

Version 9.10.207 from 11/17/2015

Link: Separator "EMMA" @ TRIUMF

0 1m

□ EMMA extended configuration

- Documentation
- EMMA files location
- Optics
- Optimization
- Angular Acceptance
- Momentum Acceptance
- Benchmarks
- □ Charge state selection
- □ LISE⁺⁺ analytical and MC envelopes
- **D** Reaction $d(^{132}Sn,p)^{133}Sn$
 - Decreasing Angular Acceptance for better selection

EMMA: A recoil mass spectrometer for ISAC-II at TRIUMF

Barry Davids^{a,*}, Cary N. Davids^b

^aTRIUMF, 4004 Wesbrook Mall, Vancouver BC, Canada V6T 2A3 ^bPhysics Division, Argonne National Laboratory, Argonne IL 60439, USA

Received 13 September 2004; received in revised form 5 January 2005; accepted 7 January 2005 Available online 11 March 2005

2. The EMMA settings example and apertures kindly provided by Matt Williams (TRIUMF)

LISE⁺⁺ package / files

\LISE\files\examples\TRIUMF*.*										
Name	Ext	Size	↓Date							
<u>↑</u> []		<dir></dir>	11/17/2015							
F EMMA_beam	lpp	133,012	11/17/2015							
F EMMA_reaction	lpp	137,443	11/17/2015							
e_DRAGON2000_reaction_2body	lpp	353,121	09/16/2015							
s_DRAGON2000_reaction_2body	lpp	55,413	09/16/2015							
🔫 e_DRAGON2000_39Ca_beam	lpp	355,049	07/22/2015							
e_DRAGON2000_reaction	lpp	357,464	07/22/2015							
<pre>s_DRAGON2000_reaction</pre>	lpp	55,647	07/22/2015							

- \rightarrow EMMA for the primary beam A=100,q=20+,E=180MeV
- \rightarrow EMMA for the reaction ¹³²Sn(6MeV/u)+CD₂(0.1 mg/cm²)..

LISE⁺⁺ package / configurations

\LISE\config\TRIUMF*.*			
Name	Ext	Size	↓Date
▲ []		<dir></dir>	11/17/2015
F EMMA	lcn	112,029	11/17/2015
s_DRAGON2000	lcn	34,357	07/22/2015
Fe_DRAGON2000	lcn	329,085	07/22/2015

 \rightarrow EMMA configuration

LISE⁺⁺ site / 9_10/ EMMA

The next files been used for the analysis presented in this work

- \rightarrow file to define Angular Acceptance
- \rightarrow file to define Momentum Acceptance
- \rightarrow file with "original" quad-values
- \rightarrow the same as "EMMA_reaction.lpp" with small X'-acceptance
- \rightarrow the same as "EMMA_reaction.lpp" without the gold degrader

🗧 Opt	ics setting	gs (fast editing))											×
Block		Given Name	Start(m)	Length(m)	BO(kG)/*U	Br(Tm)cor/*real	DriftM/*Angle	Rapp(cm)/*R(Leff(m)/*Ldip(m)	2 nd order	CalcMatr/*Z-Q	AngAcc,Apps,Slits	COSY Fit	SE
D,	= Dipole	tuning	0.000	0.0001	+3.2873	× 0.9862	* +0.0	× 3.0000	× 0.0000		×19	HV	-	S
d 🗖	drift	Drift 1	0.000	0.2470			standard					HV	-	е
<mark>0</mark> 🔷	<quad></quad>	Q1	0.247	0.1398	+13.4745	0.9862	QUAD	3.5000	0.1398	yes	1 R	HV	-	е
d 🗖	drift	drift Q12	0.387	0.0350			standard					HV	-	е
<mark>0</mark> 🔷	<quad></quad>	Q2	0.422	0.2988	-8.7698	0.9862	QUAD	7.5000	0.2988	yes	1 B	- HV	-	е
d 🗖	drift	drift Q2E	0.721	0.3723			standard					HV	-	е
E	=ElecDip	ElecDip 1	1.093	1.7453	*546.4kV	0.9862	* +20.0	* 5.0000	* 1.7453	-	* 19 R	HV	-	E
d 🗖	drift	drift ED	2.838	1.2250			standard					HV	-	е
D,	= Dipole	DipoleA	4.063	0.3491	-9.8619	* 0.9862	* -20.0	* 1.0000	* 0.3491	yes	* 19 R		-	E
s II	_slits_	dip slits	4.412	0.0000			SLITS					HV	-	е
D,	= Dipole	DipoleB	4.412	0.3491	-9.8619	* 0.9862	× -20.0	* 1.0000	* 0.3491	yes	* 19 R		-	E
d 🗖	drift	drift DE	4.761	1.2225			standard					- HV	-	е
E	=ElecDip	ElecDip 2	5.984	1.7453	*546.4kV	0.9862	* +20.0	* 5.0000	* 1.7453		* 19 R	- HV	-	E
d 🗖	drift	drift EQ3	7.729	0.3649			standard					- HV	-	е
<mark>0</mark> 🔷	<quad></quad>	Q3	8.094	0.2988	-5.7122	0.9862	QUAD	7.5000	0.2988	yes	1 R	HV	fit - Q	е
d 🗖	drift	drift Q34	8.393	0.0300			standard					HV	-	е
<mark>0</mark> 🔷	<quad></quad>	Q4	8.423	0.4018	+6.8799	0.9862	QUAD	10.0000	0.4018	yes	1 R	HV	fit - Q	е
d 🗖	drift	drift Q4FP	8.825	0.3076			standard					HV	-	е
s I	_slits_	FP slits	9.132	0.0000			SLITS					HV	-	е

All "E"-blocks.

