ElecDip Drift Fit Fit Fit Drift Drift Drift Drift Drift Drift Drift Drift Drift Drift Drift Drift Drift Drift Drift	$\begin{array}{c} 7.386\\ 8.084\\ 9.134\\ 9.134\\ 9.134\\ 9.134\\ 9.134\\ 9.134\\ 9.134\\ 9.134\\ 9.134\\ 9.411\\ 9.667\\ 10.447\\ 10.781\\ 10.781\\ 10.939\\ 11.138\\ 11.236\\ \end{array}$	0.000 0.698 1.050 0.000 0.000 0.000 0.000 0.000 0.000 0.271 0.256 0.271 0.257 0.334 0.158 0.158 0.199 0.098 1.168		402.4k∀ -1.459 +1.752 +0.000 +1.667	0.5000* 0.5000 0.5000 0.5000	2.00* 5.40 7.94 7.95 0.81*	0.70 * 0.25 0.33 0.20 1.06 *	yes yes yes yes	1 1 1	H- H- H- H-	rectn rectn	

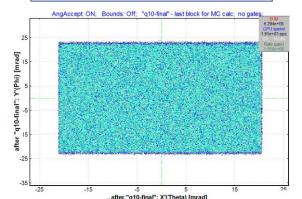
Angular Acceptances transmission benchmarks

"Distribution" method With set Angular Acceptances

- 0	0	~	_
	- 9	с.	а

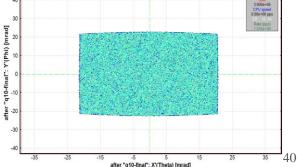
Beta+ decay (Z=20, N=19)

Q1(tuning)		13
Q2 (MD1)		13
Q3 (ED1)		13
Q4 (MD2)		13
Q5(ElecDip 2)		13
Reaction		BEAM
Ion Production Rate	(pps)	1.02e+9
Total ion transmission	(%)	16.382
lotal: this reaction	(pps)	1.02e+9
Total: All reactions	(pps)	1.02e+9
X-Section in target	(mb)	beam
Target	(%)	100
Q (Charge) ratio	(%)	100
tuning	(%)	34.33
X angular transmission	(%)	49.24
Y angular transmission	(%)	69.72
slts-sm1	(%)	88.3
X angular transmission	(%)	88.3
Y angular transmission	(%)	100
slts-sm2	(%)	87.22
X angular transmission	(%)	87.22
\$3	(%)	61.95
Y angular transmission	(%)	61.95


"Monte Carlo " method With set Angular Acceptances No bounds

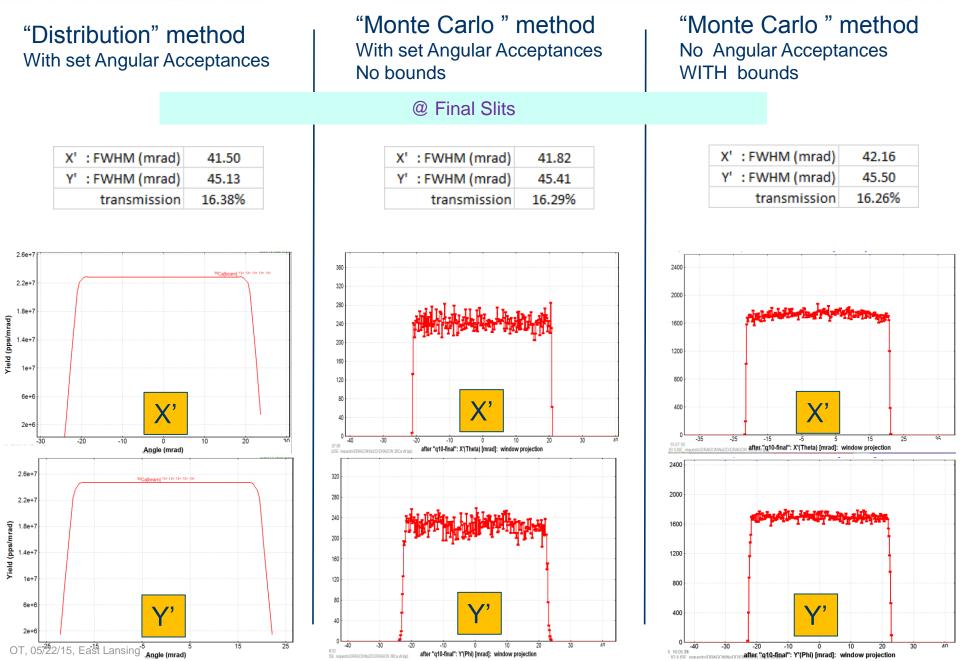
Angular Acceptance & Bounds

- ✓ Use fixed angular acceptances
- Use physical limits (aperture) inside blocks to calculate fragment transmission


For block apertures LISE++ uses the slit limits accessible from the Block Cut & Acceptance dialog. (Pay attention there for the checkbox

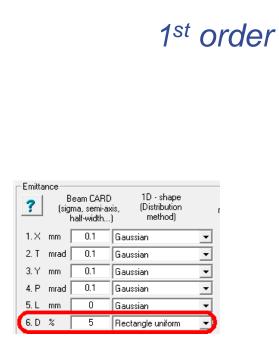
		ля; boun	ds: Off;	"q10-final" - las
		N of	N of	
ŧ	Ion	Passed	Initial	Transmission
)	39Ca	629448	3864960	16.29% +/-0.03
farç tuni Anç	ing	ceptance	34.2 34.2	
slts-sm1 Angular acceptance			88.2 88.2	
	s-sm2 gular acc	ceptance	87.0 87.0	
S3 Ang	gular acc	ceptance	61.8 61.8	

