

- EMMA extended configuration
- Documentation
- EMMA files location
- Optics
- Optimization
- Angular Acceptance
- Momentum Acceptance
- Benchmarks
\square Charge state selection
- rISE ${ }^{++}$analytical and MC envelopes
- Reaction d($\left.{ }^{132} \mathrm{Sn}, \mathrm{p}\right)^{133} \mathrm{Sn}$
- Decreasing Angular Acceptance for better selection

1.

NUCLEAR INSTRUMENTS \& METHODS IN PHYSICS
RESEARCH
Nuclear Instruments and Methods in Physics Research A 544 (2005) 565-576
www.elsevier.com/locate/nima

EMMA: A recoil mass spectrometer for ISAC-II at TRIUMF

Barry Davids ${ }^{\mathrm{a}, *}$, Cary N. Davids ${ }^{\text {b }}$

${ }^{\text {a }}$ TRIUMF, 4004 Wesbrook Mall, Vancouver BC, Canada V6T $2 A 3$
${ }^{\mathrm{b}}$ Physics Division, Argonne National Laboratory, Argonne IL 60439, USA
Received 13 September 2004; received in revised form 5 January 2005; accepted 7 January 2005
Available online 11 March 2005
2. The EMMA settings example and apertures kindly provided by Matt Williams (TRIUMF)

LISE ${ }^{++}$package / files

LISE ${ }^{++}$package / configurations

LISElconfig\TRIUMF**			
Name	Ext	Size	\downarrow Date
¢ $4 . .1$		<DIR>	11/17/2015
- EMMA	Icn	112.029	11/17/2015
[${ }_{\text {F }}$ s_DRAGON2000	Im	34.35	07/22/2015
言e_DRAGON2000	Icn	329.08	07/22/2015

LISE++ site / 9_10/ EMMA

Index of /9_10/EMMA

Name	Last modified	Size	

Block		Given Name	Start(m)	Length(m)	B0 $(\mathrm{kG}) / \times \mathrm{L}$	$\mathrm{Br}(\mathrm{Tm}) \mathrm{cor} /$ /real	DriftM/*Angle	Rapp $(\mathrm{cm}) / \times \mathrm{R}(\ldots$	Leff(m)/*Ldip(m)	2 nd order	CalcMatr/ $/ 2-Q$	AngAcc,Apps, Slits	COSY/Fit	SE
D)	= Dipole	tuning	0.000	0.0001	+3.2873	* 0.9862	${ }^{*}+0.0$	$\times 3.0000$	* 0.0000	.	* 19	HV .. .-	.	S
da	drift	Drift 1	0.000	0.2470			standard					.. HV .-	-	e
$Q>$	<Quad>	Q1	0.247	0.1398	+13.4745	0.9862	QUAD	3.5000	0.1398	yes	1 R	.. HV .-	.	e
da	drift	drift Q12	0.387	0.0350			standard					.. HV .-	-	e
$Q>$	<Quad>	Q2	0.422	0.2988	-8.7698	0.9862	QUAAD	7.5000	0.2988	yes	1 R	.- HV --	-	e
d민	difit	difit Q2E	0.721	0.3723			standard					.- HV .-	-	e
E	=ElecDip	ElecDip 1	1.093	1.7453	${ }^{*} 546.4 \mathrm{kV}$	0.9862	* +20.0	* 5.0000	* 1.7453	-	* 19 R	.- HV .-	-	E
dㅁ	difit	drift ED	2.838	1.2250			standard					.. HV .-	-	e
D)	$=$ Dipole	DipoleA	4.063	0.3491	-9.8619	* 0.9862	* -20.0	$\times 1.0000$	* 0.3491	yes	* 19 R	-	E
S III	_silis_	dip slits	4.412	0.0000			SLITS				 HV	-	e
D)	$=$ Dipole	DipoleB	4.412	0.3491	-9.8619	* 0.9862	* -20.0	* 1.0000	* 0.3491	yes	* 19 R	-. .-	-	E
d미	difift	drift DE	4.761	1.2225			standard					.. HV .-	-	e
E-	=ElecDip	ElecDip 2	5.984	1.7453	${ }^{*} 546.4 \mathrm{kV}$	0.9862	* +20.0	* 5.0000	* 1.7453	-	* 19 R	.- HV --	-	E
dロ	drift	drift EQ3	7.729	0.3649			standard					.- HV .-	\cdot	e
$Q>$	<Quad>	Q3	8.094	0.2988	-5.7122	0.9862	QUAAD	7.5000	0.2988	yes	1 R	.- HV --	fit - Q	e
d \square	drift	drift Q34	8.393	0.0300			standard					.- HV .-	-	e
$0 \vee$	<Quad>	Q4	8.423	0.4018	+6.8799	0.9862	QUA,	10.0000	0.4018	yes	1 R	.. HV .-	fit - Q	e
dㅁ	drift	drift Q4FP	8.825	0.3076			standard					.- HV --	.	e
S II	_silts_	FP slits	9.132	0.0000			SLITS				 HV	-	e

