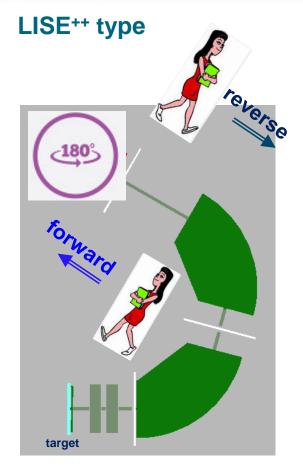


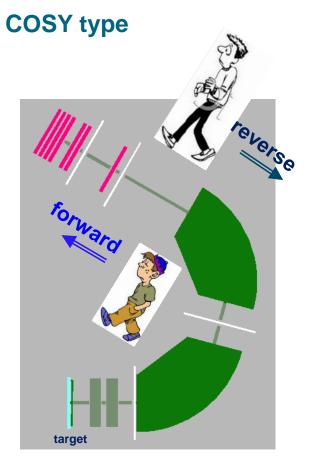
1

Reverse technique

- Coordinate systems
- Methods
- Application
- Creation of reverse configurations
 - Rays file generation for reverse configurations
 - Block and configuration benchmarks
 - Operations with secondary maps in Excel
- Reverse technique and detector resolution
 - S800
 - A1900
- Fission mechanism study with reverse configurations



- The Reverse technique is widely used in Spectrographs, so, to get a momentum vector at the S800 target, the COSY procedure "RR" based on measured X, A,Y, B values and the <u>"global"</u> spectrograph map reconstructs a trajectory (initial A,Y, B) with energy computing.
- The LISE⁺⁺ reverse technique approach is assumed to applied for extended (elemental) configurations, that makes it more useful for beam dynamics and benchmarking.
- Therefore, <u>local</u> maps are used in reverse configurations, which can be calculated by LISE⁺⁺, or be entered by the user directly or linked to COSY maps (up to fifth order).
- There are two methods can be used in the LISE⁺⁺ reverse technique:
 - \checkmark LISE++ type \rightarrow turn around & go forward
 - \checkmark COSY type \rightarrow go backwards


Reverse methods in LISE⁺⁺

turn around & go forward

- The coordinate system is changed (x_n = -x, y'_n= -y_n, L_n= -L)
- Matrices are calculated by LISE++

go backwards

- The coordinate system is not changed
- COSY matrices are imported (linked)
- These maps are inverted from the "direct" maps by the COSY procedure "MI"
- Ideal case : invert matrices inside LISE

- Momentum vector after reaction in target (for example standard S800 technique)
 - Reaction mechanism study
 - Beam spot
 - Angular acceptance vs emittance
- Beam emittance measurement (X,A,Y,B,E)
 - \succ Study of correlations between beam emittance components γ
- Determination of location of new ions production
 - BigRIPS case : production in the beam-dump

• **Benchmarks** γ based on LISE⁺⁺ MC apparatus and spectrograph segmentation

- Beam dynamics visualization
- Beam optics calculation verification
- Experimental analysis and calibrations test
- Experiment set-up feedback [∀] with LISE⁺⁺
 - > Obtaining experimental information by detecting devices in some (or one) locations
 - > Retracing up-stream (or down-stream) from detection locations based
 - > Analysis, minimization

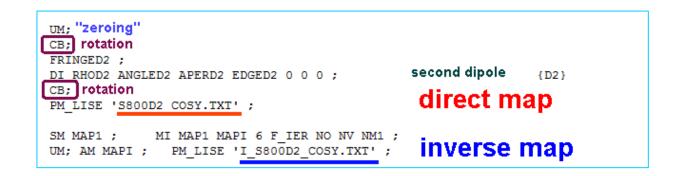
 $\boldsymbol{\gamma}$ will be demonstrated here

Creation of reverse configurations

6

Open
Append blocks from file
Save
Save As
View
Comments
Configuration >
Options •
Results

- 1. Blocks behind the stripper up to a last optic block (or Faraday cup) will be inversely located in a new file
- 2. The New Primary beam will be set to after the Setting Fragment in the direct configuration with energy corresponding to its energy in the last optical block of the direct configuration
- 3. New "tuning" dipole will be inserted behind the stripper with rigidity corresponding to the new primary beam energy
- 4. All materials will obtain corresponding negative thickness
- 5. Optical blocks with "element" properties:
 - * LISE⁺⁺ method : dispersive block bending & sextupole field signs will be changed, entrance and exit dipole faces will be swapped
 - * COSY method : all standard drift blocks will be set to drift with beam-line properties, and their dx/dt and dy/dp signs will be changed; old links to map files will be destroyed
- 6. The separator scheme will be rotated on 180 degrees
- 7. Matrices of Optical blocks with the "Element" property in the case of the LISE⁺⁺ method will be recalculated
- 8. The New file name will be based on old one with adding substring "_Lreverse" or "_Creverse" to the end



