

Version 9.10.177 from 09/11/2015

□ FMA extended configuration

- Documentation
- FMA files location
- Optics
- Optimization
- Angular Acceptance
- Momentum Acceptance
- □ Experiment ³²S (115 MeV) + ⁵⁸Ni
- Open questions

Link: Separator "FMA" @ ANL

1.

Nuclear Instruments and Methods in Physics Research B70 (1992) 358-365 North-Holland

Startup of the Fragment Mass Analyzer at ATLAS

C.N. Davids, B.B. Back, K. Bindra, D.J. Henderson, W. Kutschera, T. Lauritsen, Y. Nagame¹, P. Sugathan², A.V. Ramayya³ and W.B. Walters⁴ Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA

2. COSY file with FMA settings example kindly provided by Darek Seweryniak (ANL)

LISE⁺⁺ file

Vise\files\examples*.*		
Name		
▲ []		
🛅 [afission]		
🦲 [dubna]		
🗀 [GANIL]		
🚞 [GSI-SFRS]		
inscl]		
🗀 [RESOLUT]		
🗀 [RIKEN]		
🗀 [SECAR]		
🗀 [TAMU]		
🗀 [TRIUMF]		
FMA_32S_58Ni	FMA extended for the reaction ${}^{32}S(115MeV) + {}^{58}Ni(0.4 \text{ mg/cm}^2)$	Recommended!
TI I CONSTRAINTS		
🔫 PRISMA		
— - · · - — ·		

LISE⁺⁺ configuration

Optics settings (fast editing)

×

Block	(Given Name	Start(m)	Length(m)	BO(kG)/*U	Br(Tm)cor/*real	DriftM/*Angle	Rapp(cm)/*R(Leff(m)/*Ldip(m)	2 nd order	CalcMatr/*Z-Q	AngAcc,Apps,Slits	COSY Fit	SE
D)	= Dipole	tuning	0.000	0.0001	+1.4639	* 0.4392	* +0.0	× 3.0000	× 0.0000		* 24	HV		S
d 🗖	drift	Drift 1	0.000	0.3000			standard							е
<mark>0</mark> 🔷	<quad></quad>	Q1	0.300	0.2990	+3.0201	0.4392	QUAD	5.0000	0.2990	yes	1 R	HV	fit - Q	е
d 🗖	drift	Drift 3	0.599	0.0160			standard					HV		е
<mark>Q</mark> 🔷	<quad></quad>	Q2	0.615	0.1900	-3.6757	0.4392	QUAD	5.0000	0.1900	yes	1 R	HV	fit - Q	е
d 🗖	drift	Drift 5	0.805	0.3000			standard							е
E	=ElecDip	ElecDip 1	1.105	1.3963	*96.4kV	0.4392	* +20.0	× 4.0000	× 1.3963		* 24 R	HV		E
d 🗖	drift	Drift 6	2.501	1.2015			standard							е
D)	= Dipole	DipoleA	3.703	0.3491	-4.3916	× 0.4392	* -20.0	× 1.0000	× 0.3491	yes	* 24 R	HV		E
s I	_slits_	dip slits	4.052	0.0000			SLITS					HV		е
D	= Dipole	DipoleB	4.052	0.3491	-4.3916	× 0.4392	* -20.0	× 1.0000	* 0.3491	yes	* 24 R	HV		E
d 🗖	drift	Drift 8	4.401	1.2015			standard					HV		е
E	=ElecDip	ElecDip 2	5.602	1.3963	*96.4kV	0.4392	* +20.0	× 4.0000	× 1.3963		* 24 R	HV		Е
d 🗖	drift	Drift 9	6.999	0.3000			standard							е
<mark>Q</mark> 🔷	<quad></quad>	Q3	7.299	0.2950	-3.0702	0.4392	QUAD	7.5000	0.2950	yes	1 R	HV	fit - Q	е
d 🗖	drift	Drift 11	7.594	0.0160			standard					HV		е
<mark>0</mark> 🔷	<quad></quad>	Q4	7.610	0.2940	+3.6571	0.4392	QUAD	7.5000	0.2940	yes	1 R	HV	fit - Q	е
d 🗖	drift	Drift 13	7.904	0.3130			standard					HV		е
s I	_slits_	FP slits	8.217	0.0000			SLITS					HV		е