"Monte Carlo " method No Angular Acceptances WITH bounds

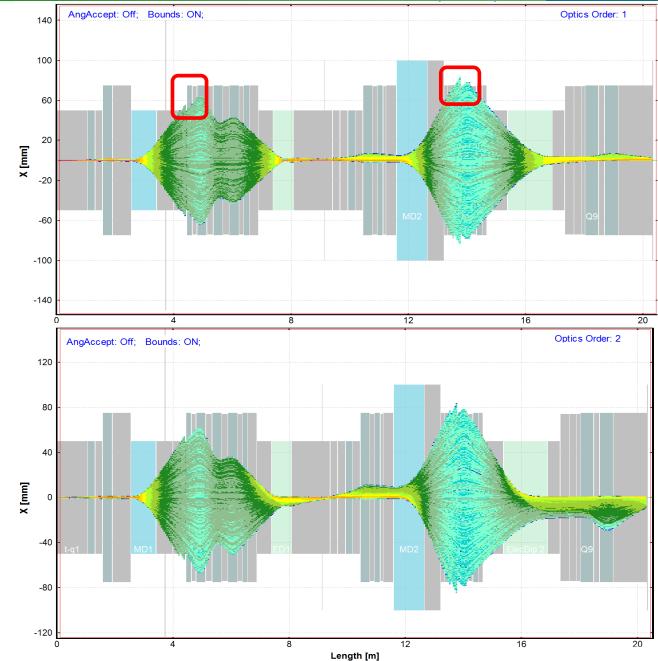

cks mits nce box
mits nce box
mits nce box
mits nce box
mits nce box
nce box
nce box
box 13+.
13+.
st b
03%)
35
-

Angular Acceptances transmission benchmarks

MICHIGAN STATE UNIVERSITY LISE++



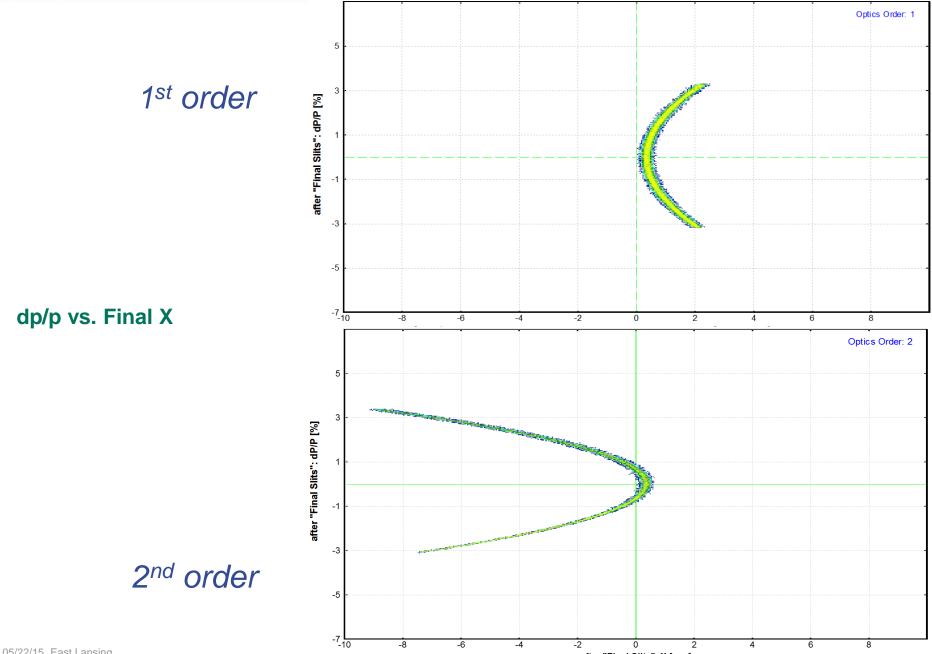
HomemtumAcc


Momentum Acceptance

MICHIGAN STATE UNIVERSITY LISE++

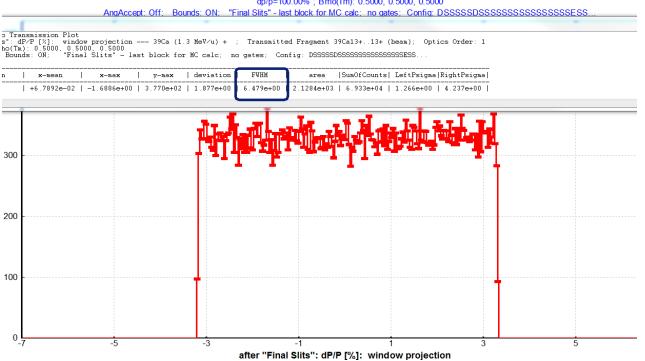
lpp

2nd order



OT, 05/22/15, East Lansing

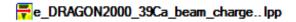
Momentum Acceptance



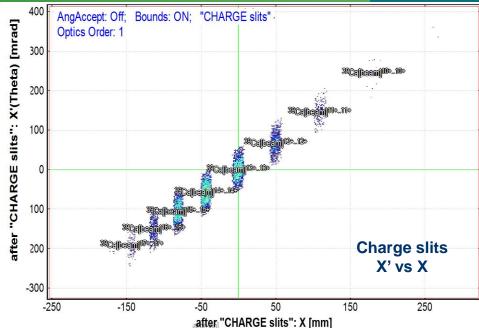
after "Final Slits": X [mm]

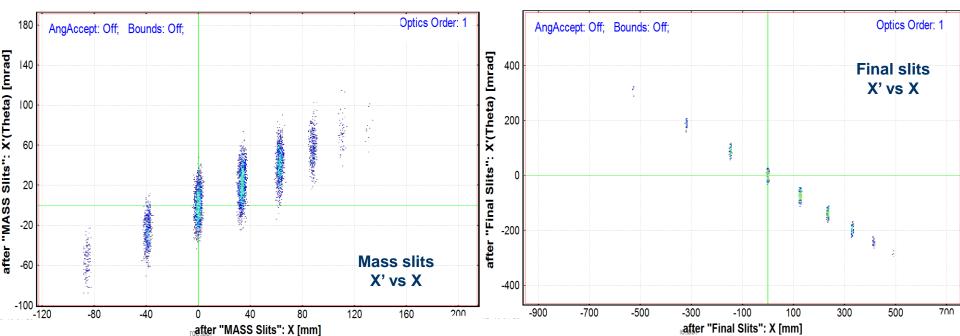
39Ca : Monte Carlo Transmission Plot

after "Final Slits": dP/P [%]: window projection --- 39Ca (1.3 MeV/u) + ; Transmitted Fragment 39Ca13+..13+ (beam); Optics Order: 1 dp/p=100.00% ; Brho(Tm); 0.5000, 0.5000, 0.5000


Momentum acceptance of the 1st half separator (Target - Mass Slits) is equal to $\pm 4.27\%$, that corresponds to the Charge slits size of ± 26.0 mm.

Total momentum acceptance of the separator is equal to ± 3.24 %, that corresponds to the Charge slits size of ± 19.7 mm.