Extended configuration

1. tuningDipole0.0000.000 $+0.0 *$ $+3.287$ 0.9862* $3.00*$ $0.00*$ $-$ HVrectnellps2. DriftDrift0.0000.247standardrectnellps $ -$ rectnellps $ -$ rectn $ -$	1 2 N Block name or	3 Kind of Block	4 Start (m)	5 Length (m)	6 DriftMode Angle(°)*	7 B0(kG)	8 Br-corrsp Br-dip*	9 Rapp(cm) R(m)*	10 L_eff(m) Len(m)*	11 2nd order	12 Calc Mode	13 AngAc mode	14 c Slits shape	15 Xmin slit	16 Xmax slit	17 Ymin slit	18 Ymax slit	19 Appert shape	20 Xmin limit	21 Xmax limit	22 Ymin limit	23 Ymax limi
5. $Q2$ Drift 0.422 0.299 $ultipole$ -8.770 0.9862 7.50 0.30 yes 1 $$ $rectn$ $ellps$ -68 $+68$ -68 6. drift Q2EDrift 0.721 0.372 $standard$ $$ $rectn$ $$ $rectn$ $rectn$ $ellps$ -68 $+68$ -68 7. ElecDip 1ElecDip 1.093 1.745 $+20.0$ $*$ $546.4kV$ $0.9862*$ $5.00*$ $1.75*$ $$ $$ $rectn$ $rectn$ $rectn$ -62 $+62$ -200 8. drift EDDrift 2.838 1.225 $standard$ $-20.0*$ $+9.862$ $0.9862*$ $1.00*$ $0.35*$ yes $$ $rectn$ $rectn$ $rectn$ -102 $+102$ -46 9. DipoleADipole 4.412 0.309 $-20.0*$ $+9.862$ $0.9862*$ $1.00*$ $0.35*$ yes $$ $rectn$ $rectn$ $rectn$ -102 $+102$ -46 10. dip slitsDrift 4.412 0.349 $-20.0*$ $+9.862$ $0.9862*$ $1.00*$ $0.35*$ yes $$ $rectn$ rec	1. tuning 2. Drift 1 3. Q1 4. drift Q12	Dipole Drift Drift Drift Drift	0.000 0.000 0.247 0.387	0.000 0.247 0.140 0.035	+0.0 * standard multipole standard	+3.287 +13.475	0.9862 * 0.9862	3.00 * 3.50	0.00 * 0.14	- yes	1	HV 	rectn rectn rectn rectn					ellps rectn ellps rectn	-31 -31 -67	+31 +31 +67	-31 -31 -67	+31 +31 +67
9. Dipole Dipole 4.063 0.349 -20.0* +9.862 0.9862* 1.00* 0.35* yes rectn rectn 10. dip slits Drift 4.412 0.000 SLITS rectn rectn rectn 11. DipoleB Dipole 4.412 0.349 -20.0* +9.862 0.9862* 1.00* 0.35* yes rectn rectn 12. drift DE Drift 4.761 1.222 standard rectn rectn rectn 13. ElecDip 2 ElecDip 5.984 1.745 +20.0 * 546.4kV 0.9862* 5.00* 1.75* rectn rectn -62 +62 -200 14. drift EQ3 Drift 7.79 0.365 standard rectn rectn ellps -68 +68 -68 15. Q3 Drift 8.094 0.299 multipole -5.712 0.9862 7.50 0.30 yes 1 rectn ellps -68 +68 -68	5. Q2 6. drift Q2E 7. ElecDip 1 8. drift ED	Drift Drift ElecDip Drift	0.422 0.721 1.093 2.838	0.299 0.372 1.745 1.225	multipole standard +20.0 * standard	-8.770 546.4kV	0.9862 0.9862 *	7.50 5.00*	0.30 1.75*	yes -	1	 	rectn rectn rectn rectn					ellps ellps rectn rectn	-68 -68 -62 -102	+68 +68 +62 +102	-68 -68 -200 -46	+68 +68 +20(+46
13. ElecDip 2 ElecDip 5.384 1.45 +20.0 * 546.4kV 0.3862* 5.00* 1.75* - - rectn rectn ellps -62 +62 -200 14. drift EQ3 Drift 7.729 0.365 standard - rectn ellps -68 +68 -68 15. Q3 Drift 8.094 0.299 multipole -5.712 0.9862 7.50 0.30 yes 1 - rectn ellps -68 -68 16. drift Q34 Drift 8.393 0.030 standard - - rectn ellps -75 -75	9. DipoleA 10. dip slits 11. DipoleB 12. drift DE	Dipole Drift Dipole Drift	4.063 4.412 4.412 4.761	0.349 0.000 0.349 1.222	-20.0 * SLITS -20.0 * standard	+9.862	0.9862 * 0.9862 *	1.00* 1.00*	0.35* 0.35*	yes yes		 	rectn rectn rectn rectn	-200	+200	-50	+50	rectn rectn rectn rectn	-102	+102	-46	+46
	13. ElecDip 2 14. drift EQ3 15. Q3 16. drift Q34	ElecDip Drift Drift Drift Drift	5.984 7.729 8.094 8.393	1.745 0.365 0.299 0.030	+20.0 * standard multipole standard	-5.712	0.9862*	5.00 * 7.50	0.30	- yes	1	 	rectn rectn rectn rectn					rectn ellps ellps ellps	-62 -68 -68 -75	+62 +68 +68 +75	-200 -68 -68 -75	+201 +68 +68 +75
17. Q4 Drift 8.423 0.402 multipole +5.880 0.9852 10.00 0.40 yes 1 rectn ellps -92 +92 -92 18. drift Q4FP Drift 8.825 0.308 standard rectn ellps -75 +75 -75 19. FP slits Drift 9.132 0.000 SLITS rectn rectn rectn	17. Q4 18. drift Q4FP 19. FP slits	Drift Drift Drift	8.423 8.825 9.132	0.402 0.308 0.000	multipole standard SLITS	+6.880	0.9862	10.00	U.4U 	yes 	1		rectn rectn rectn	-50	+50	-75	+75	ellps ellps rectn	-92 -75	+92 +75	-92 -75	+92 +75

