

Version 9.10.298 from 06/06/2016

The 2nd order approximation equations in C-format were provided by **Robert Hipple** (Department of Physics and Astronomy, Michigan State University) based on **H.Wollnik**'s work NIM 34 (1965) 213-221

- 2nd order settings for already existed configuration
- Comparison between COSY & LISE calculations for electric dipoles
- Using 2nd order electrostatic dipoles in EMMA @ TRIUMF
- Using 2nd order electrostatic dipoles in SHELS @ FLNR/JINR
- Outlook

2nd

C1 Electrostatic Dipole Settings Optical block properties and data Section-Element construction property Senatation plane ? S-block (Section) C C E-block (Element) Horizontal 📀 🔿 Vertical Calculate the Values using Setting Charge state for the Nock (Z-Q) 84 the Setting fragment from • E (electric field) 801.16 + KV/m Ð tuning C U (voltage) <u>Cut(Slive) & Acceptances</u> 160.23 K٧ D, D22_1 C Electric rigidity 3.7695 MJ/C Optica matrix 66 Tweak 1.34 % C Magnetic rigidity 0.72379 + Tm Calculate other General setting of block ₽ (corresponds to the setting fragment) optic blocks Electrostatic Dipole Constants Advanced Elec.Dipole settings for extened configurations Distance between 0.2 m Bend type: Bt (m) 60 Matrix calculations plates (gap) = Cylindrical INF Calculate 2nd order Bend Sector matrix elements 4.705 Radius (r0) = 4.705 m C Spherical Automatically recalculate the ✓ matrix, when LISE++ has Angle = -8 deg C Toroidal changed the block rigidity Length = 0.6569 m Allow remote matrices Show ED Scheme calculation Important: Selection [X/D] in this block by Electric 🗸 ОК ? Help X Cancel rigidity, where D = d(Erho)/(Erho)

1st step: set "checked" the 2nd order box

step: click "Matrix calculations" button

OT, 6-Jun-2016, East Lansing

COSY

"Cylindrical" type; Radius = 1 m; Angle = 20 deg

LISE

"ElecDipole' Block: Matrices: "LOCAL Matrices: "LOCAL" "ElecDipole' transport format [cm-mrad] transport format [cm-mrad] * TRANSFORM 1 * * TRANSFORM 1 * 1 [X]: 2 [T]: 3 [Y]: 4 [F]: 5 [L]: 6 [D]: +8.8064e-01 +3.3510e-02 0 +1.1936e-01 +8.8073e-01 +3.3510e-02 X] T1 0 n 0 +1.1927e-01 -6.6995e+00 +8.8064e-01 0 0 0 +6.6995e+00 -6.6943e+00 +8.8073e-01 0 0 +6.6943e+00 n +1.0000e+00 0 0 +3.4910e-02 0 0 +1.0000e+00 +3.4910e-02 0 0 n n 0 Π 0 +1.0000e+00 0 0 0 n 0 +1.0000e+00 0 n -6.6995e-01 -1.1940e-02 0 +1.0000e+00 -2.8000e-02 -2.7950e-02 0 L -6.6943e-01 -1.1930e-02 0 0 +1.0000e+00 Ō ñ ñ Π 0 +1.0000e+00 bj Ω Ω Ω Ω Ω +1.0000e+00 * TRANSFORM 2 * * TRANSFORM 2 * -2.8189e-03 -2.8145e-03 1: 2 : 1 +5.7678e-04 +5.1381e-06 +5.7693e-04 2 +5.1394e-06 3 : 1 1 1 1 0 0 n. 3 : 0 0 -5.9697e-06 4: 0 0 0 4 0 0 0 -5.9698e-06 5: 0 0 0 0 0 0 0 n 0 0 6 : +5.6350e-03 +9.3310e-05 0 Π Ō -1.6237e-03 +5.6290e-03 0 +9.3219e-05 0 0 -1.6231e-03 222222 1: -8.9888e-02 -3.0744e-02 2 : -5.3350e-05 -4.3966e-03 2 -1.0955e-03 -3.4837e-043: 0 0 0 3: 0 0 0 4: 0 0 0 -3.3506e-04 -3.3507e-04 4 : 0 0 0 0 0 5 : Ω 0 0 0 5 : 0 0 0 0 +1.5725e-01 +4.3938e-03 0 0 -1.2329e-01 6 : +1.0955e-03 Ō Ō -9.7759e-02 6: +1.9537e-01 0 3 3 1: 0 0 1: 2: 0 Ω 2 : 0 0 3 3 : n 0 Π 3 : Π Π 0 +6.7013e-04 +1.1939e-05 0 0 333 4 . +6.7015e-04 +1.1939e-05 4: 0 Π 5: 0 0 0 Π 5: 0 0 0 0 6 : 0 Ο 0 +2.8004e-05 0 0 6: 0 0 0 +2.7982e-05 0 0 1: 0 0 1: 2 : 0 0 2 0 0 3 : 0 0 0 3 0 0 0 4 : -1.1936e-03 +3.3506e-04 0 0 0 0 0 4 0 0 5 : 0 0 0 0 0 0 0 5 0 0 Ō Ō 0 0 +1.1936e-03 6 : 0 Ō Ō 6 0 Π 0 5555555 1: Π 1: -6.0224e-03 2 : 0 0 2 : -3.3386e-04 -2.0081e-05 3: 0 0 0 3: Ω Ω 0 0 0 0 4: 0 4: Π Π 0 -1.6054e-05 5: 0 ō ō 0 0 0 0 5: Π Π Π 0 ō ō ō 0 6 : 0 6: +5.3647e-03 -2.3688e-05 0 0 0 +3.8585e-04