Charge States Selection: Monte Carlo solution

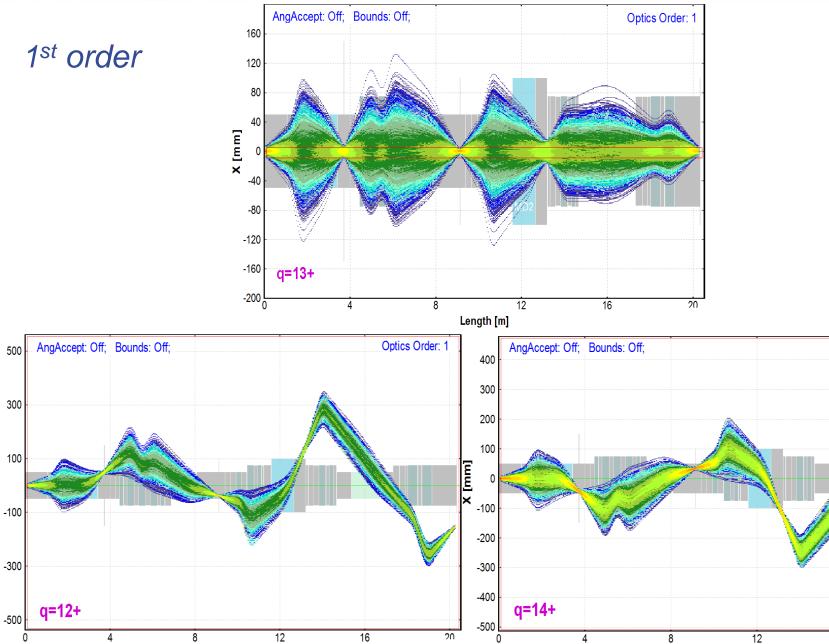


– Emitta	nce —			
?	(sig	eam CARD ma, semi-ax half-width	is, (Distribution	
1. X	mm	2	Gaussian	-
2. T	mrad	10	Gaussian	-
3. Y	mm	2	Gaussian	-
4. P	mrad	10	Gaussian	-
5. L	mm	0	Gaussian	-
6. D	%	1	Rectangle uniform	-

	↓MeV/u	³⁹ Ca ¹³⁺ 1 pnA 39Ca ¹³⁺¹³⁺ -hear-
	ment Target	⁹ Be 0.001 mg/cm2
ST 😐	Stripper	
D	tuning	Brho 0.5000 Tm

X [mm]

Charge States Selection: Monte Carlo solution



Optics Order: 1

16

Length [m]

20

Length [m]

500

300

E ¹⁰⁰ **x** -100

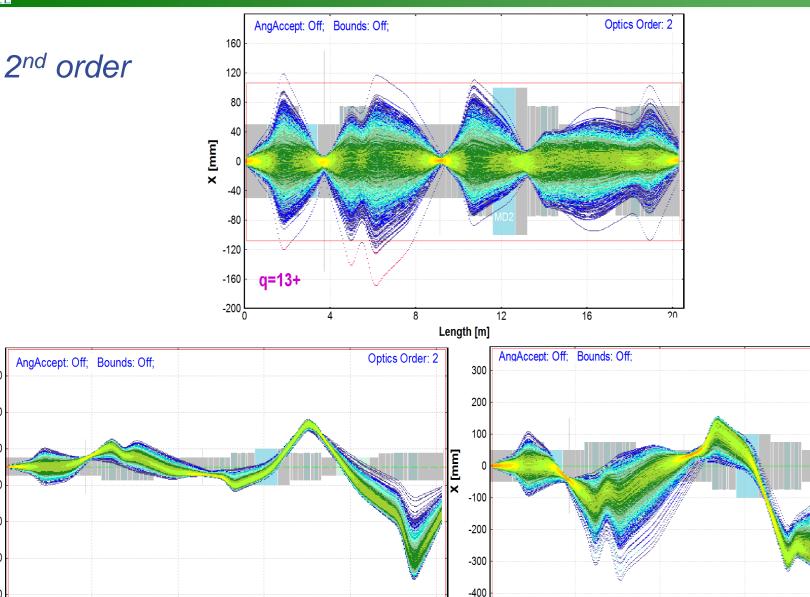
-300

-500

-700

-900

0


q=12+

4

Charge States Selection: Monte Carlo solution

Optics Order: 2

q=14+

Δ

-500

0

20

12

Length [m]

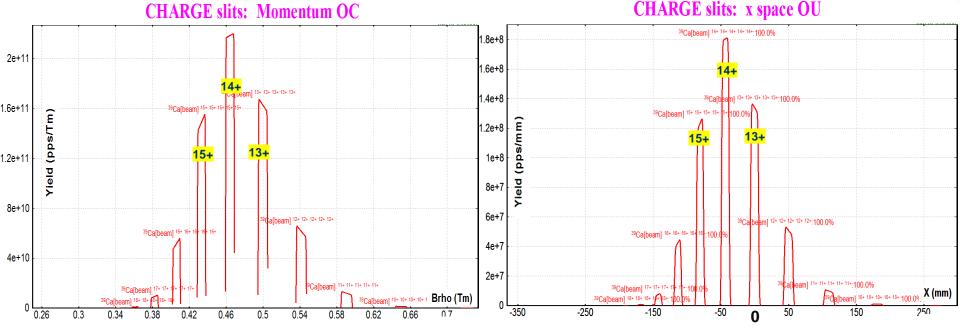
8

16

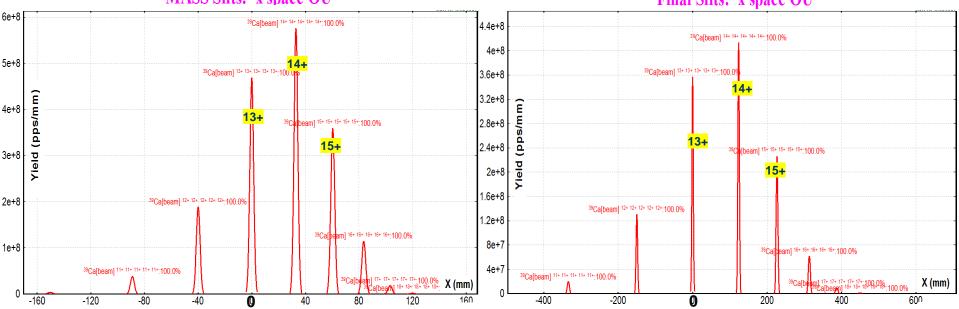
20

12

Length [m]