Quads & Dipoles settings ! FILE: C:\user\c\l;	; ise_pp_910\f	files∖exa	mples\FM	A_32S_58Ni.	lpp								sl	its			_ (ape	rtu	res	
1 2 N Block name or	3 Kind of Block	4 Start (m)	5 Length (m)	6 DriftMode Angle(°)*	7 B0(kG)	8 Br-corrsp Br-dip*	9 Rapp(cm) R(m)*	10 L_eff(m) Len(m)*	11 2nd order	12 Calc A Mode r	13 AngAco mode	14 c Slits shape	15 Xmin slit	16 Xmax slit	17 Ymin slit	18 Ymax sli;	19 Appert shape	20 Xmin limit	21 Xmax limit	22 Ymin limit	23 Ymax limit
 tuning Drift 1 Q1 Drift 3 Q2 Drift 5 ElecDip 1 Drift 6 DipoleA dip slits DipoleB Drift 8 ElecDip 2 Drift 9 Q3 Drift 11 Q4 Drift 13 FP slits 	Dipole Drift Drift Drift Drift ElecDip Drift Dipole Drift Dipole Drift ElecDip Drift Drift Drift Drift Drift Drift Drift	$0.000 \\ 0.000 \\ 0.599 \\ 0.615 \\ 0.805 \\ 1.105 \\ 2.501 \\ 3.703 \\ 4.052 \\ 4.052 \\ 4.401 \\ 5.602 \\ 6.999 \\ 7.299 \\ 7.594 \\ 7.904 \\ 8.217 \\ 0.000 \\ 0.00$	0.000 0.300 0.299 0.016 0.300 1.396 1.202 0.349 0.000 0.349 1.202 1.396 0.300 0.349 1.202 1.396 0.300 0.300 0.300 0.313 0.000	+0.0 * standard multipole standard +20.0 * standard -20.0 * SLITS -20.0 * standard +20.0 * standard +20.0 * standard multipole standard SLITS	+1.464 +3.020 -3.676 96.4kV +4.392 +4.392 96.4kV -3.070 +3.657	0.4392* 0.4392 0.4392 0.4392* 0.4392* 0.4392* 0.4392* 0.4392* 0.4392	3.00* 5.00 4.00* 1.00* 1.00* 4.00* 7.50 7.50	0.00* 0.30 0.19 1.40* 0.35* 0.35* 1.40* 0.29 0.29	- yes - yes yes yes yes	1 1 1	HV 	rectn rectn rectn rectn rectn rectn rectn rectn rectn rectn rectn rectn rectn rectn rectn rectn	-100	+100	-60	+60	ellps rectn ellps ellps rectn rectn rectn rectn rectn ellps ellps ellps ellps rectn	-50 -50 -50 -100 -100 -100 -50 -75 -75 -75 -75 -75	+50 +50 +50 +100 +100 +100 +50 +75 +75 +75 +75 +75	-50 -50 -50 -60 -100 -100 -75 -75 -75 -75 -75	+50 +50 +50 +60 +60 +100 +100 +75 +75 +75 +75 +75
! symbol "*" after y ! Column 08: "Br-con ! Column 09: "Rapp(d ! Column 10: "Leff ! Column 12: "Cale y ! ! Column 13: "AngAcd ! Columns 15-18,20-2	values denot rrsp" - quac cm)" - radiu (m)" - effec mode" - only 2 c mode" - "H 23: slits ar	tes, that drupole(s us(half-a ctive len y for qua - recalc H(V)" : h apertu	these v extupole perture) gth of q drupole(ulate au orizonta re(limit	alues belon) field is of quadrup uadrupole(s sextupole); tomatically l(vertical)) sizes in	gs to Dip scaled to ole(sextu extupole) 0 - no a ' the matr angular [mm]. If	ole settin this Brho pole) in c in m, wic ctions; 1 ix, keep B acceptance slit or ap	gs, where -value; " m; "R(m) h is used - recalcu (field) will be erture(li	column n Br-dip*" -dip*" - for Opti late auto applied f mit) does	ames ar - dipol dipole cal mat matical or this not ha	e found e magne raidus rix ca ly B(f: block ve act:	d in t etic r [m] lcualt ield),	the secon rigidity tiuons; , keep ma then its	nd row [T*m] "Len(atrix; size	of ti m)*" - value	tles, dipol is abs	and al e lerg	an mark	ed by '	'*"	axis (m	.]