"Cylindrical" type; Radius = 4 m; Angle = 20 deg

LISE

COSY

Block: "ElecDipole" Matrices: "LOCAL"						: "E	lecDipole" M	Matrices: "LOC	AL"				
transport format [cm-mrad]										tran	sport format	[cm-mrad]	
		* TRANSFORM 1	*						* TRANSFORM 1	*			
1 [X]: 2 [T]: 3 [Y]: 4 [F]: 5 [L]: 6 [D]:	+8.8064e-01 -6.6995e+00 0 -6.6995e-01 0	. +3.3510e-02 +8.8064e-01 0 1.1940e-02 0	0 0 +1.0000e+00 0 0	0 0 +3.4910e-02 +1.0000e+00 0	0 0 0 +1.0000e+00 0	+1.1936e-01 +6.6995e+00 0 -2.8000e-02 +1.0000e+00	X]: T]: Y]: F]: L]: D]:	+8.8073e-01 -6.6943e+00 0 -6.6943e-01 0	+3.3510e-02 +8.8073e-01 0 -1.1930e-02 0	0 0 +1.0000e+00 0 0 0	0 0 +3.4910e-02 +1.0000e+00 0 0	0 0 0 +1.0000e+00 0	+1.1927e-01 +6.6943e+00 0 -2.7950e-02 +1.0000e+00
		* TRANSFORM 2	*						* TRANSFORM 2	¥			
1 1: 1 2: 1 3: 1 4: 1 5: 1 6:	-2.8189e-03 +5.7678e-04 0 0 +5.6350e-03	8 +5.1381e-06 0 0 8 +9.3310e-05	0 0 0 0	-5.9697e-06 0 0	0 0	-1.6237e-03	1: 2: 3: 4: 5: 6:	-2.8145e-03 +5.7693e-04 0 0 +5.6290e-03	+5.1394e-06 0 0 0 +9.3219e-05	0 0 0 0	-5.9698e-06 0 0	0 0	-1.6231e-03
2 1: 2 2: 2 3: 2 4: 2 5: 2 6:	-8.9888e-02 -4.3966e-03 0 0 +1.5725e-01	-5.3350e-05 0 0 0 . +4.3938e-03	0 0 0 0	-3.3506e-04 0 0	0	-1.2329e-01	1: 2: 3: 4: 5: 6:	-3.0744e-02 -1.0955e-03 0 0 +1.9537e-01	-3.4837e-04 0 0 0 +1.0955e-03		-3.3507e-04 0 0	0	-9.7759e-02
3 1: 3 2: 3 3: 3 4: 3 5: 3 6:	0 0 +6.7013e-04 0 0	0 0 +1.1939e-05 0 0	0 0 0 0	0 0 +2.8004e-05	0 0	0	1: 2: 3: 4: 5: 6:	0 0 +6.7015e-04 0 0	0 0 +1.1939e-05 0 0	0 0 0 0	0 0 +2.7982e-05	0 0	0
4 1: 4 2: 4 3: 4 4: 4 5: 4 6:	0 0 -1.1936e-03 0 0	0 0 +3.3506e-04 0 0	0 0 0 0	0 0 +1.1936e-03	0 0	0	1: 2: 3: 4: 5: 6:	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0	0	0
5 1: 5 2: 5 3: 5 4: 5 5: 5 6:	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0	0 0	0	1: 2: 3: 4: 5: 6:	-6.0224e-03 -3.3386e-04 0 0 0 +5.3647e-03	-2.0081e-05 0 0 0 -2.3688e-05	0 0 0 0	-1.6054e-05 0 0	0 0	+3.8585e-04