! Column 13: "AngAcc mode" - "H(V)" : horizontal(vertical) angular acceptance will be applied for this block ! Columns 15-18,20-23: slits and aperture(limit) sizes in [mm]. If slit or aperture(limit) does not have action, then its size value is absent

> These aperture parameters are used to obtain angular and momentum acceptances of the separator.

This settings list can be produced in LISE⁺⁺ using menu "Experimental Settings -> Optics -> Optics settings: View and Print"

- LISE⁺⁺ does not provide information for mass dispersion
- So, this value can not be used for optimization constraint
- Quad values have been taken from EMMA beam example
- All matrices have been calculated inside LISE⁺⁺

EMMA optics : modification

 LISE⁺⁺ optimization was done to get Y-focus in the middle of M-dipole, X-& Y- focuses @ the end, R11 & R33 values according to the EMMA paper

EMMA_	beam_	_origiı	nal.	lpp	0
-------	-------	---------	------	-----	---

Block	Given Name	Start(m)	Length(m)	BO(kG)/*U
Dipole = Dipole	tuning	0.000	0.0001	+3.2207
d 🗖 drift	Drift 1	0.000	0.2470	
🝳 🔷 <quad></quad>	Q1	0.247	0.1398	+13.2014
d 🗖 drift	drift Q12	0.387	0.0350	
🝳 🔷 <quad></quad>	Q2	0.422	0.2988	-8.8066
d 🗖 drift	drift Q2E	0.721	0.3723	
E = ElecDip	ElecDip 1	1.093	1.7453	*450.2kV
d 🗖 drift	drift ED	2.838	1.2250	
📭 = Dipole	DipoleA	4.063	0.3491	-9.6620
S I _slits_	dip slits	4.412	0.0000	
Dipole = Dipole	DipoleB	4.412	0.3491	-9.6620
d 🗖 drift	Drift DE	4.761	1.2225	
E = ElecDip	ElecDip 2	5.984	1.7453	*450.2kV
d 🗖 drift	drift EQ3	7.729	0.3649	_
🝳 🔷 <quad></quad>	Q3	8.094	0.2988	-6.0155
d 🗖 drift	drift Q34	8.393	0.0300	
🝳 🔷 <quad></quad>	Q4	8.423	0.4018	+7.7544
d 🗖 drift	drift Q4FP	8.825	0.3076	
S Islits_	FP slits	9.132	0.0000	

EMMA_beam.lpp

Block		Given Name	Start(m)	Length(m)	B0(kG)/*U
D)	= Dipole	tuning	0.000	0.0001	+3.2207
d 🗖 🛛	drift	Drift 1	0.000	0.2470	
Q 🔷 🤇	(Quad>	Q1	0.247	0.1398	+13.2014
d 🗆 (drift	drift Q12	0.387	0.0350	
Q 🔷 🤇	(Quad>	Q2	0.422	0.2988	-8.5920
d 🗆 o	drift	drift Q2E	0.721	0.3723	
E =	=ElecDip	ElecDip 1	1.093	1.7453	*450.2kV
d 🗖 🛛	drift	drift ED	2.838	1.2250	
D	= Dipole	DipoleA	4.063	0.3491	-9.6620
F * F	Fit	F_DipY	4.412	0.0000	
F 🔭 F	Fit	F_DipX	4.412	0.0000	
sΠ	_slits_	dip slits	4.412	0.0000	
De :	= Dipole	DipoleB	4.412	0.3491	-9.6620
d 🗖 o	drift	Drift DE	4.761	1.2225	
E	=ElecDip	ElecDip 2	5.984	1.7453	*450.2kV
d 🗖 🛛	drift	drift EQ3	7.729	0.3649	
Q 🔷	(Quad>	Q3	8.094	0.2988	-5.5964
d 🗖 🛛	drift	drift Q34	8.393	0.0300	
Q 🔷	(Quad>	Q4	8.423	0.4018	+6.7405