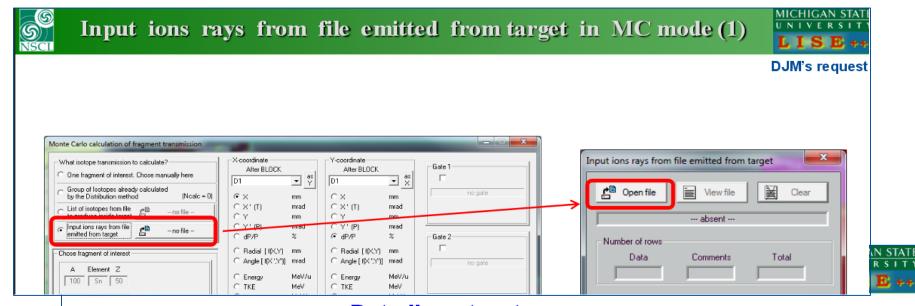
Courtesy of M.Portillo & D.Bazin

Example of COSY-file to create simultaneously S800 direct and reverse 5th order maps to use in LISE⁺⁺

http://lise.nscl.msu.edu/doc/e12006/Br1/invmap_Br1.fox

Important! Do not use "FR3.0" & "CB". Use "FR2.5" for this purpose

Experiment Settings Physics Models Calculations	
Projectile	
Target	
Stripper after Target	
Spectrometer Design	
Optics >	Tune spectrometer for setting fragment on beam axis
Gamma registration	Tune spectrometer for setting fragment at middle of slit
Setting Fragment	OPTIMIZATION (optical element parameters fitting)
Tune spectrometer for the primary beam	Manual recalculation of e-blocks matrices (only for Experts
	Update matrices linked with COSY files
	Envelope plot


All optical (except drift standard and rotation) should be linked or manually entered

	++ [G:∖e1200 6 16:08:43	6\Br1\Bp1_COSY_beam.lpp]	
Block	Name	Number of Lines / Status	Filename
Drift Drift Dipole Dipole	"Q1" "Q2" "D1_S800" "D2_S800"	198 194 252 252	G:\e12006\Br1\S800Q1_COSY.TX G:\e12006\Br1\S800Q2_COSY.TX G:\e12006\Br1\S800D1_COSY.TX G:\e12006\Br1\S800D2_COSY.TX

http://lise.nscl.msu.edu/9_6/9_6_23.pdf#page=10

Data line structure

	А	В	С	D	E	F	G	Н	1	J	К	L	М	N	0
1	! 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	! Z	N	q	Х	d(X)	Χ'	d(X')	Y	d(Y)	Υ'	d(Y')	E	d(E)	t	d(t)
3	1			mm	mm	mrad	mrad	mm	mm	mrad	mrad	MeV/u	MeV/u	ns	ns
4	18	20	18	-0.549	1	-0.409	4	-1.521	0.8	-4.046	5	95.20	1	-0.891	2
5	18	23	18	-0.509	1	6.557	4	0.120	0.8	7.029	5	102.66	1	-0.463	2
6	16	19	16	-1.603	1	-1.041	4	-1.435	0.8	8.051	5	97.17	1	0.869	2
7	15	19	15	-2.177	1	4.244	4	1.317	0.8	-0.575	5	104.09	1	0.683	2
8	15	19	15	0.209	1	-2.225	4	1.561	0.8	1.710	5	98.53	1	0.004	2
9	14	15	14	2.412	1	-4.756	4	-1.051	0.8	0.530	5	102.42	1	-0.095	2
10	14	17	14	2.288	1	0.295	4	0.992	0.8	4.415	5	95.77	1	-0.173	2
11	14	15	14	1.495	1	1.112	4	0.580	0.8	-0.943	5	102.13	1	0.455	2
12	17	20	17	1.533	1	4.954	4	0.863	0.8	6.794	5	98.28	1	-0.404	2
13	16	17	16	2.462	1	-5.620	4	1.109	0.8	-1.494	5	104.95	1	0.424	2
14	13	15	13	1.185	1	-4.911	4	1.873	0.8	-1.027	5	99.03	1	-0.504	2
15	18	22	18	1.373	1	7.311	4	0.105	0.8	-9.834	5	98.95	1	0.191	2
16	16	19	16	0.710	1	5.501	4	-0.534	0.8	-6.920	5	98.37	1	-0.057	2
17	15	10	4.5	1 705	4	E 563		1 600	0.0	0.535		104 70	4	0.060	2

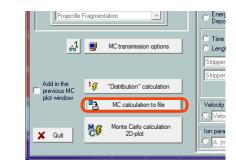
```
The Isotope list file is in ASCII format.
Comment string begin with "!" or ";"
```

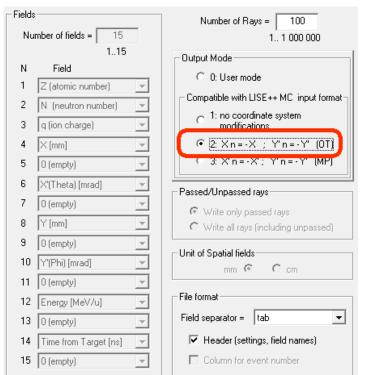
The Columns can be separated by a Space, a Comma or a Tabulation. User can put comments also at the end of data line

At least 13 columns should be in the specified order.