These aperture parameters are used to obtain angular and momentum acceptances of the separator.

This settings list can be produced in LISE⁺⁺ using menu "Experimental Settings -> Optics -> Optics settings: View and Print"

- LISE⁺⁺ does not provide information for mass dispersion
- So, this value can not be used for optimization constraint
- Quad values have been taken from COSY optimization
- All matrices have been calculated inside LISE⁺⁺

Final global matrices obtained with

- Lilobal mat						
Ciobarmac						
-1.52806	0	0	0	0	-0.01757	[cm]
68.55995	-0.65421	0	0	0	0.4313	[mrad]
0	0	1.02387	-0.00004	0	0	[cm]
0	0	83.43027	0.97344	0	0	[mrad]
-0.05456	0.00115	0	0	1	0.7479	[cm]
0	0	0	0	0	1	[%]
/[cm]	/[mrad]	/[cm]	/[mrad]	/[cm]	/[%]	

LISE++

-0.15280E+01	0.10402E-04	0.00000E+00	0.00000E+00	0.00000E+00	-0.17620E-01
0.68469E+02	-0.65493E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.43196E+00
0.00000E+00	0.00000E+00	0.10263E+01	0.92528E-05	0.00000E+00	0.00000E+00
0.00000E+00	0.00000E+00	0.60684E+02	0.97495E+00	0.00000E+00	0.00000E+00
-0.54643E-01	0.11536E-02	0.00000E+00	0.00000E+00	0.10000E+01	0.74791E+00
0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.10000E+01

COSY

Will be zoomed on the next page

Optics fit	
Blocks with parameters to vary	Active Constraint blocks
#01-q Position@005: Q1 #02-q Position@007: Q2 #03-q Position@018: Q3 #04-q Position@020: Q4	#01 @012: R34 = 0 F_DipY #02 @022: R16 = 0 F_R16 #03 @023: R12 = 0 F_R12 #04 @024: R26 = 0 F_R26 #05 @026: R34 = 0 F_R34

Optics fit was good. All constraints done!

🗧 c:\program files (x86)\lise	<pre>\results\FMA_v5_32S_58Ni_fit.fit_init</pre>		The Part New York
Initial +0.273762	LISE fit reduced values		
Parameters: #01-q: Q1 #02-q: Q2 #03-q: Q3 #04-q: Q4	LeftBound Initial +0.0e+00 < +4.001e+00 -5.0e+00 < -4.091e+00 -5.0e+00 < -3.525e+00 -5.0e+00 < +5.593e+00	RightBound < +5.0e+00 < +0.0e+00 < +5.0e+00 < +5.0e+00	
Constraint values: #01: F_DipY #02: F_R16 #03: F_R12 #04: F_R26 #05: F_R34	Initial Final +4.415e-03 +5.741e-06 +1.084e-05 +8.541e-01 -2.093e-03	Precision 1.0e-02 1.0e-03 1.0e+03 1.0e+01 1.0e-01	(Init-Des)/P Desired +4.415e-01 = 0 +5.741e-03 = 0 +1.084e-02 = 0 +8.541e-02 = 0 +2.093e-02 = 0
==> "F_R34" : last	fitting block global opti	cal matrix and	d sigma vector
+9.696=-01 +1.0 +1.721=+01 +1.0 0 0 0 -8.281=-02 -5.7 0 0	== G L O B A L ==== matr 84e-05 0 0 32e+00 0 0 +1.097e+00 -2.09 +7.140e+00 +8.97 05e-07 0 0 0 0	rormat [1 ix ======== 0 +1 3e=03 0 1 9e=01 0 1 1.0 +1 0 +1	mm.mrad] ========= 5.741e=06 9.70e=01 8.541e=01 1.74e+01 0 1.10e+00 0 7.36e+00 1.479e+00 7.48e+00 1.000e+00 1.00e+00