Global LISE⁺⁺ matrix with new quad values

– Global mat	rix					[
-2.07981	-0.0736	0	0	0	-0.22594	[mm]
9.77991	-0.13474	0	0	0	0.45385	[mrad]
0	0	1.35247	-1.103e-3	0	0	[mm]
0	0	8.96657	0.73193	0	0	[mrad]
-0.12657	6.385e-3	0	0	1	7.90368	[mm]
0	0	0	0	0	1	[%]
/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]	

Will be zoomed on the next page

MICHIGAN STATE

E ++

See details for angular acceptance with the next link http://lise.nscl.msu.edu/9_8/SE_blocks.pdf#page=5

Angular Acceptance : Results

EMMA_beam_AA.lpp

Angular Acceptances transmission benchmarks

"Distribution" method With set Angular Acceptances

100Se Unkno	own (Z=3	34, N=66)
O1 (tuning)		20
Q1 (Culling)		20
Q2 (Direlel)		20
Q3 (DIDOLEA)		20
Q4(DipoleB)		20
Q5(ElecDip 2)		20
Reaction		BEAM
Ion Production Rate	(pps)	1.63e+10
Total ion transmission	(%)	52.022
Total: this reaction	(pps)	1.63e+10
Total: All reactions	(pps)	1.63e+10
X-Section in target	(mb)	beam
Target	(%)	100
Q (Charge) ratio	(%)	100
tuning	(%)	52.02
X angular transmission	(%)	82.61
Y angular transmission	(%)	62.98

"Monte Carlo " method With set Angular Acceptances No bounds

-Angular Acceptance & Bounds

- Use fixed angular acceptances
- Use physical limits (aperture) inside blocks to calculate fragment transmission

For block apertures LISE++ uses the slit limits accessible from the Block Cut & Acceptance dialog. (Pay attention there for the checkbox

		N of	N of		
ŧ	Ion	Passed	Initial	Transmi	ssion
11		66579	130560	51.00%	
)	100Se	167370	327680	51.08%	(+/-0.12%

"Monte Carlo " method No Angular Acceptances WITH bounds

-Angular Acceptance & Bounds

- Use fixed angular acceptances
- Use physical limits (aperture) inside blocks to calculate fragment transmission

For block apertures LISE++ uses the slit limits accessible from the Block Cut & Acceptance dialog. (Pay attention there for the checkbox

100Se : Monte Carlo Transmission Plot

100Se (1.8 MeV/u) + ; Transmitted Fragment 100S dp/p=25.49%; Brho(Tm): 0.9662, 0.9662, 0.9662 AngAccept: Off; Bounds: ON; "FP slits" - last

		N of	Nof	
#	Ion	Passed	Initial	Transmission
A11		85045	153693	55.33%
0	100Se	84995	153600	55.34% (+/-).:

Momentum Acceptance

4:59:00 :\EMMA\EMMA beam MA.lop]

after "FP slits": dP/P [%]: window projection

EMMA acceptances benchmark

Emittance corresponding to the acceptances

Emitta	nce—			
?	B (sig	eam CARD ma, semi-ax half-width)	1D - shape is, (Distribution) method)	
1. X	mm	1	Gaussian	-
2. T	mrad	90	Gaussian	-
3. Y	mm	1	Gaussian	•
4. P	mrad	60	Gaussian	•
5. L	mm	0	Gaussian	•
6. D	%	7.3	Gaussian	-

Note: Horizontal slits has to be applied for the "Distribution" method to limit momentum acceptance which happens due to apertures.

"Distribution" method With set Angular Acceptances and H.slits in MD +/- 130 mm

	statistics: 1005e		
	100Se Unkno	=34, N=66)	
	Q1(tuning) Q2(ElecDip 1) Q3(DipoleA) O4(DipoleB)		20 20 20 20
	Q5(ElecDip 2) Reaction		20 BEAM
	Ten Duednetien Data	(FF=)	7.07-10
	Total ion transmission	(%)	25.187
T	Total: this reaction	(pps)	7.87e+9
	Total: All reactions	(pps)	7.87e+9
	X-Section in target	(mb)	beam
	Target	(%)	100
	Q (Charge) ratio	(%)	100
	tuning	(%)	39.68
	X angular transmission	(%)	63.01
	Y angular transmission	(*)	62.98
	Drift 1	(*)	100
		(*)	100
	drift Q12	(*)	100
	Q2 dwift 00F	(*) (%)	100
	FleeDin 1	(*)	100
	drift ED H.Slits in	MD	+/- 130 mm
	dip slits	(%)	63.47
	X space transmission	(≋)	63.47
	Y space transmission	(%)	100

"Monte Carlo " method; No Angular Acceptances; WITH bounds

OT, 11/18/15, East Lansing

C

Benchmarks with input rays

In order to reproduce NIMA plots, input rays files has been created to use in the LISE⁺⁺ MC dialog