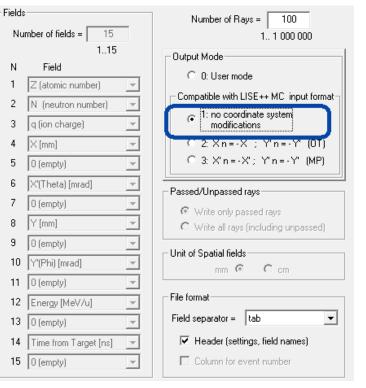
Three first columns: "Z", "N", "q", where Z is atomic number, N is number of neutrons, g is ionic charge

The next ten are X, dX, X', dX'', Y, dY, Y', dY', E, dE. "d" means StDev. Set 0 if you do not want to use it. X,Y in mm, X',Y'' in mrad, E in MeV/u


Two addional columns can be used for time (t,dt) in ns



Besides experimental data the LISE⁺⁺ rays can be used for benchmark purpose


Monte Carlo → Monte Carlo Rays dialog Generator dialog

LISE++ approach

COSY approach

Block and configurations benchmarks

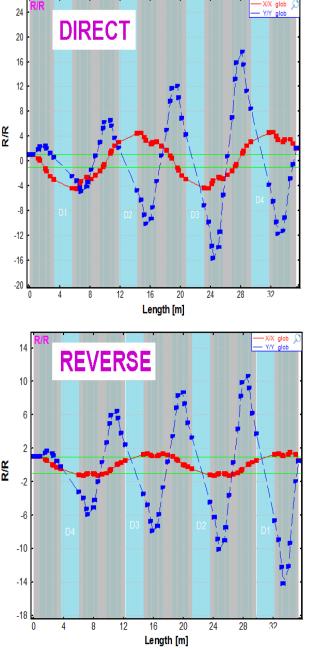
LISE-type reverse file creation

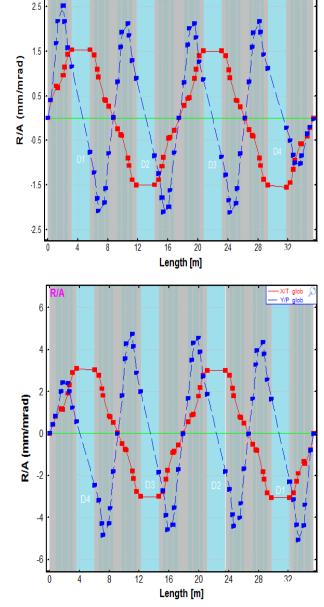
beam

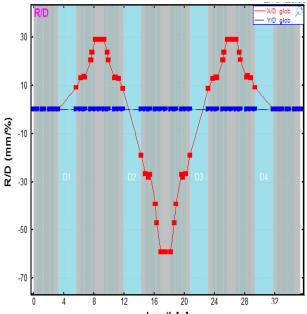
First order matrix elements: R/R, R/A, R/D

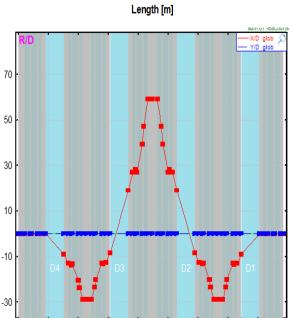
3.5

— X/T glob — Y/P glob


R/D (mm/%)


