The $2^{\text {nd }}$ order approximation equations in C-format were provided by Robert Hipple (Department of Physics and Astronomy, Michigan State University) based on H.Wollnik's work NIM 34 (1965) 213-221

- $2^{\text {nd }}$ order settings for already existed configuration
- Comparison between COSY \& LISE calculations for electric dipoles
- Using $2^{\text {nd }}$ order electrostatic dipoles in EMMA @ TRIUMF
- Using $2^{\text {nd }}$ order electrostatic dipoles in SHELS @ FLNR/JINR
- Outlook
$1^{\text {st }}$ step: set "checked" the $2^{\text {nd }}$ order box

$2^{\text {nd }}$ step: click "Matrix calculations" button

"Cylindrical" type; Radius = 1 m; Angle $=20$ deg

LISE

COSY

"Cylindrical" type; Radius $=4 \mathrm{~m}$; Angle $=20 \mathrm{deg}$

LISE

COSY

"Spherical" type; Radius $=4 \mathrm{~m} ;$ Angle $=45 \mathrm{deg}$

LISE

COSY

Using $2^{\text {nd }}$ order electrostatic dipoles in EMMIA @ TRIUMI

http://lise.nscl.msu.edu/9 10/EMMA.pdf

EMMA (BlectroMagnetic Mass Analyzer) @ TRIUMIT

The new version with $2^{\text {nd }}$ order electrostatic dipoles : http://lise.nscl.msu.edu/9 10/ED/EMMA 2016.Ipp

Or in the LISE++ package "fileslexamples|TRIUMF\EMMA_2016.Ipp"

Using $2^{\text {nd }}$ order electrostatic dipoles in EMMA @ TRIUMI

NIM A544 (2005) 565

LISE ${ }^{++}$v.9.10.296

Fig. 4. Calculated spatial focus of EMMA, showing rays corresponding to a single mass emitted from the target with angles of $0, \pm 1.5^{\circ}$, and $\pm 3^{\circ}$ in the vertical and horizontal directions. The dominant geometric aberration in the dispersive direction, proportional to
the square of the horizontal angle, is evident in the horizontal extent of the final focus.

OT, 6-Jun-2016, East Lansing

$2^{\text {nd }}$ order
$2^{\text {nd }}$ order

Using $2^{\text {nd }}$ order electrostatic dipoles in EMMA @ TRIUMI

NIM A544 (2005) 565

Fig. 2. Calculated mass focus of EMMA, showing rays corresponding to
9 adjacent masses emitted from the target with vertical angles of $-2^{\circ}, 0^{\circ}$, and 2°.
At the focal plane, the 9 masses are seen to be dispersed horizontally and focussed vertically. Angular focussing in the horizontal direction is shown in Fig. 4.

LISE ${ }^{++}$v.9.10.296

$2^{\text {nd }}$ order
$2^{\text {nd }}$ order

Using $2^{\text {nd }}$ order electrostatic dipoles in SHELS @ FLNR/JINR

Preparation to the experiment

How $2^{\text {nd }}$ order optics calculations are important for transmission value in the case of the SHELS separator?

The new version with $2^{\text {nd }}$ order electrostatic dipoles :

http://lise.nscl.msu.edu/9 10/ED/SHELS 2016 02.Ipp

Or in the LISE++ package "files\examples\Dubna\SHELS_2016_o2.Ipp"

Overall transmission = transmission through a separator of given isotope created in a target

$1^{\text {st }}$ order; Analytical solution

${ }^{255}$ Lr transmission

 4.51\%Including charge state contribution

${ }^{255}$ Lr ion distribution @ final plane

$1^{\text {st }}$ order

$2^{\text {nd }}$ order

To find out why the difference between H.Wollnik (used in LISE ${ }^{++}$) and COSY calculations for $\theta /{ }^{* *}$ \& $\varphi /{ }^{/ * *}$ elements