8

16

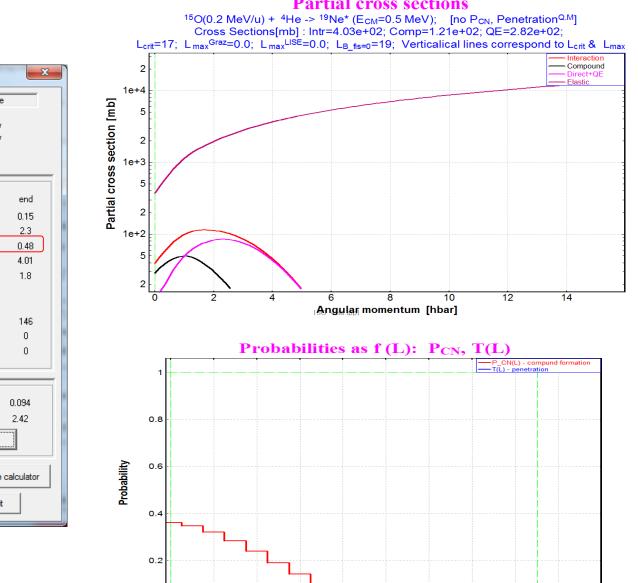

Charge States Selection: "Distribution" method

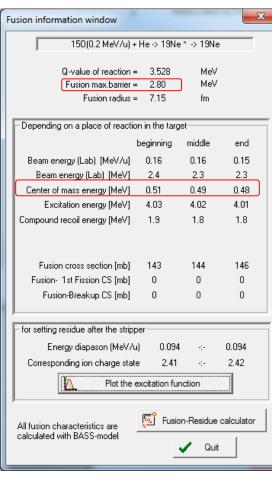
MASS Slits: x space OU

Final Slits: x space OU

D.A. Hutcheon et al. | Nuclear Instruments and Methods in Physics Research A 498 (2003) 190–210

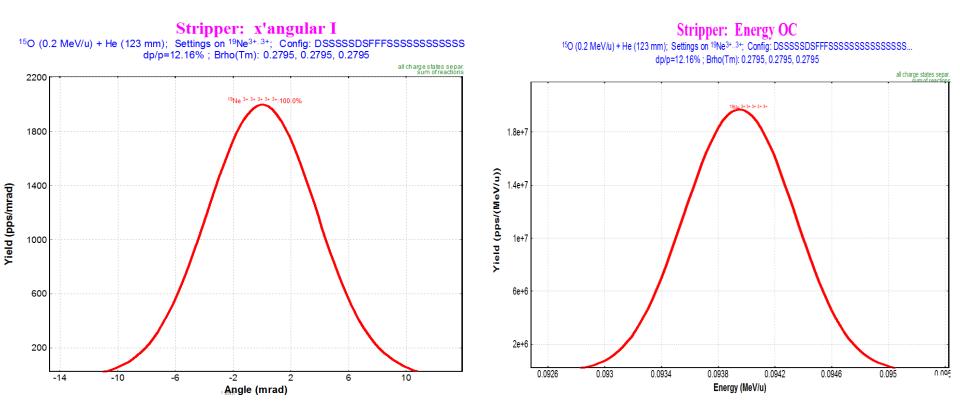
193


Table 1 Parameters of radiat	tive reactions in the	e DRAGON progra	am			
Reaction	E _x (MeV)	E_{beam} (MeV/ <i>u</i>)	E_{recoil} (MeV/ <i>u</i>)	E_{γ} (MeV)	Recoil cone (mrad)	Required suppression
$^{15}\mathrm{O}(\alpha,\gamma)^{19}\mathrm{Ne}$	4.033	0.16	0.10	4.03	15.6	10 ⁻¹⁵


	Target
LISE ⁺⁺ settings	Gas density
e_DRAGON2000_reaction lpp	He These calcualtions are correct just for molecular formula !!! He Density 8.7583e-7 g/cm3 Dimension Angle Calculate density Calculate density C Solid C mg/cm2 & micron Calculate
Beam	Parameter Value Dimension Temperature (K) 25315 K Pressure (Torr) 4 760 Torr Density 0.000876 0.166 kg/m3 g/L 14 14 Emergy Luits converter Fix Cancel
Beam Emittance ID: shape 2D Image: Comparison of the state of th	Production mechanism
Z Brho C 0.1728 Tm I.× nm 2 Gaussian I Beta+ decay P C 0.259 GeV/c 2. T mrd 1 Gaussian I I Table of U C 480 KV 3. Y mm 2 Gaussian I I	Settings Fusion -> Residual
Nuclides Beam intensity 4. P mrad 1 Gaussian I Image: State of the state of t	Charge states 5 - [< 15AMeV] G.Schiwietz, P.Grande, NIM B175-177 (2001) 125-131 💌
✓ Ok C 6.25e+11 pps ★ Cancel C 0.00024 KW	Energy Losses 1 - [H -base] J.F.Ziegler et al, Pergamon Press, NY (low energy)

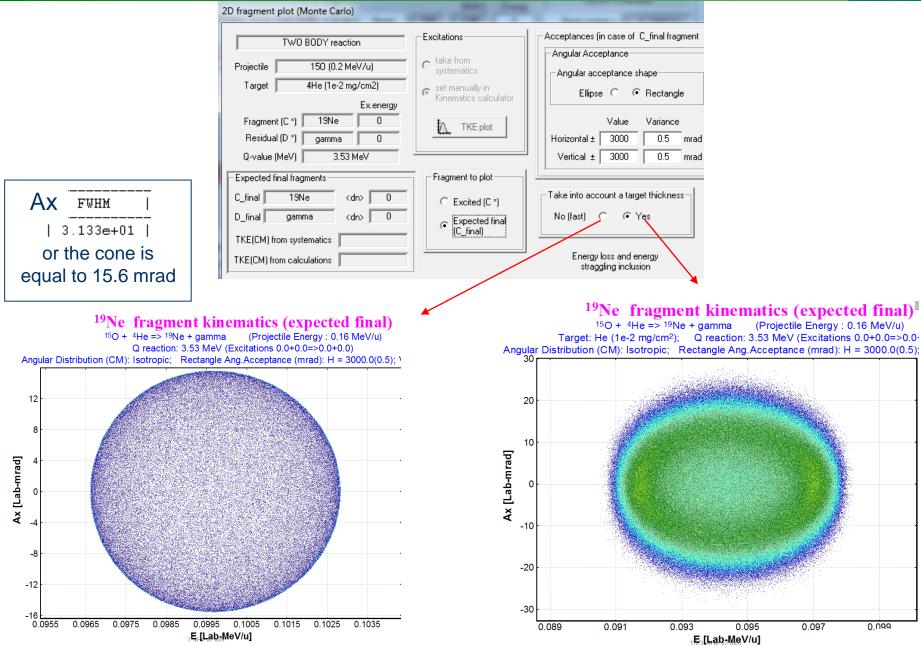
Experiment ¹⁵O(α , γ)¹⁹Ne : sub-barrier fusion