All "E"-blocks.
Extended configuration
$\overline{7}$ Quads \& Dipoles settings

symbol "*" after values denotes, that these values belongs to Dipole settings, where column names are found in the second row
Column 08: "Br-corrsp" - quadrupole(sextupole) field is scaled to this Brho-value; "Br-dip*" - dipole magnetic rigidity [T*m]
Column 08: "Br-corrsp" - quadrupole(sextupole) field is scaled to this Brho-value; "Br-dip*" - dipole magnetic
Column 09: "Rapp(cm)" - radius(half-aperture) of quadrupole(sextupole) in cm; "R(m)-dip*" - dipole raidus [m]
 Column 12: "Calc mode" - only for quadrupole(sextupole): 0 - no actions; 1 - recalculate automatically $B(f i e l d)$, keep matrix;

2- recalculate automaticall
Colums 15-18,20-23: slits and aperture(limit) sizes in [mm. If slit or aperture(limit) does not have action, then its size value is abser

These aperture parameters are used to obtain angular and momentum acceptances of the separator.

- LISE++ does not provide information for mass dispersion
- So, this value can not be used for optimization constraint
- Quad values have been taken from EMMA beam example
- All matrices have been calculated inside LISE ${ }^{++}$

EMMA_beam__original.Ipp

Block		Given Name	Start(m)	Length(m)	$80(k G) / \times \mathrm{U}$
D	= Dipole	tuning	0.000	0.0001	+3.2207
d만	dirit	Difit 1	0.000	0.2470	
Q \triangle	<Quad>	Q1	0.247	0.1398	+13.2014
d口	dirit	dift Q12	0.387	0.0350	
Q \triangle	<Quad>	Q2	0.422	0.2988	-8.8066
dㅁ	difit	difit Q2E	0.721	0.3723	
E	=ElecDip	ElecDip 1	1.093	1.7453	*450.2kV
dㅁ	dirit	drift ED	2.838	1.2250	
D)	= Dipole	DipoleA	4.063	0.3491	-9.6620
S II	_sits_	dip sits	4.412	0.0000	
D)	= Dipole	DipoleB	4.412	0.3491	-9.6620
dㅁ	difit	Drift DE	4.761	1.2225	
E	=ElecDip	ElecDip 2	5.984	1.7453	${ }^{*} 450.2 \mathrm{kV}$
dㅁ	diift	drift EQ3	7.729	0.3649	
$Q>$	<Quad>	Q3	8.094	0.2988	-6.0155
dロ	drift	difit Q34	8.393	0.0300	
$Q \Delta$	<Quad>	Q4	8.423	0.4018	+7.7544
dㅁ	drift	drift Q4FP	8.825	0.3076	
S II	_silis_	FP slits	9.132	0.0000	

Global LISE ${ }^{++}$matrix with these quad values
Note: No Y-focus, large Y/Y value

－LISE＋＋optimization was done to get Y －focus in the middle of M －dipole， X － \＆Y－focuses＠the end，R11 \＆R33 values according to the EMMA paper