But... no more any dispersion in the final focal plane including charge dispersion ☺

See right plots for this optics, and compare with the previous page

See details for angular acceptance with the next link http://lise.nscl.msu.edu/9_8/SE_blocks.pdf#page=5

Angular Acceptance : Results

MICHIGAN STATE UNIVERSITY LISE ++

http://lise.nscl.msu.edu/9_10/FMA_beam.lpp

Angular Acceptances transmission benchmarks

"Distribution" method With set Angular Acceptances

Emittance Beam CARD 1D - shape (sigma, semi-axis, (Distribution half-width) method)							
1. X	mm	0	Gaussian 💌				
2. T	mrad	50	Rectangle uniform 📃 💌				
3. Y	mm	0	Gaussian 💌				
4. P	mrad	50	Rectangle uniform 📃 💌				
5. L	mm	0	Gaussian 💌				
6. D	%	Q	Rectangle uniform 📃 💌				

87Mo Beta	+ decay	(Z=42, N=45)
Q1(tuning)		18
Q2(ElecDip 1)		18
Q3(DipoleA)		18
Q4(DipoleB)		18
Q5(ElecDip 2)		18
Reaction		BEAM
Ion Production Rate	(pps)	2.35e+10
Total ion transmission	(%)	67.68
Total: this reaction	(pps)	2.35e+10
Total: All reactions	(pps)	2.35e+10
X-Section in target	(mb)	beam
Target	(%)	100
Q (Charge) ratio	(%)	100
tuning	(%)	67.68
X angular transmission	(%)	82.47
Y angular transmission	(%)	82.07

"Monte Carlo " method With set Angular Acceptances No bounds

- Angular Acceptance & Bounds-

- Use fixed angular acceptances
- Use physical limits (aperture) inside blocks to calculate fragment transmission

For block apertures LISE++ uses the slit limits accessible from the Block Cut & Acceptance dialog. (Pay attention there for the checkbox

Monte Carlo transmission statistics by blocks Isotope Group : Monte Carlo Yield Plot

87Mo (0.4 MeV/u) + ; Transmitted Fragment 87Mo18+. dp/p=14.01% ; Brho(Tm): 0.4495, 0.4495, 0.4495 AngAccept: ON; Bounds: Off; "FP slits" - last bl

		N of	N of		
#	Ion	Passed	Initial	Transmi	ssion
A11		43542	64068	67.96%	
0	87Mo	43493	64000	67.96%	(+/-0.33%)
			100	0.9	
Targ	et		100.	08	
Targ	ng		67.9	0 5)6%	

"Monte Carlo " method No Angular Acceptances WITH bounds

Angular Acceptance & Bounds Use fixed angular acceptances Use physical limits (aperture) inside blocks to calculate fragment transmission For block apertures LISE++ uses the slit limits accessible from the Block Cut & Acceptance dialog. (Pay attention there for the checkbox Isotope Group : Monte Carlo Yield Plot 87Mo (0.4 MeV/u) + ; Transmitted Fragment 87Mo18+. dp/p=14.01% ; Brho(Tm): 0.4495, 0.4495, 0.4495 AngAccept: Off; Bounds: ON; "FP slits" - last blo N of N of Transmission Passed Initial A11 157691 235520 66.959 0 229611 343040 66.93% (+/-0.14%) Target 100.09 tuning 100.09 Drift 1 100.0% 01 100.0% Drift 3 100.0%