Z N q X(mm) dX X'(mrad) dX' Y(mm) dY Y'(mrad) dY' E,MeVu I.8755 50 46 20 0 0 0 1 0 0 -34 0.1 1.8755 1.8755 50 47 20 0 0 0 1 0 0 -34 0.1 1.8756 50 48 20 0 0 0 1 0 0 -34 0.1 1.8169 1.8169 50 49 20 0 0 0 1 0 0 -34 0.1 1.81829 1.81829 50 51 20 0 0 0 1 0 0 -34 0.1 1.74743 1.555 50 53 20 0 0 0 1 0 0 -34 0.1 1.74743 1.555 50 54 20 0 0 1 0 0 0 1.83701 1.83701 1.83701													
50 46 20 0 0 0 1 0 0 -34 0.1 1.87555 50 47 20 0 0 0 1 0 0 -34 0.1 1.85566 50 48 20 0 0 0 1 0 0 -34 0.1 1.83701 50 49 20 0 0 0 1 0 0 -34 0.1 1.81829 50 50 20 0 0 0 1 0 0 -34 0.1 1.782 50 51 20 0 0 0 1 0 0 -34 0.1 1.7744 50 53 20 0 0 0 1 0 0 0 1 1.7302 50 46 20 0 0 0 1 0 0 0.1 1.8506 50 47 20 0 0 1 0 0 0.1 <	Z	N	q	X (mm)	dX	X' (mrad)	dX'	Y (mm)	dY	Y' (mrad)	dY'	E,MeVu	dE
50 47 20 0 0 0 1 0 0 -34 0.1 1.85606 50 48 20 0 0 0 1 0 0 -34 0.1 1.83701 50 49 20 0 0 0 1 0 0 -34 0.1 1.81829 50 50 20 0 0 0 1 0 0 -34 0.1 1.81829 50 51 20 0 0 0 1 0 0 -34 0.1 1.76443 50 53 20 0 0 0 1 0 0 -34 0.1 1.74744 50 54 20 0 0 0 1 0 0 0.1 1.73022 50 47 20 0 0 1 0 0 0.1 1.85666 50 49 20 0 0 1 0 0 0.1 1.83701	50	46	20	0	0	0	1	0	0	-34	0.1	1.87555	0
50 48 20 0 0 0 1 0 0 -34 0.1 1.83701 50 49 20 0 0 0 1 0 0 -34 0.1 1.81829 50 50 20 0 0 0 1 0 0 -34 0.1 1.81829 50 51 20 0 0 0 1 0 0 -34 0.1 1.782 50 52 20 0 0 0 1 0 0 -34 0.1 1.77414 50 53 20 0 0 0 1 0 0 -34 0.1 1.77414 50 54 20 0 0 0 1 0 0 -34 0.1 1.8755 50 47 20 0 0 1 0 0 0.1 1.83506 50 50 20 0 0 1 0 0 0.1 1.782 <td>50</td> <td>47</td> <td>20</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>-34</td> <td>0.1</td> <td>1.85606</td> <td>0</td>	50	47	20	0	0	0	1	0	0	-34	0.1	1.85606	0
50 49 20 0 0 0 1 0 0 -34 0.1 1.81829 50 50 20 0 0 0 1 0 0 -34 0.1 1.81829 50 51 20 0 0 0 1 0 0 -34 0.1 1.782 50 52 20 0 0 0 1 0 0 -34 0.1 1.7443 50 53 20 0 0 0 1 0 0 -34 0.1 1.74714 50 54 20 0 0 0 1 0 0 -34 0.1 1.74714 50 46 20 0 0 0 1 0 0 0.1 1.8755 50 47 20 0 0 1 0 0 0.1 1.83701 50 50 20 0 0 1 0 0 0.1 1.8829 <	50	48	20	0	0	0	1	0	0	-34	0.1	1.83701	0
50 50 20 0 0 0 1 0 0 -34 0.1 1.8 50 51 20 0 0 0 1 0 0 -34 0.1 1.782 50 52 20 0 0 0 1 0 0 -34 0.1 1.76443 50 53 20 0 0 0 1 0 0 -34 0.1 1.77444 50 54 20 0 0 0 1 0 0 -34 0.1 1.73022 50 46 20 0 0 0 1 0 0 0.1 1.87555 50 47 20 0 0 0 1 0 0 0.1 1.83701 50 49 20 0 0 1 0 0 0.1 1.81829 50 51 20 0 0 1 0 0 0.1 1.7843 50	50	49	20	0	0	0	1	0	0	-34	0.1	1.81829	0
50 51 20 0 0 0 1 0 0 -34 0.1 1.782 50 52 20 0 0 0 1 0 0 -34 0.1 1.76443 50 53 20 0 0 0 1 0 0 -34 0.1 1.74714 50 54 20 0 0 0 1 0 0 -34 0.1 1.74714 50 46 20 0 0 0 1 0 0 -34 0.1 1.73722 50 46 20 0 0 0 1 0 0 0.1 1.8555 50 47 20 0 0 1 0 0 0.1 1.8566 50 49 20 0 0 1 0 0 0.1 1.8829 50 51 20 0 0 1 0 0 0.1 1.74748 50 53 </td <td>50</td> <td>50</td> <td>20</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>-34</td> <td>0.1</td> <td>1.8</td> <td>0</td>	50	50	20	0	0	0	1	0	0	-34	0.1	1.8	0
