

A HIGH RIGIDITY SPECTROMETER FOR FRIB in LISE⁺⁺

LISE++ v.9.10.280

HRS Preconcept #25 from May 2014 http://lise.nscl.msu.edu/9 10/HRS/HRS v3.lpp

http://hrs.lbl.gov/

http://hrs.lbl.gov/design :

As input to the first HRS workshop, pre-conceptual, first-order ion-optical design studies were performed to provide a basis for discussion of the technical needs and boundary conditions, as well as scientific opportunities. Please refer to this <u>document</u> as a first guide for the properties of the HRS.

http://lise.nscl.msu.edu/9_10/HRS/HRS_v3.lpp

The HRS configuration in the LISE⁺⁺ code has been created based on the "HRS Preconcept May 2014 #25" TRANSPORT file kindly presented by Th.Baumann.

Discussions with Th.Baumann are very appreciated.

1st order optimization

Optics fit Blocks with parameters to varu Active Constraint blocks	
#01-q Position@011: 2QA #01 @017: R12=0 FocX #02-q Position@013: 2QB #02 @018: R34=0 FocY #03-q Position@015: 2QC #03 @019: sX < 300 F2_sX #04-q Position@023: 3QA #04 @020: sY < 400 F2_sY #05-q Position@029: 3QC #06 @027: sX < 150 3QBX #07 @030: sX < 200 3QCX #07 @030: sX < 200 3QCX #08 @032: sY < 100 D2Y1 #	C\program files (x86)\lise\results\HRS v3.fit init
#10 @037: R22=0 F_D2A #11 @038: sY<50 F_D2Y #12 @040: R44=0 F_D28 #13 @042: sX<300 F_D2A2 #14 @043: sY<100 F_D2A2 #14 @043: sY<100 F_D2A2 #15 @051: R12=0 F_FocX #16 @052: R44=0 F_BB #17 @053: R11<1 F_uX ▼	ch12: Initial 0.494243 LISE fit reduced values ch11: Initial 2.95852 LISE fit reduced values Parameters: LeftBound Initial RightBound #01-q: 20A +0.0e+00 +1.900e+01 +3.0e+01 #02-q: 20B -3.0e+01 -2.883e+01 +0.0e+00 #03-q: 20C +0.0e+00 +2.427e+01 +3.0e+01 #04-q: 30A +0.0e+00 +2.005e+01 +2.5e+01 #05-q: 30B -3.0e+01 -2.905e+01 +0.0e+00 #06-q: 3QC +0.0e+00 +1.712e+01 +3.0e+01
N iter = 100 FIT Previuos values 60° Optics Settings Image: Constraint of the set of the	

1st order optimization

MICHIGAN				S	T	AT	Ē		
U	Ν	T	۷	Ε	R	s	I	Т	Y
I	6	I		S	I	Đ,			Þ

Bea	Beam vector used for Optical Optimization							
	- ''Opt.Bea	m'']				
	1. X	1	mm	• mm				
	2. T	40	mrad	Com				
	3. Y	1	mm					
	4. P	40	mrad					
	5. L	0	mm	UK				
	6. D	5	%	🗶 Cancel				

Beam Sigmas [#2]: spatial

¹H (1624.93 MeV/u); Settings on ¹H; Config: DSSDSDSSSSSSSSFFFFSSSSF; dp/p=100.00%; Brho(Tm): 7.9989, 7.9989, 7.9989, 7.9989, 7.9989 Optimization Beam Sigmas ase used [#2] without charge states sum of reactions

Beam Sigmas [#2]: spatial

(1624.93 MeV/u); Settings on ¹H; Config: DSSDSDSSSSSSSSFFFFSS dp/p=100.00%; Brho(Tm): 7.9989, 7.9989, 7.9989, 7.9989, 7.9989 Optimization Beam Sigmas ase used [#2]^{thout charge states} sum of reactions

First order matrix elements

¹H (1624.93 MeV/u); Settings on ¹H; Config: DSSDSDSSSSSSSFFFFSSSSFSFS... dp/p=100.00% ; Brho(Tm): 7.9989, 7.9989, 7.9989, 7.9989

OT, 24-May-2016, East Lansing

5

Emittance [#1]						
Beam CARD 1D - shape (sigma, semi-axis, (Distribution half-width) method)						
1.× mm	n 🗌 🛛	Gaussian 💌				
2. T mra	ad 60	Rectangle uniform 🔹				
3.Ymm	n 🗌 🛛	Gaussian 💌				
4. P mra	ad 40	Rectangle uniform 🗾 💌				
5.L mm	n 🗌 🛛	Gaussian 💌				
6.D %	0	Gaussian 💌				

□ Show trajectories of all fragments (including unselected by fragment-separator)

0-90

-70

-50

Angular acceptance:

Horizontal = \pm 48.2 mrad (rectangle) Vertical = \pm 9.5 mrad (rectangle)

1H : Monte Carlo Transmission Plot

after "Stripper": X'(Theta) [mrad]: window projection --- 1H (1624.93 MeV/u) + ; Transmitted Fragment 1H (beam); Optics Order: Statistics - 0 AngAccept ■ Menuco IH: Honte Carlo Transmission Plot after "Stripper": X'(Theta) [area]: window projection ---- IH dγρrul0.00%; Erbc(Π): 7.9889, 7.9898, 7.9898, 7.9898, AngAccept. Off; Bounds: ON; "F5" - last block for MC calc; Plot 1 SDS Print File Save 600 NI distribution x-nean x-aax y-nax | deviation SunOfCounts| LeftPsigma|RightPsigma 500 400 300 200 FWHM=96.33 mrad 100

-10

after "Stripper": X'(Theta) [mrad]: window projection

10

30

50

70

-30

Emittance [#1]						
Beam CARD 1D - shape (sigma, semi-axis, (Distribution half-width) method)						
1. X	mm	0	Gaussian	-		
2. T	mrad	0	Rectangle uniform	•		
3. Y	mm	0	Gaussian	•		
4. P	mrad	0	Rectangle uniform	•		
5. L	mm	0	Gaussian	•		
6. D	%	10	Rectangle uniform	•		

-Angular Acceptance & Bounds

- 🔲 Use fixed angular acceptances
- Use physical limits (aperture) inside blocks to calculate fragment transmission

For block apertures LISE++ uses the slit limits accessible from the Block Cut & Acceptance dialog. (Pay attention there for the checkbox

- -only for the ENVELOPE mode
- Show trajectories of all fragments (including unselected by fragment-separator)

-X-coordinate After BLOCK		- Y-coordinate After BLOCK	
F6	▼ ^{as} Y	F6	▼ ×
OX	mm	С×	mm
• X' (T)	mrad	○ X' (T)	mrad
OY	mm	OY	mm
O Y' (P)	mrad	O Y' (P)	mrad
○ dP/P	%	⊙ dP/P	%

In the current concept it is limited by apertures of the last quadrupoles

1st order envelopes, dP/P=±7.4%

MICHIGAN STATE UNIVERSITY LISE++

Initial emittance

OT, 24-May-2016, East Lansing

Limitation of vertical acceptance

2nd order effects

у/θφ