EMMA＿beam＿＿original．Ipp

Block		Given Name	Start（m）	Length（m）	B0（kG1）$\times \mathrm{U}$
Pr	＝Dipole	turing	0.000	0.0001	＋3．2207
da	dift	Difit 1	0.000	0.2470	
$0 \bigcirc$	＜Quad＞	Q1	0.247	0.1398	＋13．2014
\square	difit	difit Q12	0.387	0.0350	
Q 0	＜Quad＞	Q2	0.422	0.2988	－8．8066
d \square	diit	difit Q2E	0.721	0.3723	
E	ElecDip	ElecDip 1	1.093	1.7453	＊450．2kV
d \square	diit	dirit ED	2.838	1.2250	
D2	＝Dipole	DipoleA	4.063	0.3491	－9．6620
S II	＿sits＿	dip silis	4.412	0.0000	
Did	＝Dipole	DipoleB	4.412	0.3491	9.6620
d \square	diit	Diitit DE	4.761	1.2225	
E	EElecDip	ElecDip 2	5.984	1.7453	＊450．2kV
d \square	diit	dirit EQ3	7.729	0.3649	
Q \bigcirc	＜Quad＞	Q3	8.094	0.2988	－6．0155
da	dirit	dirit Q34	8.393	0.0300	
${ }^{\circ} \bigcirc$	＜Quad＞	Q4	8.423	0.4018	＋7．7544
d \square	diit	difit Q4FP	8.825	0.3076	
S III	＿sitis＿	FP silis	9.132	0.0000	

EMMA＿beam．Ipp

Block		Given Name	Start（m）	Length（m）	B0［kG1） 4 U
D／${ }^{\text {a }}$	＝Dipole	turing	0.000	0.0001	＋3．2207
d可	dinit	Diit 1	0.000	0.2470	
\square	＜Quad＞	Q1	0.247	0.1398	＋13．2014
d可	difit	difit Q12	0.387	0.0350	
$\square^{\circ} \triangle$	＜Quad＞	Q2	0.422	0.2988	8.85920
d可	dint	difit Q2E	0.721	0.3723	
E	EElecDip	ElecDip 1	1.093	1.7453	＊450．2kV
dㅁ	dinit	dirit ED	2838	1.2250	
D	＝Dipole	DipoleA	4.063	0.3491	－9．6620
F＊	Fit	F＿DipY	4.412	0.0000	
F	Fit	F＿DipX	4.412	0.0000	
S	－sitis＿	dip silis	4.412	0.0000	
D2	＝Dipole	DipoleB	4.412	0.3491	－9．6620
d可	difit	Diitit DE	4.761	1.2225	
E	＝ElecDip	ElecDip 2	5.984	1.7453	＊450．2kV
믐	diit	dinit EQ3	7.729	0.3649	
\square	〈Quad＞	Q3	8.094	0.2988	－5．5964
d可	diit	difit Q34	8.393	0.0300	
\bigcirc	＜Quad〉	Q4	8.423	0.4018	＋6．7405

Global LISE ${ }^{++}$ matrix with new quad values

－Global matrix						
－2．07981	－0．0736	0	0	0	－0．22594	［mm］
9.77991	－0．13474	0	0	0	0.45385	［mrad］
0	0	1.35247	－1．103e－3	0	0	［mm］
0	0	8.96657	0.73193	0	0	［mrad］
－0．12657	6．385e－3	0	0	1	7.90368	［mm］
0	0	0	0	0	1	［\％］
／［mm］	／［mrad］	／［mm］	［mrad］	／［mm］	／［\％］	

First order matrix elements
${ }^{100} \mathrm{Se}(1.8 \mathrm{MeV} / \mathrm{u})$; Settings on ${ }^{100} \mathrm{Se}^{20+\ldots 20+}$; Config: DSSSSSESDFFSDSESSSS8FFFFFF ... $\mathrm{dp} / \mathrm{p}=12.75 \%$; Brho(Tm): $0.9662,0.9662,0.9662$

zero angular dispersion

Almost zero
angular dispersion

FP - double focus, double achromatic

Angular Acceptance

See details for angular acceptance with the next link http://lise.nscl.msu.edu/9 8/SE blocks.pdf\#page=5

EMMA_beam_AA.Ipp

Settings

Beam dialog

Monte Carlo options

Emittance				
?	Beam CARD (sigma, semi-axis, hall-width...]		1D - shape (Distribution method)	
1. \times mm	0	Gau	sian	\checkmark
2. T mrad	100	Rec	angle uniform	\checkmark
3. $Y \mathrm{~mm}$	0	Gau	sian	\checkmark
4. P mrad	100	Rec	angle uniform	\checkmark
5. L mm	0	Gaus	sian	\checkmark
6. F	0	Gau	sian	\checkmark