50 52 20 0 0 0 1 0 0 -34 0.1 1.76443 50 53 20 0 0 0 1 0 0 -34 0.1 1.74714 50 54 20 0 0 0 1 0 0 -34 0.1 1.74714 50 46 20 0 0 0 1 0 0 -34 0.1 1.76243 50 46 20 0 0 0 1 0 0 -34 0.1 1.77322 50 47 20 0 0 0 1 0 0 0.1 1.85606 50 48 20 0 0 0 1 0 0 0.1 1.81829 50 51 20 0 0 1 0 0 0.1 1.782 50 52 20 0 0 1 0 0 0.1 1.78714 50	50	51	20	0	0	0	1	0	0	-34	0.1	1.782	0
50 53 20 0 0 0 1 0 0 -34 0.1 1.74714 50 54 20 0 0 0 1 0 0 -34 0.1 1.73022 50 46 20 0 0 0 1 0 0 -34 0.1 1.73022 50 47 20 0 0 0 1 0 0 0 0.1 1.87555 50 47 20 0 0 0 1 0 0 0 0.1 1.83506 50 49 20 0 0 0 1 0 0 0.1 1.83701 50 50 20 0 0 0 1 0 0 0.1 1.81829 50 51 20 0 0 1 0 0 0.1 1.76243 50 53 20 0 0 1 0 0 0.1 1.73022 50 </td <td>50</td> <td>52</td> <td>20</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>-34</td> <td>0.1</td> <td>1.76443</td> <td>0</td>	50	52	20	0	0	0	1	0	0	-34	0.1	1.76443	0
50 54 20 0 0 0 1 0 0 -34 0.1 1.73022 50 46 20 0 0 0 1 0 0 0 1.87555 50 47 20 0 0 0 1 0 0 0 1.18566 50 47 20 0 0 0 1 0 0 0 0.1 1.8566 50 48 20 0 0 0 1 0 0 0 0.1 1.85870 50 49 20 0 0 0 1 0 0 0.1 1.81829 50 51 20 0 0 0 1 0 0 0.1 1.81829 50 52 20 0 0 1 0 0 0.1 1.7443 50 54 20 0 0 1 0 0 0.1 1.74714 50 46 20	50	53	20	0	0	0	1	0	0	-34	0.1	1.74714	0
50 46 20 0 0 0 1 0 0 0 1.1.87555 50 47 20 0 0 0 1 0 0 0.1 1.85566 50 48 20 0 0 0 1 0 0 0.1 1.85666 50 48 20 0 0 0 1 0 0 0.1 1.83701 50 50 20 0 0 0 1 0 0 0.1 1.81829 50 51 20 0 0 0 1 0 0 0.1 1.81829 50 51 20 0 0 0 1 0 0 0.1 1.7824 50 52 20 0 0 0 1 0 0 0.1 1.7744 50 54 20 0 0 1 0 0 34 0.1 1.87555 50 47 20 0	50	54	20	0	0	0	1	0	0	-34	0.1	1.73022	0
50 47 20 0 0 0 1 0 0 0 0.1 1.85606 50 48 20 0 0 0 1 0 0 0 0.1 1.85606 50 49 20 0 0 0 1 0 0 0.1 1.83701 50 50 20 0 0 0 1 0 0 0.1 1.81829 50 51 20 0 0 0 1 0 0 0.1 1.81829 50 51 20 0 0 0 1 0 0 0.1 1.782 50 52 20 0 0 1 0 0 0.1 1.77443 50 54 20 0 0 1 0 0 34 0.1 1.87555 50 47 20 0 0 1 0 0 34 0.1 1.88701 50 48 20	50	46	20	0	0	0	1	0	0	0	0.1	1.87555	0
50 48 20 0 0 0 1 0 0 0 1.1.83701 50 49 20 0 0 0 1 0 0 0 0.1.1.183701 50 50 20 0 0 0 1 0 0 0.1.1.18129 50 51 20 0 0 0 1 0 0 0.1.1.18129 50 51 20 0 0 0 1 0 0 0.1.1.1782 50 52 20 0 0 0 1 0 0 0.1.1.1782 50 53 20 0 0 0 1 0 0 0.1.1.1782 50 54 20 0 0 0 1 0 0 0.1.1.1782 50 46 20 0 0 0 1 0 0 34 0.1 1.85606 50 47 20 0 0 1 0 34	50	47	20	0	0	0	1	0	0	0	0.1	1.85606	0
50 49 20 0 0 0 1 0 0 0.1 1.81829 50 50 20 0 0 0 1 0 0 0 0.1 1.81829 50 51 20 0 0 0 1 0 0 0 0.1 1.81829 50 51 20 0 0 0 1 0 0 0 0.1 1.7843 50 53 20 0 0 0 1 0 0 0.1 1.7443 50 54 20 0 0 0 1 0 0 0.1 1.7443 50 54 20 0 0 1 0 0 0.1 1.73022 50 46 20 0 0 0 1 0 0 34 0.1 1.85666 50 48 20 0 0 1 0 0 34 0.1 1.8829 50	50	48	20	0	0	0	1	0	0	0	0.1	1.83701	0
50 50 20 0 0 0 1 0 0 0.1 1.8 50 51 20 0 0 0 1 0 0 0.1 1.782 50 52 20 0 0 0 1 0 0 0.1 1.782 50 52 20 0 0 0 1 0 0 0.11 1.782 50 53 20 0 0 0 1 0 0 0.11 1.74714 50 54 20 0 0 0 1 0 0 0.11 1.74714 50 46 20 0 0 0 1 0 0 0.11 1.87555 50 47 20 0 0 1 0 0 34 0.11 1.85606 50 48 20 0 0 0 1 0 0 34 0.1 1.81829 50 9 0	50	49	20	0	0	0	1	0	0	0	0.1	1.81829	0