⁸⁷Mo : MC Transmission Plot - Envelope (all) ⁸⁷Mo (0.4 MeV/u) + ; Transmitted Fragment ⁸⁷Mo^{18+..18+} (beam); Optics Order: 1 dp/p=14.01% ; Brho(Tm): 0.4495, 0.4495, 0.4495

after "FP slits": dP/P [%]: window projection

FMA acceptances benchmark

Emittance

Emittance corresponding to the acceptances

?	E (si <u>c</u>	Beam CARD jma, semi-ax half-width)	1D - shape is, (Distribution method)	
1. X	mm	0	Gaussian	•
2. T	mrad	41.2	Rectangle uniform	Ŧ
3. Y	mm	0	Gaussian	•
4. P	mrad	41.4	Rectangle uniform	•
5. L	mm	0	Gaussian	•
6. D	%	7.05	Rectangle uniform	•

"Distribution" method With set Angular Acceptances

87Mo	Beta+ decay	(Z=42, N=45)
Q1(tuning) Q2(ElecDip 1) Q3(DipoleA) Q4(DipoleB) Q5(ElecDip 2) Reaction		18 18 18 18 18 BEAM
Total ion transmis	sion (%)	78.363
Total: All reaction X-Section in target	ons (pps) t. (mb)	2.72e+10 beam
Target Q (Charge) ratio	(%) (%)	100 100
tuning X angular transmis X angular transmis	(%) sion (%)	96.35 98.42
Drift 1 Q1	(%) (%)	100 100
Drift 3 Q2 Drift 5	(윤) (윤) (윤)	100 100
ElecDip 1 Drift 6	(%) (%)	100 100 100
DipoleA dip slits X space transmissi	(%) (%) on (%)	100 81.33 81.33
Y space transmissi	on (%)	100

"Monte Carlo " method; No Angular Acceptances; WITH bounds

OT, 09/14/15, East Lansing

Charge state selection

http://lise.nscl.msu.edu/9_10/FMA_beam.lpp

FP slits-Xspace: output after slits

⁸⁷Mo (0.4 MeV/u) + Ni (1e-3 mg/cm²); Settings on ⁸⁷Mo^{18+, 18+}; Config: DSSSSSESDSDSESSSSSMM dp/p=14.01% ; Brho(Tm): 0.4495, 0.4495, 0.4495

Very thin target for charge state simulation

MICHIGAN STATE UNIVERSITY LISE++

LISE⁺⁺

NIM B70 (1992) 358

NIM B70 (1992) 358

LISE++

OT, 09/14/15, East Lansing

MICHIGAN STATE UNIVERSITY LISE++

A 99% enriched ⁵⁸Ni target of 400 μ g/cm² thickness was mounted in the cepter of the scattering chamber. A 25%-efficient Ge detector was placed in a re-entrant cup at 90° to the beam at a distance of 4 cm from the target, and a tightly collimated 'Si surface barrier detector was located in the scattering chamber at 45° to serve as a beam monitor. The FMA itself was placed at 0° to the incoming beam, and its fields were set for a recoil having mass 87, charge state 18, and an energy of 36.4 MeV. No charge-state reset foil was used.

NIM B70 (1992) 358

Beam		
A Element q+ 32 S 16 16	Beam energy Energy C 3.59788	MeV/u MeV/u MeV
Z Stable	Brho C 0.54608 P C 2.6194	Tm 1. X mm 1 Gaussian
Table of Nuclides	U C 7188	KV 3. Y mm 1 Gaussian 4. P mrad 2 Gaussian
	Beam intensity	nA 5. L mm 0 Gaussian 🗸
V Ok	C 6.25 p C 3.9062e+10 p	nA ps
X Cancel	C 0.0007196 K	W Energy Loss in the 2.58e-5 target box [KW]

	Production m	echanism		
Settings	Fusion -> Residual			
Charge states	5 - [< 15AMeV] G.Schi	wietz, P.Grande, NIM B1	75-177 (2001) 125-131	•
Energy Losses 1	- [H -base] J.F.Ziegler et al, P	ergamon Press, NY (low e	nergy)	-

Μ	IIC	CH	110	GA	١N	S	T	AT	Ē
U	Ν	T	۷	Ε	R	s	۱	Т	γ
Т		т		2	T	a,			
*		÷		9		2			۳.