-Angular Acceptance \& Bounds
Γ Use fixed angular acceptances
\checkmark Use physical limits (aperture) inside blocks to calculate fragment transmission

For block apertures LISE++ uses the slit limits accessible from the Block Cut \& Acceptance dialog. (Pay attention there for the checkbox

Monte Carlo Transmission settings

Coming to the FP

Initial emittance gated on the final focal plane
 corresponds to 17 msr (ellipse)

Angular acceptance is equal to $\pm 90 \mathrm{x} \pm 60 \mathrm{mrad}$, that

Gate 2

EMMA_beam_AA.Ipp

mrad <-> deg.

Horizontal \pm	90
Vertical	60
Solid angle	16.96

 lost

Angular Acceptances transmission benchmarks

"Distribution" method
With set Angular Acceptances

"Monte Carlo " method With set Angular Acceptances No bounds

-Angular Acceptance \& Bounds

V Use fixed angular acceptances
\lceil Use physical limits (aperture) inside blocks to calculate fragment transmission
For block apertures LISE ++ uses the slit limits accessible from the Block Cut \& Acceptance dialog. (Pay attention there for the checkbox

		N of	N of	
\#	Ion	Passed	Initial	Transmission
All		66579	130560	51.008
0	100Se	167370	327680	$51.08 \% \quad(+/-0.12 \%$

Target	100.08
tuning	51.00%
Angular acceptance	51.00%

"Monte Carlo " method

 No Angular Acceptances WITH boundsAngular Acceptance \& Bounds
Γ Use fixed angular acceptances.
V Use physical limits (aperture) inside blocks to calculate fragment transmission
For block apertures LISE++ uses the slit limits accessible from the Block Cut \& Acceptance dialog. (Pay attention there for the checkbox

100Se : Monte Carlo Transmission Plot
$100 \mathrm{Se}(1.8 \mathrm{MeV} / \mathrm{u})+$; Transmitted Fragment 100 $\mathrm{dp} / \mathrm{p}=25.49 \%$; Brho(Tm): 0.9662, 0.9662, 0.9662 AngAccept: Off; Bounds: ON; "FP slits" - last

		N of	N of	
\#	Ion	Passed	Initial	Transmission
All		85045	153693	55.338
0	100 Se	84995	153600	55.34\% (+/-

${ }^{100}$ Se : MC Transmission Plot - Envelope (all)
${ }^{100} \mathrm{Se}(1.8 \mathrm{MeV} / \mathrm{u})+$; Transmitted Fragment ${ }^{100} \mathrm{Se}^{20+} .20+$ (beam); Optics Order: 1

Momentum acceptance is defined by the ED1 gap

100Se : Monte Carlo Transmission Plot
after "FP slits": dP/P [\%]: window projection -- $100 \mathrm{Se}(1.8 \mathrm{MeV} / \mathrm{u})+$; Transmitted Fragment $100 \mathrm{Se}^{20+.20+}$ (beam); Optics Order: 1 AngAccept: Off; Bounds: ON; "FP slits" - last block for MC calc; no gates; Config: DSSSSSESDSDSESSSSSSMM
Corresponds to the
Dipole X-aperture
$\pm 115 \mathrm{~mm}$

$$
\begin{gathered}
\Delta \mathrm{P} / \mathrm{P}= \pm 7.3 \% \\
(\Delta \mathrm{E} / \mathrm{E}= \pm 14.6 \%)
\end{gathered}
$$

$1^{\text {st }}$ order

Note: Horizontal slits has to be applied for the "Distribution" method to limit momentum acceptance which happens due to apertures.