0


8

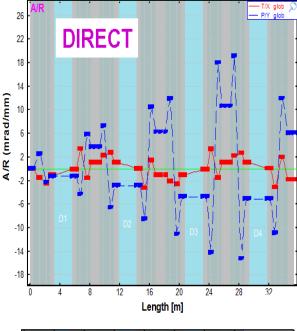

12

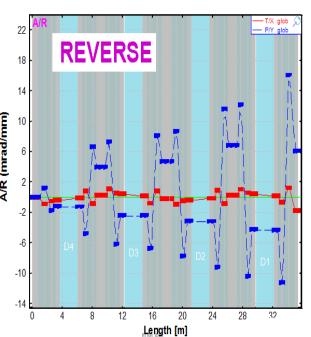
20

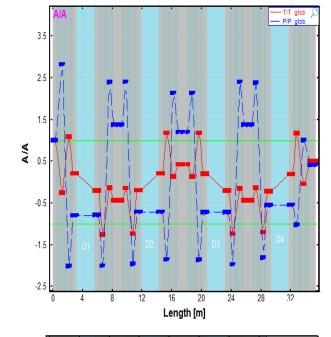
24

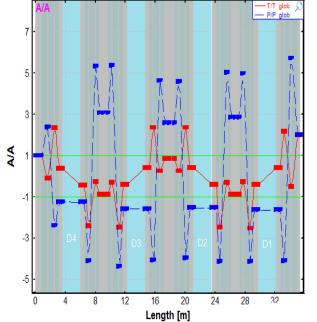
28

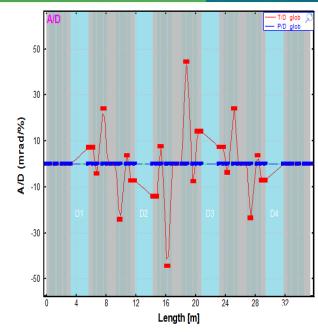
32

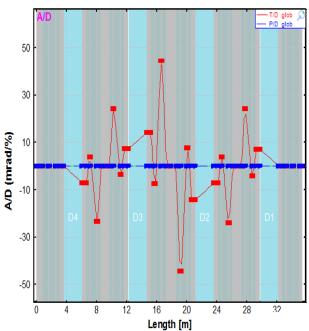

16

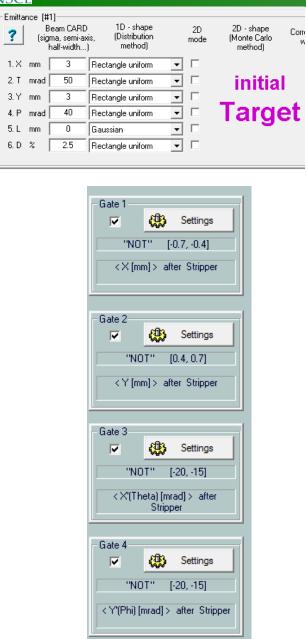

Length [m]