"Spherical" type; Radius = 4 m; Angle = 45 deg

LISE

COSY

lock:	"FlecDipole"	Matrices: "IOO	ΩΔΤ."				ok: "El∈	ecDipole"	Matrices: "LOC	ΔΤ."			
HOCK.	LICEDIPOIC	natifices. Lo	JAL	tran	sport format	[cm-mrad]	D.C. 210				tran	sport format	[cm-mrad]
		* TRANSFORM :	1 *						* TRANSFORM 1	*			
1 [X] 2 [T] 3 [Y] 4 [F] 5 [L] 6 [D]	: +7.0717e- : -1.7674e+ : 0 : 0 : -1.4141e+ : 0	01 +2.8285e-01 00 +7.0717e-01 0 00 -2.3429e-01 0	0 0 +7.0711e-01 -1.7678e+00 0 0	0 0 +2.8284e-01 +7.0711e-01 0 0	0 0 0 +1.0000e+00 0	+2.3429e+00 +1.4141e+01 0 -1.2524e+00 +1.0000e+00	[X]: [T]: [Y]: [F]: [L]: [D]:	+7.0717e-01 -1.7674e+00 0 -1.4141e+00 0	+2.8285e-01 +7.0717e-01 0 -2.3429e-01 0	0 0 +7.0711e-01 -1.7678e+00 0 0	0 0 +2.8284e-01 +7.0711e-01 0	0 0 0 +1.0000e+00 0	+2.3429e+00 +1.4141e+01 0 -1.2524e+00 +1.0000e+00
		* TRANSFORM 2	2 *						* TRANSFORM 2	*			
$ \begin{array}{cccc} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \\ 1 & 5 \\ 1 & 6 \\ \end{array} $	-1.2502e- +1.0000e- 0 0 0 +1.9997e-	03 03 +8.2843e-05 0 0 0 02 +3.3133e-03	+2.5889e-04 +2.0711e-04 0 0	-1.0000e-04 0 0	0	-2.1418e-02	1: 2: 3: 4: 5: 6:	-1.2498e-03 +1.0001e-03 0 0 +1.9998e-02	+8.2851e-05 0 0 +3.3133e-03	+2.5896e-04 +2.0712e-04 0 0	-1.0000e-04 0 0	0 0	-2.1421e-02
2 1 2 2 2 3 2 4 2 5 2 6	: -5.0031e- -7.0730e- : 0 : 0 : 0 : +1.9990e-	02 03 -8.2863e-04 0 0 0 01 +5.6557e-02	+9.1533e-04 +1.7678e-03 0 0	-5.0001e-04 0	0	-1.9997e-01	1: 2: 3: 4: 5: 6:	0 0 0 0 +7.0698e-02	-7.0712e-04 0 0 0 -1.1922e-06	+9.1571e-04 +1.7679e-03 0	-5.0000e-04 0 0	0 0	-2.1212e-01
3 1 3 2 3 3 3 4 3 5 3 6	: 0 : 0 : -5.1780e-1 : +1.2071e-1 : 0 : 0	0 04 -2.0711e-04 03 +2.0000e-04 0 0	0 0 0 +4.1417e-03	0 0 +1.6567e-03	0	0	1: 2: 3: 4: 5: 6:	0 0 -5.1766e-04 +1.2071e-03 0 0	0 -2.0709e-04 +2.0001e-04 0 0	0 0 +4.1417e-03	0 0 +1.6567e-03	0 0	0
4 1 4 2 4 3 4 4 4 5 4 6	: 0 : 0 : +2.0708e-1 : -4.9995e-1 : 0 : 0	0 02 -8.2846e-03 03 +2.0001e-03 0 0	0 0 0 +2.4997e-02	0 0 +9.9990e-03	0	0	1: 2: 3: 4: 5: 6:	0 0 +4.4203e-03 -7.3210e-04 0 0	0 +7.3237e-04 +3.0634e-08 0 0	0 0 0 +3.5352e-02	0 0 +5.8574e-03	0 0	0
5 1 5 2 5 3 5 4 5 5 5 6	: 0 : 0 : 0 : 0 : 0 : 0 : 0	0 0 0 0 0	0 0 0 0				1: 2: 3: 4: 5: 6:	-1.8747e-03 -1.4999e-03 0 0 +1.7175e-03	-2.6567e-04 0 0 0 -2.0584e-03	-1.1426e-03 -8.5730e-05 0	-1.0000e-04 0 0	0 0	+1.2124e-02

http://lise.nscl.msu.edu/9_10/EMMA.pdf

The new version with 2nd order electrostatic dipoles :

http://lise.nscl.msu.edu/9 10/ED/EMMA 2016.lpp

Or in the LISE** package "files\examples\TRIUMF\EMMA_2016.lpp"