Emittance corresponding

 to the acceptances
"Distribution" method

With set Angular Acceptances and H.slits in MD +/- 130 mm

"Monte Carlo " method; No Angular Acceptances; WITH bounds

z	N	q	$\mathrm{X}(\mathrm{mm})$	dx	X^{\prime} (mrad)	dx'	$\mathrm{Y}(\mathrm{mm})$	dY	Y^{\prime} (mrad)	dY'	E,MeVu	dE
50	46	20	0	0	0	1	0	0	-34	0.1	1.87555	0
50	47	20	0	0	0	1	0	0	-34	0.1	1.85606	0
50	48	20	0	0	0	1	0	0	-34	0.1	1.83701	0
50	49	20	0	0	0	1	0	0	-34	0.1	1.81829	0
50	50	20	0	0	0	1	0	0	-34	0.1	1.8	0
50	51	20	0	0	0	1	0	0	-34	0.1	1.782	0
50	52	20	0	0	0	1	0	0	-34	0.1	1.76443	0
50	53	20	0	0	0	1	0	0	-34	0.1	1.74714	0
50	54	20	0	0	0	1	0	0	-34	0.1	1.73022	0
50	46	20	0	0	0	1	0	0	0	0.1	1.87555	0
50	47	20	0	0	0	1	0	0	0	0.1	1.85606	0
50	48	20	0	0	0	1	0	0	0	0.1	1.83701	0
50	49	20	0	0	0	1	0	0	0	0.1	1.81829	0
50	50	20	0	0	0	1	0	0	0	0.1	1.8	0
50	51	20	0	0	0	1	0	0	0	0.1	1.782	0
50	52	20	0	0	0	1	0	0	0	0.1	1.76443	0
50	53	20	0	0	0	1	0	0	0	0.1	1.74714	0
50	54	20	0	0	0	1	0	0	0	0.1	1.73022	0
50	46	20	0	0	0	1	0	0	34	0.1	1.87555	0
50	47	20	0	0	0	1	0	0	34	0.1	1.85606	0
50	48	20	0	0	0	1	0	0	34	0.1	1.83701	0
50	49	20	0	0	0	1	0	0	34	0.1	1.81829	0
50	9 different masses@c $0=18$ MV								34	0.1	1.8	0
50 50	with Yzangles			$o f_{0}-2,0, c+2$		degrees		(as@	NIM	$0.1 \mathrm{Fic}$	$y_{1}^{1.788^{2}}$	0
50	53	20	0	0	- 0	1	0	-	34	0.1	1.74714	0
C- 50	18. 5^{54}	Eas^{20}	- ${ }^{0}$	0	0	1	0	0	34	0.1	1.73022	0

NIM A544 (2005) 565

Fig. 2. Calculated mass focus of EMMA, showing rays corresponding to 9 adjacent masses emitted from the target with vertical angles of $-2^{\circ}, 0^{\circ}$, and 2°.
At the focal plane, the 9 masses are seen to be dispersed horizontally and focussed vertically. Angular focussing in the horizontal direction is shown in Fig. 4.

LISE++

$2^{\text {nd }}$ order

$1^{\text {st }}$ order

ig. 3. Calculated energy focus of EMMA, showing rays corresponding to a single mass emitted from the target with vertical angles of $-2^{\circ}, 0^{\circ}$, and 2°, and with energies deviating from the central value by $0, \pm 7.5 \%$, and $\pm 15 \%$. Chromatic aberrations in the vertical direction are evident in the vertical extent of the final focus.

NIM A544 (2005) 565
LISE++

Fig. 3 : Benchmarks for Y-angle \&\& Energy (continue)

NIM A544 (2005) 565

LISE++

Benchmarks for Y-angle \& Energy (continue 2)

This difference in X-
COSY map of the $1^{\text {st }}$ FMA ED

After the drift 1.2 m

For $\Delta \mathrm{d}=+7.5 \%$
$\Delta \mathrm{x}=\Delta \mathrm{X}_{1 \mathrm{~d}}+\Delta \mathrm{X}_{2 \mathrm{dd}}+\left(\Delta \mathrm{t}_{1 \mathrm{~d}}+\Delta \mathrm{t}_{2 \mathrm{dd}}\right)^{*} \mathrm{~L}=+85.1 \mathrm{~mm}$
For $\Delta \mathrm{d}=-7.5 \%$
$\Delta \mathrm{x}=\Delta \mathrm{x}_{1 \mathrm{~d}}+\Delta \mathrm{x}_{2 \mathrm{dd}}+\left(\Delta \mathrm{t}_{1 \mathrm{~d}}+\Delta \mathrm{t}_{2 \mathrm{dd}}\right)^{*} \mathrm{~L}=\underline{-105.7 \mathrm{~mm}}$

[^0]
transport format [mm-mrad]