F	usion information window							
Γ	32S(3.6 MeV/u) + Ni -> 90Ru * -> 87Mo							
	,							
L	Q-value of reaction = -21.360 MeV							
	Fusion max.barrier = 60.13 MeV							
	Pusion lacius = 5.50 Im							
	- Depending on a place of reaction in the target							
	beginning middle end							
	Beam energy (Lab) [MeV/u] 3.60 3.53 3.47							
	Beam energy (Lab) [MeV] 115.0 112.9 110.9							
	Center of mass energy [MeV] 74.09 72.76 71.43							
	Excitation energy [MeV] 52.73 51.40 50.07							
	Compound recoil energy [MeV] 40.9 40.2 39.4							
	Capture cross section [mb] 556 515 471							
	Compound Surv.Prob. (L=0) 9.70e-01 9.59e-01 9.44e-01							
	Compound formation CS [mb] 540 494 444							
	Compound-1stFission CS [mb] 2.23e-12 2.41e-13 2.66e-14							
	Compound-Breakup CS [mb] 0 0 0							
	- for setting residue after the stripper							
	Energy diapason (MeV/u) 0.356 ⊰- 0.438							
	Corresponding ion charge state 15.79 ↔ 16.95							
	Plot the excitation function							
	All fusion characteristics are							
	Calculated with BASS-model							

Cross sections (Fusion -> Residual) ³²S (3.6 MeV/u) + Ni (0.4 mg/cm²) -> ⁹⁰Ru*(Qg=-21.36) -> N=0-200 LisFus v.4.0 Excit.Energy: 50.1-52.7 MeV; Fus.CS: 492.8 mb; Fus.Barrier: 60.13 fm FusFis.CS : 0.0 mb; h_omega = 5.0 MeV

NP=32; SE:"DB0+Cal2" Density:"auto" GeomCor:"On" Tunlg:"auto" FisBar=#1 BarFac=1.00 Modes=1010 1000 001 ⁸⁷Ru 88Ru ⁸⁹Ru 44 1.4e-04 4.7e-04 7.4e-02 ⁸⁶Tc 87**Tc** 88Tc ⁸⁹Tc 43 3.5e-04 4.3e-12 2.1e+00 1.2e+00 84Mo ⁸⁵Mo ⁸⁶Mo ⁸⁷Mo ⁸⁸Mo 42 1.4e-02 2.5e-01 8.0e+00 2.8e-01 1.0e+02 Protons (Z) ⁸³Nb 84Nb ⁸⁵Nb ⁸⁶Nb ⁸⁷Nb 2e+02 3e+01 4e+00 5e-01 4 4.7e-07 2.7e+01 8.8e+00 1.9e+00 2.2e+02 ⁸¹Zr ⁸²Zr ⁸³Zr ⁸⁴Zr ⁸⁶Zr 40 2.0e-02 7.2e+01 1.3e-01 1.3e+00 4.5e+01 80Y 81**Y** 83Y 39 4e-06 5e-07 5.7e-11 4.1e+00 1.2e-01 7e-08 78Sr ⁸⁰Sr 38 3e-11 4e-12 40 41 42 43 45 44 46 1 Neutrons (N)

LISE++ Analytical solution NIM B70 (1992) 358

FP slits-Xspace: output after slits

³²S (3.6 MeV/u) + Ni (0.4 mg/cm²); Settings on ⁸⁷Mo^{18+..18+}; Config: DSSSSSESDSDSESSSSSMM dp/p=14.01%; Brho(Tm): 0.4392, 0.4392, 0.4392

after "FP

LISE++ Monte Carlo solution NIM B70 (1992) 358

OT, 09/14/15, East Lansing

⁸⁷Mo isotopes @ FP (tuning for ${}^{87}Mo{}^{18+}$) : transmission 14.8 % ${}^{87}Mo$ isotopes @ FP (tuning for ${}^{87}Mo{}^{16+}$) : transmission 20.9 %

Open Questions:

- 1. Mass & charge dispersion values calculation
- 2. Using Mass & charge dispersion values for optimization

Acknowledgement:

to Darek Seweryniak for documents and files providing, to Mauricio Portillo with COSY actions