Using 2nd order electrostatic dipoles in EMMA @ TRIUMF

NIM A544 (2005) 565

LISE++ v.9.10.207

LISE++ v.9.10.296

2nd order

-20

20

[աա] χ

00

10

180 140 -100

-140

<mark>0</mark>

2nd order

NIM A544 (2005) 565

LISE⁺⁺ v.9.10.296

2nd order

Fig. 4. Calculated spatial focus of EMMA, showing rays corresponding to a single mass emitted from the target with angles of $0, \pm 1.5^{\circ}$, and $\pm 3^{\circ}$ in the vertical and horizontal directions. The dominant geometric aberration in the dispersive direction, proportional to the square of the horizontal angle, is evident in the horizontal extent of the final focus.

2nd order

NIM A544 (2005) 565

LISE++ v.9.10.296

Fig. 2. Calculated mass focus of EMMA, showing rays corresponding to 9 adjacent masses emitted from the target with vertical angles of -2° , 0° , and 2° . At the focal plane, the 9 masses are seen to be dispersed horizontally and focussed vertically. Angular focussing in the horizontal direction is shown in Fig. 4.

2nd order

2nd order

Using 2nd order electrostatic dipoles in SHELS @ FLNR/JINR

v.9.8.166 from 11/23/14

http://lise.nscl.msu.edu/9_8/SHELS/SHELSinLISE.pdf

Preparation to the experiment

S Transmission : Analytical												AN STATI ERSIT E ++
²⁵⁵ Lr ^{All+} transmission Analytical : 44.7% ²⁵⁵ Lr ¹⁹⁺ transmission Analytical : 53.1%												1%
😴 statistics: 255Lr												
255Lr Alpha and Beta+ decay (Z=103, N=152) Lawrencium 9.098 / 17.15 * 100%												
All reactions total isotope rate and Overall isotope transmission	1.19e+0 44.653	pps %							[]			
Q1(tuning)	25	24	23	22	21	20	19	18	17	16	15	14
Q2 (C1)	25	24	23	22	21	20	19	18	17	16	15	14
Q3 (D22 1)	25	24	23	22	21	20	19	18	17	16	15	14
Q4 (D22 2)	25	24	23	22	21	20	19	18	17	16	15	14
Q5 (C2)	25	24	23	22	21	20	19	28	17	16	15	14
Q6 (D8)	25	24	23	22	21	20	19	18	17	16	15	14
Reaction	FusRes	FusRes	FusRes	FusRes	FusRes	FusRes	FusRes	FusRes	FusRes	FusRes	FusRes	FusRes
Ion Production Rate (pps)	6.1e-3	1.99e-2	4.92e-2	1.01e-1	1.67e-1	2.34e-1	2.1900-1	1.96e-1	1.1e-1	4.77e-2	1.44e-2	2.71e-3
Total ion transmission (%)	0.229	0.745	1.847	3.776	6.264	8.783	9.098	7.339	4.14	1.789	0.541	0.102
Total: this reaction (pps)	1.19e+0	1.19e+0	1.19e+0	1.19e+0	1.19e+0	1.19e+0	1.19e+0	1.194+0	1.19e+0	1.19e+0	1.19e+0	1.19e+0
X-Section in target (mb)	1.41e-4	1.41e-4	1.41e-4	1.41e-4	1.41e-4	1.41e-4	1.41e-4	1.41e-4	1.41e-4	1.41e-4	1.41e-4	1.41e-4

How 2nd order optics calculations are important for transmission value in the case of the SHELS separator ?