Angular Momentum, hbar

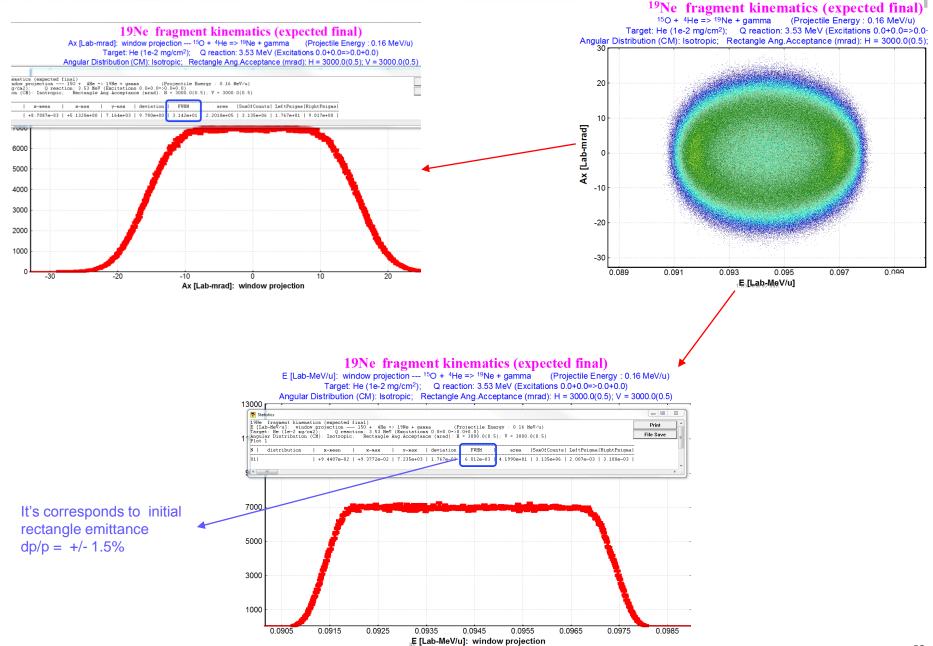


At so low energy the compound de-excitation should be considered as two-body kinematics.

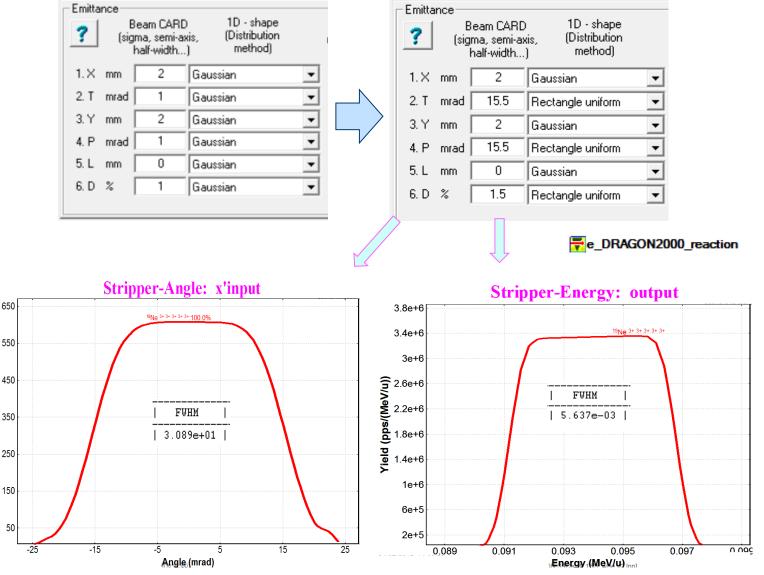
But in LISE⁺⁺ two-body kinematics is used only for two nuclei. No yet option for HI & gamma


¹⁹Ne compound distribution from fusion kinematics without gamma-emission taking into account are narrow, Gaussian-shape!!

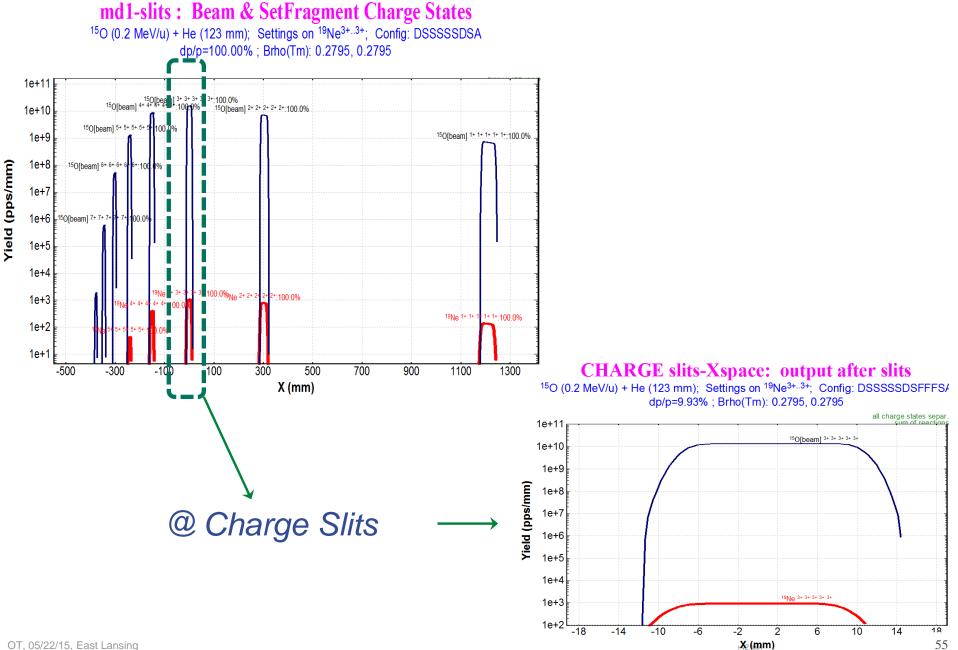
Experiment ¹⁵O(α , γ)¹⁹Ne: two-body kinematics