$x_{1 d}=(t / d){ }^{*} \Delta d=4.77 \mathrm{~mm} / \%^{*} 7.5 \%=35 \mathrm{~mm}$
$\Delta \mathrm{x}_{2 \mathrm{dd}}=(\mathrm{x} / \mathrm{d} / \mathrm{d})^{*} \Delta \mathrm{~d} * \Delta \mathrm{~d}=$
$-6.5 \mathrm{e}-2 \mathrm{~mm} / \% / \%$ * 7.5% * $7.5 \%=-3.7 \mathrm{~mm}$
\[

$$
\begin{aligned}
& \Delta \mathrm{t}_{1 \mathrm{~d}}=(\mathrm{t} / \mathrm{d}) * \Delta \mathrm{~d}=6.7 \mathrm{mrad} / \% * 7.5 \%=50.3 \mathrm{mrad} \\
& \Delta \mathrm{t}_{2 \mathrm{dd}}=(\mathrm{t} / \mathrm{d} / \mathrm{d}) * \Delta \mathrm{~d}^{*} \Delta \mathrm{~d}= \\
& \quad-9.8 \mathrm{e}-2 \mathrm{mrad} / \% / \% * 7.5 \% * 7.5 \%=-5.5 \mathrm{mrad}
\end{aligned}
$$
\]

Hig. 4 : Benchmarks for X - \& Y -angles

NIM A544 (2005) 565

Y range: $\pm 10 \mathrm{~cm}$

Focal Plane
 emitted from the target with angles of $0, \pm 1.5^{\circ}$, and $\pm 3^{\circ}$ in the vertical and horizontal directions. The dominant geometric aberration in the dispersive direction, proportional to the square of the horizontal angle, is evident in the horizontal extent of the final focus

$2^{\text {nd }}$ order

$2^{\text {nd }}$ order

NIM A544 (2005) 565

Fig. 5. Calculated M / q spectrum of EMMA centred about mass 100 , showing
7 adjacent masses from 97 to 103 emitted from the target with uniform angular spreads of $\pm 3^{\circ}$ in the horizontal and vertical directions, and a uniform energy distribution of $\pm 10 \%$.

NIM A544 (2005) 565
LISE++

Fig. 5. Calculated M / q spectrum of EMMA centred about mass 100 , showing
7 adjacent masses from 97 to 103 emitted from the target with uniform angular spreads of $\pm 3^{\circ}$ in the horizontal and vertical directions, and a uniform energy distribution of $\pm 10 \%$.

Charge state selection

Projectile ${ }^{100} \mathrm{Zn}^{\mathbf{3 0 +}}$			
fragment		${ }^{100} \mathrm{Zn}^{16+. .16+}$	=bearm=
T ${ }^{\text {P }}$	Target	${ }^{2} \mathrm{H}$	
		0.0001	gicir 2
Stor	Stripper		

Very thin target for charge state simulation with "virtual" A=100 beam

FP slits-Xspace: output after slits
${ }^{100} \mathrm{Zn}(1.8 \mathrm{MeV} / \mathrm{u})+\mathrm{H}\left(1 \mathrm{e}-4 \mathrm{mg} / \mathrm{cm}^{2}\right)$; Settings on $100 \mathrm{Zn}^{16+. .16+}$; Config: DSSSSSESDFFSDSESSSSSFFFFFF. $\mathrm{dp} / \mathrm{p}=100.00 \%$; Brho(Tm): 0.9662, 0.9662, 0.9662

Envelopes : LISE ${ }^{++}$MC \& analytical solutions $\rightarrow X \& Y$

LISE++ MC

LISE ${ }^{++}$analytical

Envelopes : LISE ${ }^{++}$MC \& analytical solutions $\rightarrow X^{\prime}$ \& Y^{\prime}

LISE++ MC

LISE ${ }^{++}$analytical

Projectile ${ }^{132} \mathrm{Sn}^{50+}$ $6 \mathrm{MeV} / \mathrm{u} 100 \mathrm{enA}$		
Fragment ${ }^{133} \mathrm{Sn}^{37+. .37+}$		
To	Target	$\begin{aligned} & \mathrm{H} 2 \mathrm{C} \\ & 0.1 \mathrm{rg}, \mathrm{cr} 2 \end{aligned}$
$\mathbf{S T}^{\text {a }}$	Stripper	