50 51 20 0 0 0 1 0 0 0 1.782 50 52 20 0 0 0 1 0 0 0.1 1.782 50 53 20 0 0 0 1 0 0 0.1 1.7643 50 53 20 0 0 0 1 0 0 0.1 1.74714 50 54 20 0 0 0 1 0 0 0.1 1.7302 50 46 20 0 0 0 1 0 0 34 0.1 1.8755 50 47 20 0 0 0 1 0 0 34 0.1 1.8755 50 48 20 0 0 0 1 0 0 34 0.1 1.81829 50 9 0 0 0 1 0 0 34 0.1 1.8 50 51 </td <td>50</td> <td>50</td> <td>20</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0.1</td> <td>1.8</td> <td>0</td>	50	50	20	0	0	0	1	0	0	0	0.1	1.8	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	51	20	0	0	0	1	0	0	0	0.1	1.782	0
50 53 20 0 0 0 1 0 0 0 1.74714 50 54 20 0 0 0 1 0 0 0 1.73714 50 54 20 0 0 0 1 0 0 0 1.73022 50 46 20 0 0 0 1 0 0 34 0.1 1.87555 50 47 20 0 0 0 1 0 0 34 0.1 1.88566 50 48 20 0 0 0 1 0 0 34 0.1 1.88566 50 49 20 0 0 0 1 0 0 34 0.1 1.8129 50 51 720 74 720 0 0 1 1782 50 53 20 0 0 1 0 0 34 0.1 1.74714 50 54	50	52	20	0	0	0	1	0	0	0	0.1	1.76443	0
50 54 20 0 0 0 1 0 0 0 0.1 1.73022 50 46 20 0 0 0 1 0 0 34 0.1 1.87555 50 47 20 0 0 0 1 0 0 34 0.1 1.87555 50 47 20 0 0 0 1 0 0 34 0.1 1.85666 50 48 20 0 0 1 0 0 34 0.1 1.83701 50 49 20 0 0 0 1 0 0 34 0.1 1.81829 50 51 20 0 0 0 1 0 34 0.1 1.81829 50 51 20 0 0 0 1 0 34 0.1 1.81829 50 53 20 0 0 0 1 0 34 0.1 1.782	50	53	20	0	0	0	1	0	0	0	0.1	1.74714	0
50 46 20 0 0 1 0 0 34 0.1 1.87555 50 47 20 0 0 0 1 0 0 34 0.1 1.87555 50 47 20 0 0 0 1 0 0 34 0.1 1.85666 50 48 20 0 0 0 1 0 0 34 0.1 1.81829 50 49 20 0 0 0 1 0 0 34 0.1 1.81829 50 9 0 0 0 1 0 0 34 0.1 1.81829 50 9 0 0 0 1 0 0 34 0.1 1.81829 50 51 20 0 0 0 1 0 0 34 0.1 1.782 50 53 20 0 0 1 0 0 34 0.1 1.74714	50	54	20	0	0	0	1	0	0	0	0.1	1.73022	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	46	20	0	0	0	1	0	0	34	0.1	1.87555	0
50 48 20 0 0 0 1 0 0 34 0.1 1.83701 50 49 20 0 0 0 1 0 0 34 0.1 1.8129 50 9 different masses $P = 18$ MV 0 34 0.1 1.8129 50 51 720 $P = 18$ MV 0 34 0.1 1.8 50 51 Y2angles of -2,0,+2 degrees (as @ NMA of ig:2/43 34 0.1 1.782 50 53 20 0 0 1 0 0 34 0.1 1.7474 50 53 20 0 0 1 0 0 34 0.1 1.7474	50	47	20	0	0	0	1	0	0	34	0.1	1.85606	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	48	20	0	0	0	1	0	0	34	0.1	1.83701	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	49	20	0	0	0	1	0	0	34	0.1	1.81829	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	9 dif	feren	t mas	Ses	$@ \mathbf{F}_{c}$	=18	MV	0	34	0.1	1.8	0
50 WHIN Y angles Of -2, 0, +2 degrees (as @ NIMA Fig.2) 43 50 53 20 0 0 1 0 34 0.1 1.74714 50 54 20 0 0 1 1 0 0 34 0.1 1.74714	50	51	20	0	0	0	1	0	0	34	0.1	1.782	0
50 53 20 0 0 1 0 34 0.1 1.74714 50 53 20 0 0 1 0 0 34 0.1 1.74714	50	With	Yzan	gles	ot ₀ -2	,0,+2	degi	'ees ((as @	y NIM	AoFig	1.46443	0
50	50	53	20	0	0	0	1	0	0	34	0.1	1.74714	0
$T_{1/12/45}$ Factor anging 0 0 1 0 0 34 0.1 1.75022	T 501/	18/54	- 2 ⁰ - 2	nsing	0	0	1	0	0	34	0.1	1.73022	0