Experiment ¹⁵O(α , γ)¹⁹Ne: two-body kinematics


MICHIGAN STATE UNIVERSITY LISE++

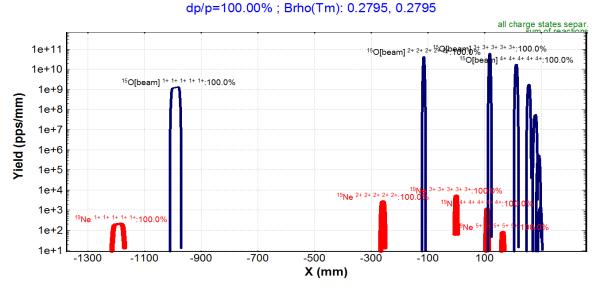
In order to obtain distributions corresponding to two-boy kinematics HI+gamma it is possible to change the initial beam emittance as


Yield (pps/mrad)

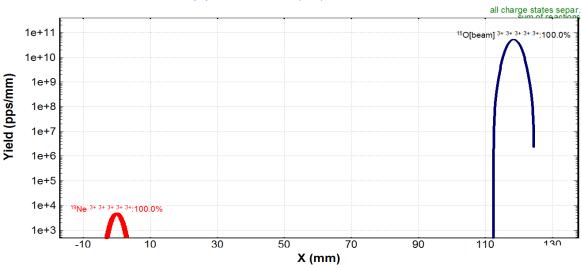
Experiment ¹⁵O(α , γ)¹⁹Ne : selection

MICHIGAN STATE

UNIVERSITY LISE++



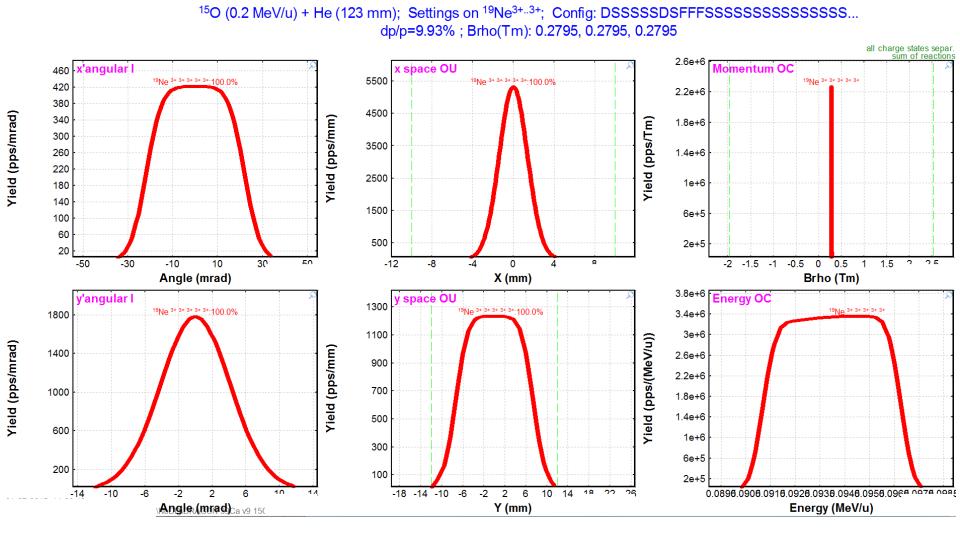
Experiment ¹⁵O(α , γ)¹⁹Ne : selection



In front of the Mass Slits assuming there are not the Charge slits and Angular acceptances

ed1-slts: Beam & SetFragment Charge States ¹⁵O (0.2 MeV/u) + He (123 mm); Settings on ¹⁹Ne^{3+..3+}; Config: DSSSSSDSFFFSSSSSSSSSSSSSSSSS

ed1-slts : Beam & SetFragment Charge States



In front of the Mass Slits with the Charge slits and Angular acceptances

¹⁹Ne³⁺ after the Mass Slits

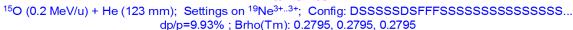
MASS Slits

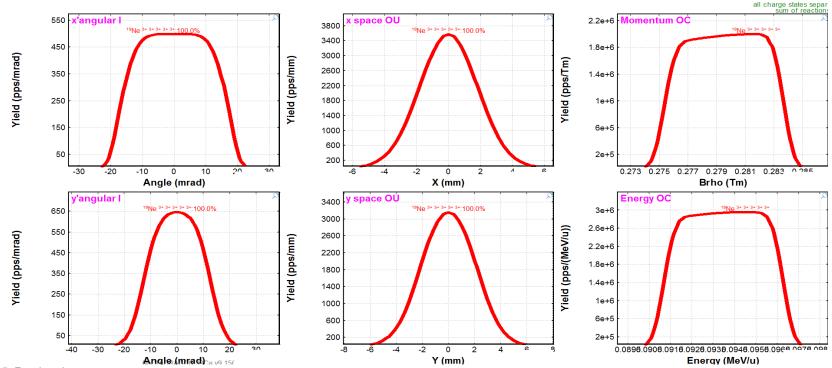
OT, 05/22/15, East Lansing

Experiment ¹⁵O(α , γ)¹⁹Ne : selection

19Ne

¹⁹Ne³⁺ after the Final Slits


Only ¹⁹Ne³⁺ passing through the separator !