EMMA_reaction_NoGold.Ipp

Without gold degrader

Production mechanism

- Two Body Reactions:
$5 \cdot[<15 A M e V]$ G.Schiwietz, P.Grande, NIM B175-177 (2001) 125-131

Energy Losses
$1 \cdot[\mathrm{H}$-base] J.F. Ziegler et al, Pergamon Press, NY (low energy)

Reaction $\mathrm{d}\left({ }^{132} \mathrm{Sn}, \mathrm{p}\right)^{133} \mathrm{Sn}$: fragment distributions

${ }^{132} \mathrm{Sn}(6.0 \mathrm{MeV} / \mathrm{u})+\mathrm{H} 2 \mathrm{C}\left(1 \mathrm{e}-1 \mathrm{mg} / \mathrm{cm}^{2}\right)$

Please, Compare with Fig. 6 NIMA paper

$$
\begin{aligned}
& Q=41^{+} \text {and energy } 782 \mathrm{MeV} \\
& \text { are indicated in NIMA paper }
\end{aligned}
$$

133Sn after Target (H2C): Fragment energy $=5.8$
${ }^{132} \mathrm{Sn}(6.0 \mathrm{MeV} / \mathrm{u})+\mathrm{H} 2 \mathrm{C}\left(1 \mathrm{e}-1 \mathrm{mg} / \mathrm{cm}^{2}\right)$
Calculations for ${ }^{133} \mathrm{Sn}{ }^{37+37+37+37+37+}$; Material H 2 C

Reacilon d(132Sn, $133 \mathrm{~S} \cap$ (with gold degrader)

D	DipoleB		$\begin{gathered} \text { Brho } \\ 0.9862 \mathrm{Tm} \end{gathered}$
dㅁ	drift DE		standard $1.22 \text { m }$
E二	ElecDip 2	Er	$4371.5 \mathrm{kV} / \mathrm{m}$ 546.4 KV 21.86 MJJC

$\mathrm{Q}=37^{+}$(????? $)$and energy 463 (??) MeV are indicated in NIMA paper
${ }^{133}$ Sn distributions after the gold degrader

Reaction $d\left({ }^{132} \operatorname{Sn}, \mathrm{p}\right)^{133} \mathrm{Sn}$ (with god degrader)

MICHIGAN STATE
1 N

LIS Bir

"Distribution" method (analytical solution)

푼 statistics: 133Sn				
133Sn Beta	Beta- decay ($\mathrm{Z}=50, \mathrm{~N}=83$)		Tin	
All reactions total isotope rate $181 \mathrm{et3}$ and Overall isotope transmission 59.472			$\begin{aligned} & \text { pps } \\ & \stackrel{\text { \% }}{8} \\ & \hline \end{aligned}$	
Q1 (tuning)		32	31	30
Q2 (ElecDip 1)		32	31	30
Q3 (DipoleA)		32	31	30
Q4 (DipoleB)		32	31	30
Q5 (ElecDip 2)		32	31	30
Reaction		TwoBod	TwoBody	TwoBody
Ion Production Rate	(pps)	$6.19 \mathrm{e}+$	$6.65 \mathrm{e}+2$	$5.26 \mathrm{e}+2$
Total ion transmission	(\%)	20.336	21.853	17.282
Total: this reaction	(pps)	$1.81 \mathrm{e}+$	$1.81 \mathrm{e}+3$	$1.81 \mathrm{e}+3$
X -Section in target	(mb)	$2.16 \mathrm{e}+$	$2.16 \mathrm{e}+1$	$2.16 \mathrm{e}+1$
Target	(8)	100	100	100
Unreacted in material	(\%)	100	100	100
Unstopped in material	(\%)	100	100	100
Stripper	(8)	20.34	21.85	17.28
Unreacted in material	(\%)	100	100	100
Q (Charge) ratio	(\%)	20.34	21.85	17.28
Unstopped in material	(\%)	100	100	100

FP slits-Xspace: output after slits

NIM A544 (2005) 565

LISE++

Open Questions:

1. Mass \& charge dispersion values calculation
2. Using Mass \& charge dispersion values for optimization
3. Electrical dipole second order matrix calculation! (new)

[^0]: !!! Electric dipole $x / d^{2} \& t / d^{2}$ values are very important for the analyzer and should calculated by LSE ${ }^{++}$in future