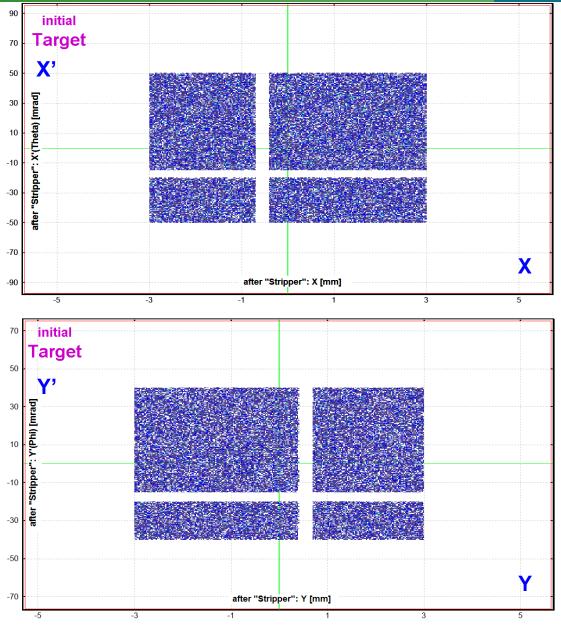



First order matrix elements: A/R, A/A, A/D


MICHIGAN STATE UNIVERSITY LISE++

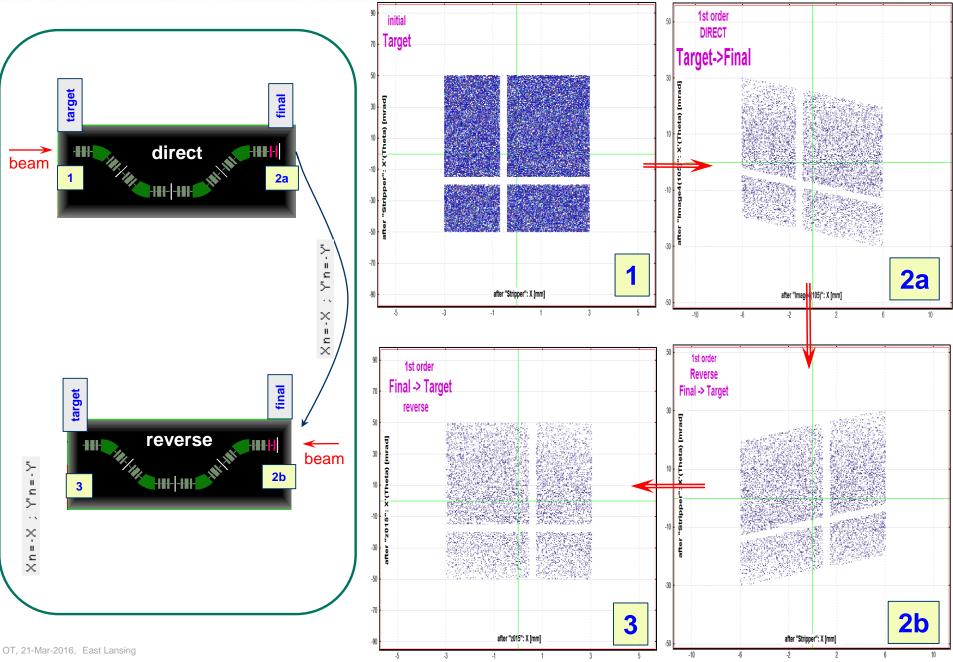






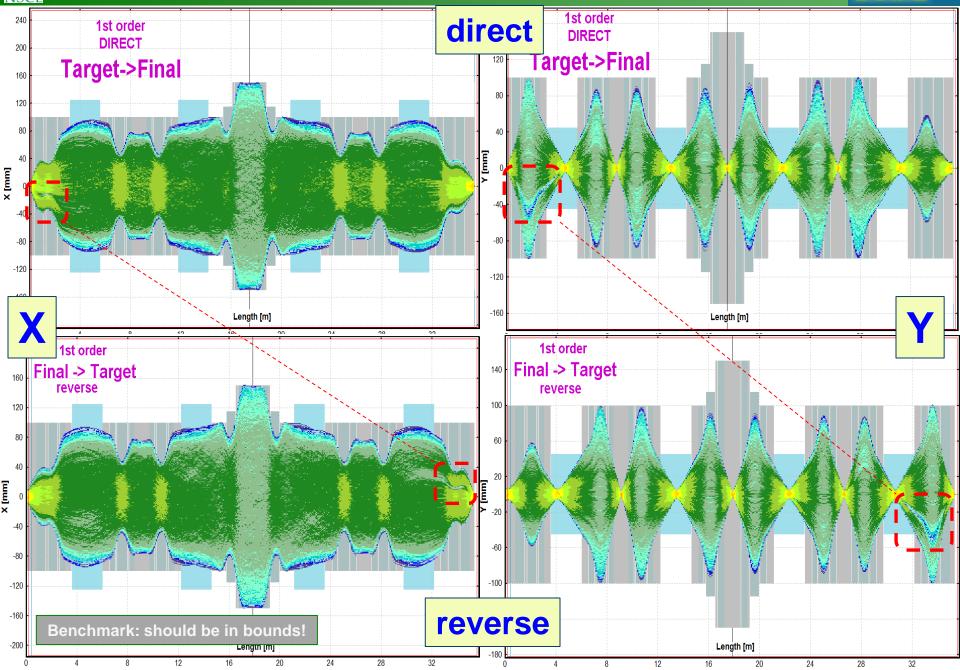
Initial emittance to generate an array of rays to benchmark

• Pay attention to the optics order


With reverse configurations it is possible to use

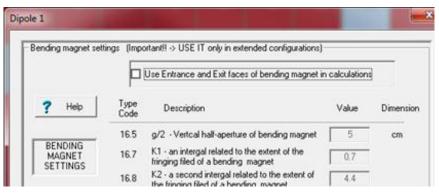
- experimental rays from the final point
- LISE⁺⁺ rays generated for current reverse mode (LISE or COSY)

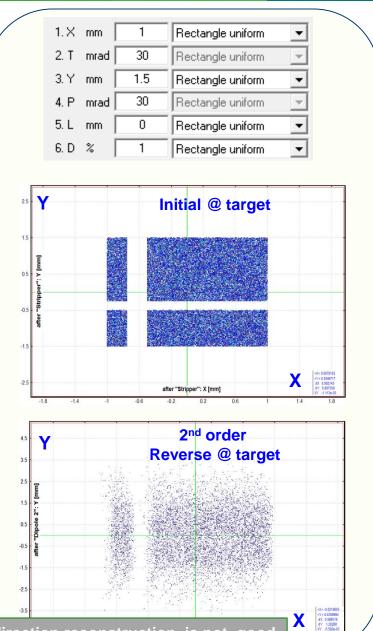
Benchmarking process of the reverse technique