х

NIM A544 (2005) 565

LISE++

Fig. 2. Calculated mass focus of EMMA, showing rays corresponding to 9 adjacent masses emitted from the target with vertical angles of -2° , 0° , and 2° . At the focal plane, the 9 masses are seen to be dispersed horizontally and focussed vertically. Angular focussing in the horizontal direction is shown in Fig. 4.

0.904 m

NIM A544 (2005) 565

Fig. 3. Calculated energy focus of EMMA, showing rays corresponding to a single mass emitted from the target with vertical angles of -2° , 0° , and 2° , and with energies deviating from the central value by 0, $\pm 7.5\%$, and $\pm 15\%$. Chromatic aberrations in the vertical direction are evident in the vertical extent of the final focus.

NIM A544 (2005) 565

S NSCL

LISE++

Benchmarks for Y-angle & Energy (continue 2)

MICHIGAN STATE

E ++

NIM A544 (2005) 565

LISE++

NIM A544 (2005) 565

Fig. 5. Calculated M/q spectrum of EMMA centred about mass 100, showing 7 adjacent masses from 97 to 103 emitted from the target with uniform angular spreads of $\pm 3^{\circ}$ in the horizontal and vertical directions, and a uniform energy distribution of $\pm 10\%$.

2nd order

NIM A544 (2005) 565

Fig. 5. Calculated M/q spectrum of EMMA centred about mass 100, showing 7 adjacent masses from 97 to 103 emitted from the target with uniform angular spreads of $\pm 3^{\circ}$ in the horizontal and vertical directions, and a uniform energy distribution of $\pm 10\%$.

Charge state selection

FP slits-Xspace: output after slits ¹⁰⁰Zn (1.8 MeV/u) + H (1e-4 mg/cm²); Settings on ¹⁰⁰Zn^{16+..16+}; Config: DSSSSSESDFFSDSESSSSFFFFFF.

Length [m]

100Zn30+ P rojectile 1.8 MeV/u 100 enA 100Zn16+..16+ =beam £ agment ²H 0.0001 mg/cm2 T 🏉 Target ST 💿 Stripper

Very thin target for charge state simulation with "virtual" A=100 beam

OT, 11/18/15, East Lansing

Envelopes : LISE⁺⁺ MC & analytical solutions $\rightarrow X \& Y$

 Projectile
 100 Se²⁰⁺

 1.8 MeV/u
 100 enA

 F
 ragment

 100 Se^{20+,20+}
 =bearr

 To
 Target

 Sro
 Sripper

 Emitance
 (Dirithuburon (Dirithuburon)

 Participana, serenada, (Dirithuburon)
 1D - shape

Gaussia

1 Gaussian 40 Gaussian

Gaussian

Gaussian

•

•

40

LISE⁺⁺ analytical

OT, 11/18/15, East Lansin

Envelopes : LISE⁺⁺ MC & analytical solutions $\rightarrow X' \& Y'$

LISE⁺⁺ MC

Projectile 100 Se²⁰⁺ 1.8 MeV/u 100 enA Fragment 100 Se20+..20+ =bea T 🌒 Target St 🙍 Strippe Emittance 1D - shape (Distribution Beam CARD (sigma, semi-axis half-width...) method Gaussia

Gaussia

5

a

a

Reaction d(¹³²Sn,p)¹³³Sn

Without gold degrader

Projectile ¹³² Sn ⁵⁰⁺						
6 MeV/u 100 enA Fragment ¹³³ Sn ³⁷⁺³⁷⁺						
T Target	H2C 0.1 mg/cm2					
ST Stripper						

OT, 11/18/15, East Lansing

Fig. 6. Magnetic rigidities of beam and recoils from $d(^{13}Sn,p)^{113}Sn$ at 6 MeV/nucleon, calculated for a 100 µg cm⁻² (CD₂), target and a realistic ISAC-II beam energy spread of $\pm 0.7\%$ (1*e*). This figure dramatically illustrates why a magnetic spectrometer cannot be used to separate beam and recoils in this reaction.

 $Q = 37^+$ (????) and energy 463 (??) MeV are indicated in NIMA paper

¹³³Sn distributions after the gold degrader

Reaction $d(^{132}Sn,p)^{133}Sn$ (with gold degrader)

"Distribution" method (analytical solution)

😴 statistics: 133Sn									
133Sn Beta	- decay (Z=	=50, N=83)	Tir	1					
All reactions total isotope rate 1 81e+3 pps and Overall isotope transmission 59.472 %									
Q1 (tuning) Q2 (FlooDin 1)		32	31	30					
Q3 (DipoleA)		32	31	30					
Q4(DipoleB)		32	31	30					
Q5(ElecDip 2)		32	31	30					
Reaction		TwoBody	TwoBody	TwoBody					
Ion Production Rate	(pps)	6.19e+2	6.65e+2	5.26e+2					
Total ion transmission	(%)	20.336	21.853	17.282					
Total: this reaction	(pps)	1.81e+3	1.81e+3	1.81e+3					
X-Section in target	(mb)	2.16e+1	2.16e+1	2.16e+1					
Target	(%)	100	100	100					
Unreacted in material	(%)	100	100	100					
Unstopped in material	(%)	100	100	100					
Stripper	(%)	20.34	21.85	17.28					
Unreacted in material	(%)	100	100	100					
Q (Charge) ratio	(%)	20.34	21.85	17.28					
Unstopped in material	(%)	100	100	100					

FP slits-Xspace: output after slits

X (mm)

$Reaction \ d(^{132}Sn,p)^{133}Sn \quad ({\rm with \ gold \ degrader})$

MICHIGAN STATE UNIVERSITY LISE++

NIM A544 (2005) 565

Open Questions:

- 1. Mass & charge dispersion values calculation
- 2. Using Mass & charge dispersion values for optimization
- 3. <u>Electrical dipole second order matrix calculation! (new)</u>