ISNE Deca	r uecay	(2-10, N-3)	
Q1(tuning)		3	
Q2 (MD1)		3	
Q3 (ED1)		3	
Q4 (MD2)		3	
Q5(ElecDip 2)		3	
Reaction		FusRes	
Ion Production Rate	(pps)	1.62e+4	
Total ion transmission	(%)	30.863	
Total: this reaction	(pps)	1.62e+4	
Total: All reactions	(pps)	1.62e+4	3
X-Section in target	(mb)	5.19e+1	
Target	(%)	35.79	
Unreacted in material	(%)	100	
Q (Charge) ratio	(%)	35.79	
Unstopped in material	(ಕ)	100	

Beta+ decay (Z=10, N=9)

¹⁹Ne³⁺ transmission 86.2% Main cut by the vertical angular acceptance @ S3

Final Slits

OT, 05/22/15, East Lansing

Experiment ${}^{15}O(\alpha, \gamma){}^{19}Ne$: selection

¹⁹Ne³⁺ after the Final Slits

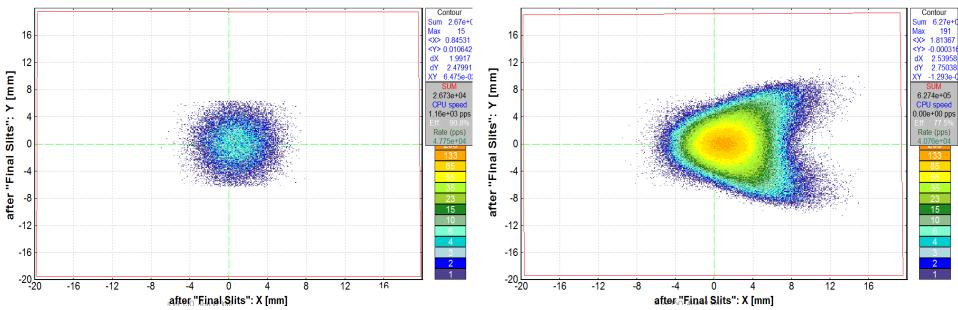
Monte Carlo solution : With bounds, no Angular Acceptances

1st order

¹⁹Ne³⁺ transmission 90.8%

2nd order

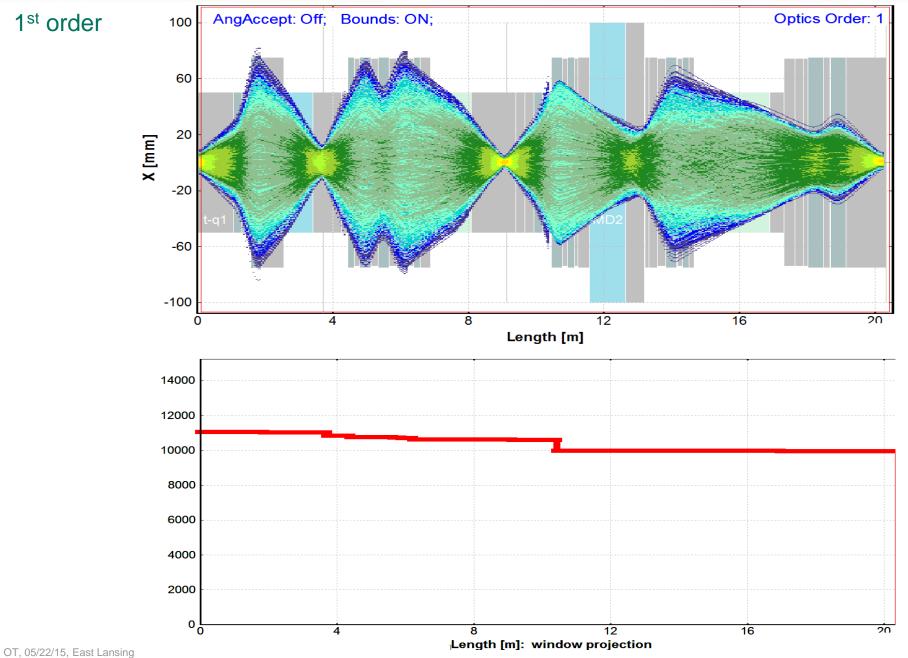
¹⁹Ne³⁺ transmission 77.5%



Continue

¹⁵O (0.2 MeV/u) + He (123 mm); Transmitted Fragment ¹⁹Ne^{3+..3+} (FusRes); Optics Order: 1 dp/p=9.93%; Brho(Tm): 0.2795, 0.2795, 0.2795

¹⁵O (0.2 MeV/u) + He (123 mm); Transmitted Fragment ¹⁹Ne^{3+..3+} (FusRes); Optics Order: 2 dp/p=9.93%; Brho(Tm): 0.2795, 0.2795, 0.2795

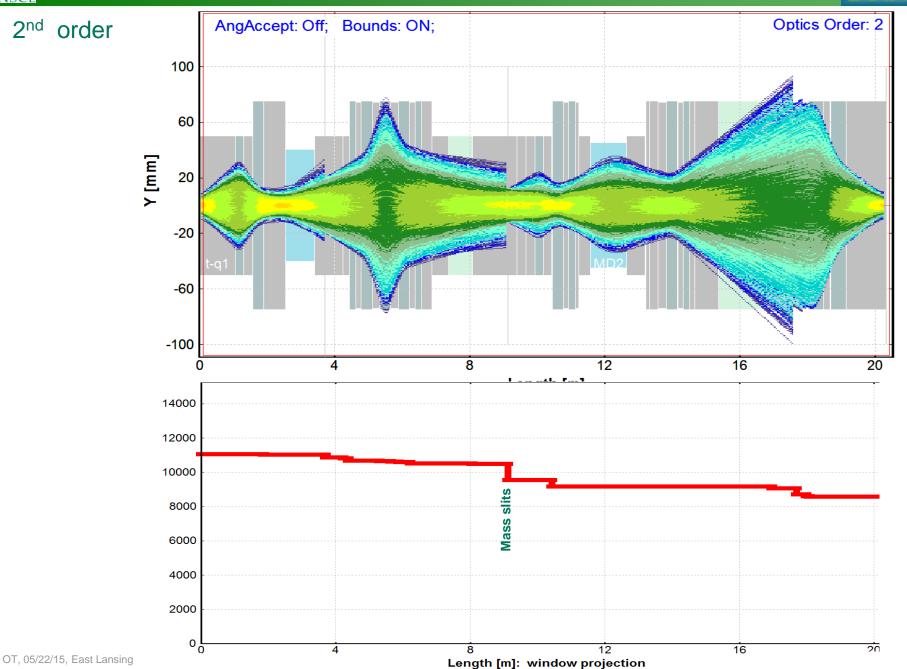


MICHIGAN STATE

UNIVERSITY LISE ++

Experiment ¹⁵O(α , γ)¹⁹Ne : transmission loss

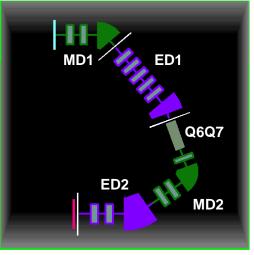
60


MICHIGAN STATE

Experiment ¹⁵O(α , γ)¹⁹Ne : transmission loss

MICHIGAN STATE

61



Extended Detail configuration for experts 90 blocks ED1 MD1 Q6Q7 ED2

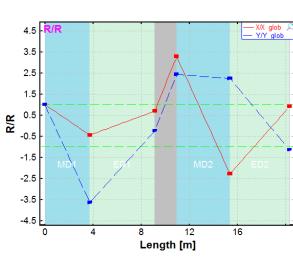
MD2

"Easy" configuration for regular users

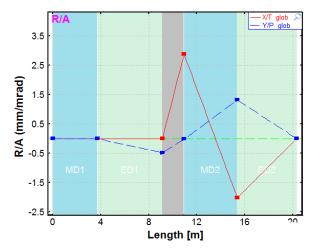
11 blocks (5 sectors, 3 material blocks and 3 slits)