MICHIGAN STATE UNIVERSITY LISE++

S NSCL

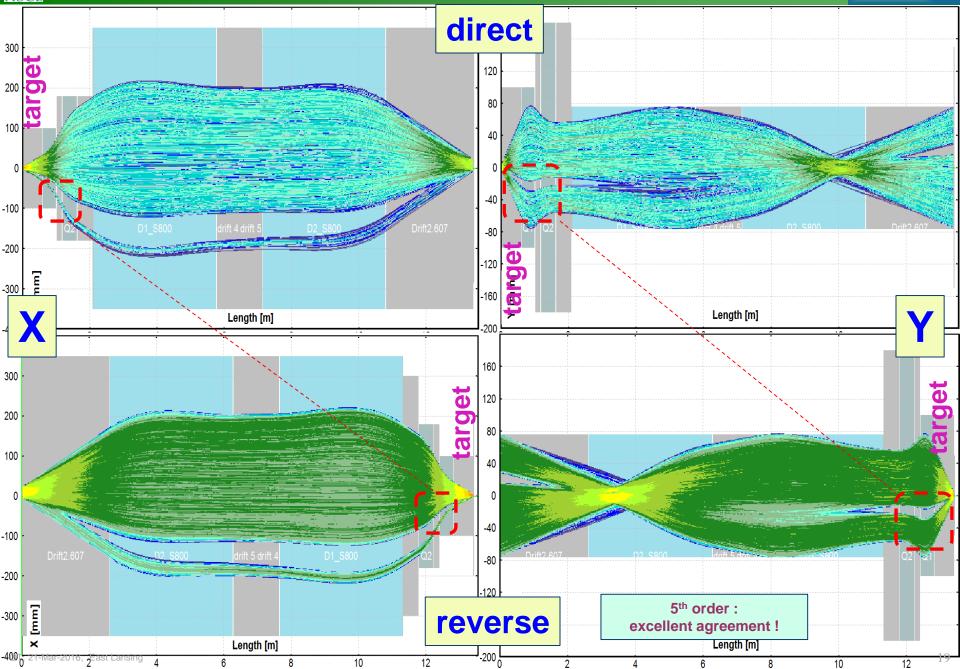
1st order optics Direct and Reverse envelopes : A1900 LISE-type





LISE-type Block Benchmarks

Block	1st order	2nd order	
Drift	+	+	
Quad (M)	+	+	
Sextupole	+	+ with opposite field sign	
Wien-fiter	+		
Dipole: no faces	+	+ very good, but not ideal	
Dipole: empty faces	+	+ good	
Dipole: S800	+	+/- fair	


Y-direction reconstruction is not good

Χ

5th order optics Direct and Reverse envelopes : S800 COSY-type

Operations with secondary maps in Excel

Operations with secondary maps in Excel

Lise.xlsm

Insert Function	x							
Search for a function:								
Type a brief description of what you want to do and then click Go								
Or select a category: User Defined								
Select a functio <u>n</u> :								
Iise.xlsm!MatricesMult Iise.xlsm!Matrix2OrderVectorMult Iise.xlsm!MatrixElement Iise.xlsm!MatrixVectorMult Iise.xlsm!MatrixVectorSumSquare Iise.xlsm!MatrixVectorSumSquare Iise.xlsm!MatrixVectorSumSquare Iise.xlsm!Mkm2Mg Iise.xlsm!MatricesMult(M1,M2,row,col) No help available.	•							
Help on this function OK Car	ncel							

y _{row} =	$A_1 * V * \delta_{row}$						
Matrix\	/ectMult (Matrix,Ve	ctor,lı	nd	ex)			
Function A	Arguments					<u></u> ନ୍ଦ୍ର	×
lise.xlsm	MatrixVectorMult						
Matrix	matA	-	= {1	1.1154,2.1213,0,0,	,0,8.7	868;-0.099	62
Vector	Vect1	-	- {3	3.3703341500463	4;-12	983788068	814
Row	A4	-	- 3				
			= 7	3.48025961			-
No help a							
	Row						
Formula	result = 73.480						-
Help on t	his function			ОК		Cancel	
y rov	v = T _{2,row} * V						
	rix2OrderVectorMu	lt (Ma	tri	x,Vector)			
Function A	rguments					ୃ	×
lise.xlsm!	Matrix2OrderVectorMult						
Matrix	matT2B	1	=	{0.00002921,0,	0,0,0,	0;-0.0001	6782,0.
Vector	Vect1	1	=	(3.3703341500	4634;	-12.98378	3806814
			=	1.056222783			
No help a	vailable.						
	Vector						
Formula r	esult = 1.056222783						
,							
Help on th	his function			OK			ancel