The new version with 2nd order electrostatic dipoles :

http://lise.nscl.msu.edu/9_10/ED/SHELS_2016_o2.lpp

Or in the LISE** package "files\examples\Dubna\SHELS_2016_o2.lpp"

Overall transmission = transmission through a separator of given isotope created in a target

1st order; Analytical solution

🛃 statistics: 255Lr													
255Lr Alpha and Beta+ decay (Z=103, N=152) 255 avrend uroverall 255 Lr ¹⁹⁺ transmission											n		
All reactions total iso and Overall isotope tra	otope rate	1.37e+0 52.914	pps t	rans	miss	ion 5	2.9%		10.32	25% /	0.171	= 60.	.4%
Q1(tuning) Q2(C1)		25 25	24 24	23 23	22 22	21 21	20 20	19 19	18 18	17 17	16 16	15 15	14 14
Q3 (D22_1) Q4 (D22_2) Q5 (C2)		25 25	24 24 24	23 23	22 22	21 21	20 20	19 19	18 18	17 17	16 16	15 15	14 14
Q5(C2) Q6(D8) Reaction		25 25 FusRes	24 24 FusRes	23 23 FusRes	22 22 FusRes	21 21 FusRes	20 20 FusRes	19 19 FusRes	18 FusRes	17 FusRes	16 16 FusRes	15 15 FusRes	14 14 FusRes
Ion Production Rate Total ion transmission Total: this reaction	(pps) (%) (pps)	7.5e-3 0.29 1.37e+0	2.33e-2 0.903 1.37e+0	5.97e-2 2.311 1.37e+0	1.24e-1 4.786 1.37e+0	2.07e-1 7.995 1.37e+0	2.64e-1 10.208 1.37e+0	2.67e-1 10.325 1.37e+0	2.2e-1 8.509 1.37e+0	1.29e-1 4.975 1.37e+0	5.39e-2 2.086 1.37e+0	1.26e-2 0.488 1.37e+0	9.83e-4 0.038 1.37e+0
X-Section in target	(mb)	1.62e-4	1.62e-4	1.62e-4	1.62e-4	1.62e-4	1.62e-4	1.62e-4	1.62e-4	1.62e-4	1.62e-4	1.62e-4	1.62e-4
Unreacted in material	(%) (%)	100	100	100	100	100	100	100	100	100	100	100	100
Stripper	(*) (*)	0.922	2.41	5.22	9.34	13.81	16.89	17.08	14.28	9.87	5.64	2.66	1.04
Q (Charge) ratio Unstopped in material	(হ) (ৼ) (ৼ)	0.922	2.41	5.22 100	9.34 100	13.82 100	16.89 100	17.08 100	14.28 100	9.87 100	5.64 100	2.66	1.04

1st order; Monte Carlo solution; Overall transmission

MICHIGAN STATE UNIVERSITY LISE++

2nd order; Monte Carlo solution; Overall transmission

	Transmission i	ncluding charge st	Q-Pr	oduction	Pure transmission through the separator			
	Analytical	Monte Carlo	Monte Carlo	q-state	q-state	Analytical	Monte Carlo	Monte Carlo
Q	1st order	1st order	2nd order	Analyt.	Monte Carlo	1st order	1st order	2nd order
	%	%	%	%	%	%	%	%
25	0.29	0.194	0.00385	0.922	0.62	31.45	31.29	0.62
24	0.91	0.66	0.04	2.41	1.79	37.63	36.87	2.23
23	2.31	1.8	0.228	5.22	3.83	44.27	47.00	5.95
22	4.77	4.28	1.08	9.34	7.76	51.03	55.15	13.92
21	8.00	7.1	3.8	13.82	12.27	57.88	57.86	30.97
20	10.21	9.53	8.02	16.89	15.56	60.44	61.25	51.54
19	10.37	10.4	9.26	17.08	17.69	60.72	58.79	52.35
18	8.51	9.08	5.9	14.28	15.61	59.59	58.17	37.80
17	4.97	6.31	1.82	9.87	11.51	50.40	54.82	15.81
16	2.03	2.99	0.476	5.64	7.4	35.96	40.41	6.43
15	0.49	0.898	0.108	2.66	3.79	18.35	23.69	2.85
14	0.04	0.118	0.0206	1.04	1.63	3.65	7.24	1.26
Overall is	otope productio	on				52.9	54.6	31.2
(how mar	ny passed through	the separator to						

1st order

²⁵⁵Lr ions envelopes (option "show all trajectories") : 1st order

MICHIGAN STATE

E ++

S

²⁵⁵Lr ions envelopes (option "show all trajectories") : 2nd order

To find out why the difference between H.Wollnik (used in LISE⁺⁺) and COSY calculations for $\theta/^{**} \& \phi/^{**}$ elements