s_DRAGON2000 lcn

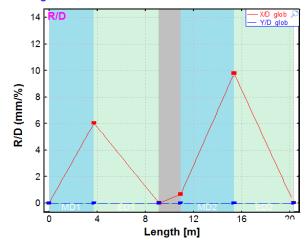
Segmented configuration


х

Optics settings (fast editing)

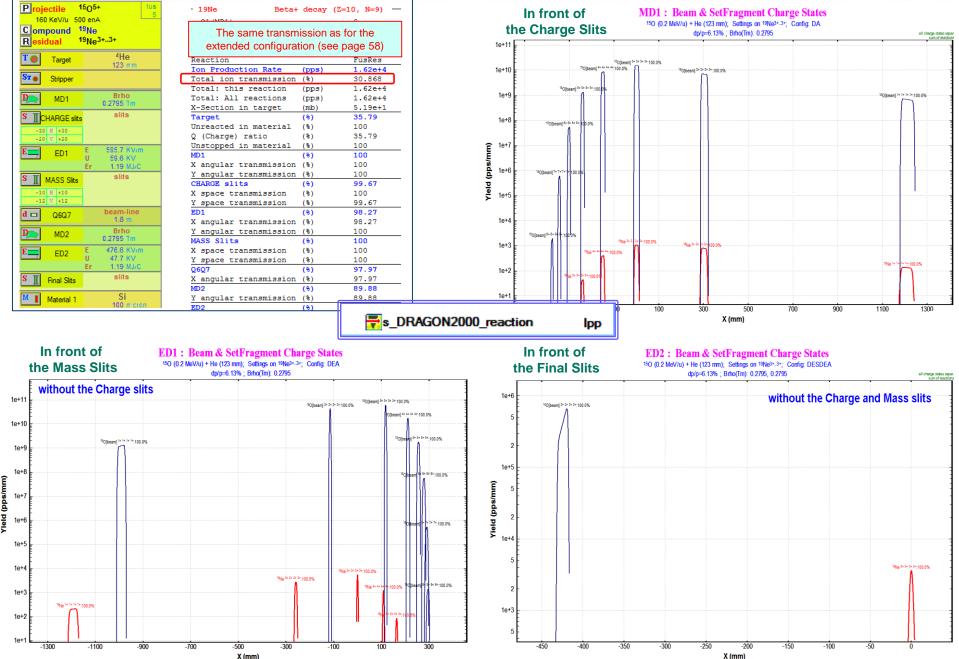

Block	Given Name	Start(m)	Length(m)	B0(kG)/*U	Br(Tm)cor/*real	DriftM/*Angle	Rapp(cm)/*R(Leff(m)/*Ldip(m)	2 nd order	CalcMatr/*Z-Q	AngAcc,Apps,Slits	COSY Fi	SE
Dipole = Dipole	MD1	0.000	3.7310	+2.7948	* 0.2795	* +50.0	× 1.0000	× 0.8727		×7	HV	•	S
S I _slits_	CHARGE slits	3.731	0.0000			SLITS					HV		е
E = ElecDip	ED1	3.731	5,4030	*59.6kV	0.2795	* +20.0	× 2.0000	× 0.6981		×7	HV		S
S I _slits_	MASS Slits	9.134	0.0000			SLITS					HV		е
d 🗖 beamline	Q6Q7	9.134	1.8050			beam-line					H		s
🚬 = Dipole	MD2	10.939	4.4370	+3.4376	* 0.2795	* +75.0	× 0.8130	* 1.0642		*7	·V		S
E = ElecDip	ED2	15.376	4.9560	*47.7kV	0.2795	* +35.0	× 2.5000	* 1.5272		×7			S
S ∏_slits_	Final Slits	20.332	0.0000			SLITS					HV		е

Pay attention for cut settings: 4 angular acceptances, 3 slits


5 sectors (segments)

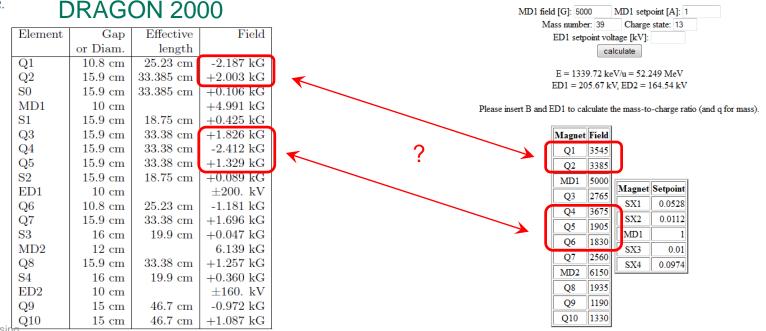
First order matrix elements

Config: DSESSDESM



leid

Segmented configuration : ${}^{15}O(\alpha, \gamma){}^{19}Ne$ case



- Differences between DRAGON 2000 and DRAGON 2015, Drifts? 1. Create extended DRAGON2015 configuration
- Define sextupole field values for LISE⁺⁺ configuration 2.
- Develop the two-body kinematics mechanism in the case HI & γ 3.

Difference in Quad fields between DRAGON 2000 and DRAGON 2015 : 4.

Table 2.5: Field strengths for rigidities $0.5 \text{ T} \cdot \text{m}$ and 8 MV scaled from the GIOS input file reso2000.dat Tunes must be obtained by scaling to the rigidities of a given reaction. Note that the sextupole strengths have been scaled to the new L_{eff} values listed in table 1.2.

http://dragon.triumf.ca/DragonTools.php#md1

OT. 05/22/15. East Lansing