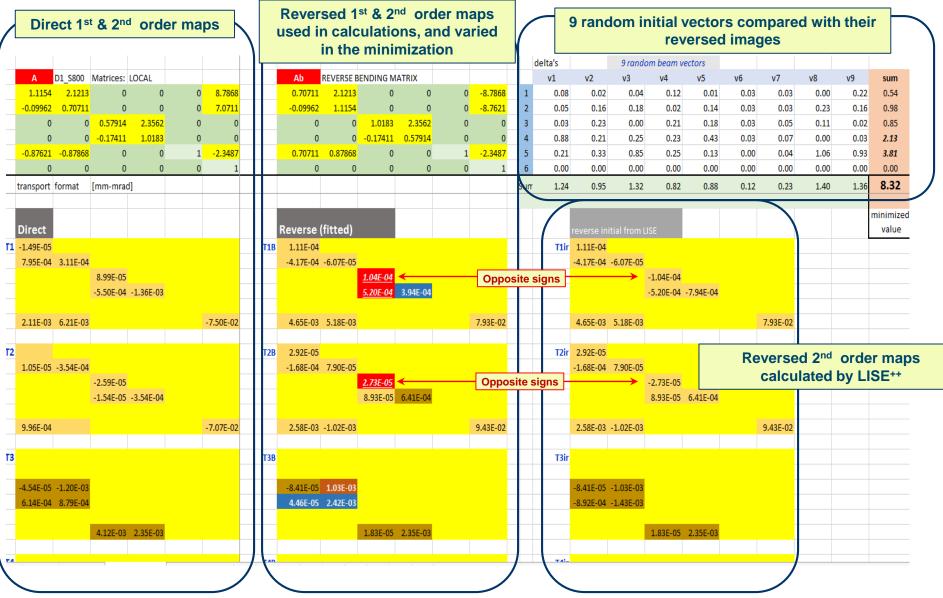
http://lise.nscl.msu.edu/doc/e12006/Dipole_MatriceMulipl%20v3.xlsx

$$\mathbf{v}_2 = \mathbf{A}_{\text{direct}} * \mathbf{v}_1$$

 v_{2R} = rotated (v_2)

 $v_{3R} = A_{reverse} * v_{2R}$

 $v_3 = rotated(v_{3R})$

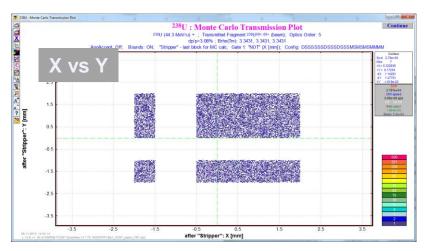

 $A_{reverse}$ is correct if $v_1 = v_3$

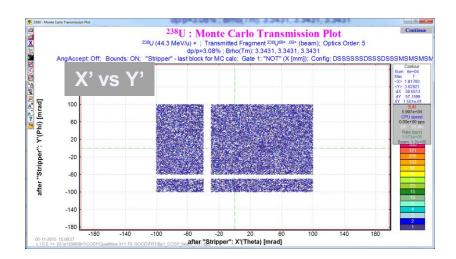
Where **A** is the set of 1^{st} and 2^{nd} order maps

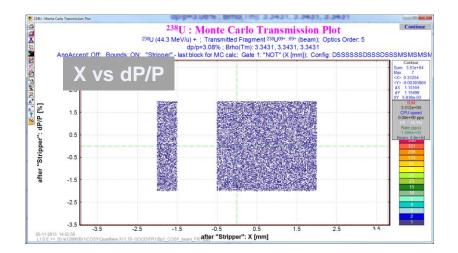
row	V1	D matr 2nd	V2 1st	V2 2nd	V2 Total	V2 Reverse	R matr 2nd	V3	V3 2nd	V3 Total	V3 Reverse	d
1	3.37	matT1	-42.981	-1.51E+00	-44.493	44.493	matT1B	-3.90	6.2E-01	-3.29	3.29	0.08
2	-12.98	matT2	-24.966	-7.56E-01	-25.722	-25.722	matT2B	-13.98	1.0E+00	-12.94	-12.94	0.05
3	-1.40	matT3	73.480	-4.65E-01	73.015	73.015	matT3B	-1.26	-1.1E-01	-1.37	-1.37	0.03
4	31.53	matT4	32.352	-2.60E-01	32.092	-32.092	matT4B	-31.30	6.4E-01	-30.66	30.66	0.88
5	-41.75	matT5	-28.161	-1.25E-02	-28.174	28.174	matT5B	42.17	-6.3E-01	41.54	-41.54	0.21
6	-2.18	matT6	-2.185	0.00E+00	-2.185	-2.185	matT6B	-2.18	0.0E+00	-2.18	-2.18	0.00
												1.24
	initial Vector	pointer to direct A2i matrix	A1*V1	A2I*V1	Sum(1st+2nd)	Reverse	pointer to reverse A2i matrix	A1R*V2R	A2iR*V2R	Sum(1st+2nd)	Reverse	NEV-LV

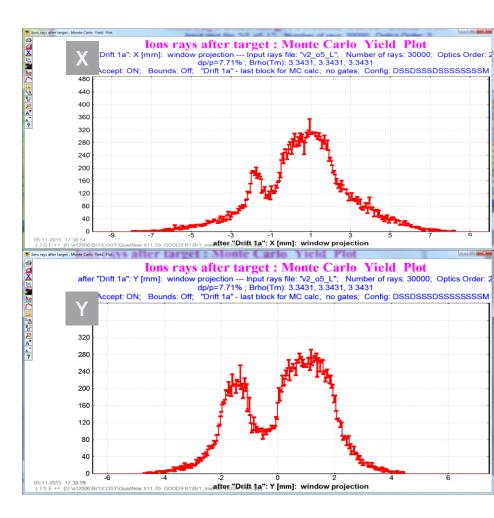
http://lise.nscl.msu.edu/doc/e12006/Dipole_MatriceMulipl%20v3.xlsx

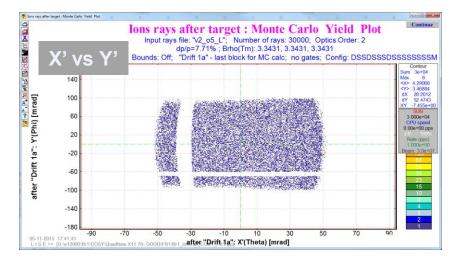
Reverse technique and detector resolution: \$800




http://lise.nscl.msu.edu/doc/e12006/S800_reverse_resolution.pdf

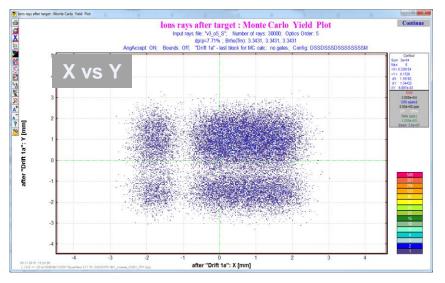

eam					_	? ×				
A Element q+ 2027 92 2 Stable Table of Nuclides	Beam energy € 44.26123 MeV/ TKE 10534.766 MeV Brho 3.34308 Tm P 69.1539 GeV/ U 1.527e+5 KV	(signal, seminoxis, half-width) (b) sums methods 1.X mm 2 Rectangle uni	tion m d) T	2D 2D - shape Correlated (Monte Carlo with method) with	dT 0 dY 0					
	C 0.003409 enA	5. L mm 0 Gaussian	_	Monte Carlo calculation of fragment t						
V Ok	C 4.941e-5 pnA © 3.0883e+5 pps C 5.205e-7 KW	6. D % 2 Rectangle uni Energy Loss in the target box [KW] 0		What isotope transmission to calculate One fragment of interest. Chose ma Group of Isotopes already calculate by the Distribution method	nually here			-coordinate After BLOCK Drift compensate	▼ as ×	Gate 1
MC transmission options				List of isotopes from file	no file	C X' (T) n	nrad 🤇) X' (T)	mrad	<×[mm]> after Stripper
C only 1-st order	C through 3rd order Highest Order in this C through 4th order configuration	the Isotope group case only		C Input ions rays from file emitted from target	no file	C Y' (P) n) Y) Y'(P) € dP/P	mm mrad %	Gate 2
Straggling in material	through 5th order	(all cross sections equal)		- Chose fragment of interest		 Radial [f(X,Y) = n Angle [f(X ',Y')] = n 		Radial [f(X,Y) Angle [f(X',Y')]		✓ Settings
I Angular I Energy □ Lateral ™	of detectors for TOF, Energy loss, and TKE values ^Only Use spatial resolution of after	lected block is optical or wedge energy resolution of first detector re selected block will be taken to account for TKE value		A Element Z 238 U 92 Stable	Table of Nuclides	C TKE M C Momentum	deV/u C deV C deV/c C i*m C	Energy TKE Momentum Brho	MeV/u MeV MeV/c T*m	< Y [mm] > after Stripper
Angular Acceptance & Bo	Take into account	nickness defect of materials					4J/C C	Erho	MJ/C	Gate 3
Use physical limits (ap to calculate fragment For block apertures LISE	Include charge stal	sses due to reactions in materials • calculations sion ™		Charge states 69+ Tuning	Set		deV C	Energy Loss Range	MeV mm	"NOT" [-40, -30]
accessible from the Block dialog. (Pay attention the	Cut & Acceptance	** time consumed options		Reaction mechanism Projectile Fragmentation	-		n (eV/mm	Envelope Energy	m MeV/mm	< X'(Theta) [mrad] > after Stripper
only for the ENVELOPE m	ode for Angular distribut	ons * these two distributions are correlated for fusion					article		/particle	
unselected by fragmer	for Momentum distr	e of ion raus" mode		😽 🛒 MC transmi	sion options	C Time of flight r		Time of flight	ns m	Gate 4 ↓ Settings
🌾 "Absolute" -> Lab	poratory frame 🔽 Recycle input read	ig file 🗆 Make default				C Length	< Start	D Length Stripper		"NOT" [-70, -60]
	s (AZ,q) "Radial" & "Angualr" v 0.001 < Sigma < 0.5 C Always positive	lues sign Value		Add in the previous MC	" calculation		< Stop			< Y"(Phi) [mrad] > after Stripper
Y - sigma = 0.1	default 0.1 (© Use X-coordin-	te sign		MC calcul	ation to file	Velocity		Velocity Welecity Z fem	(mal and	
				X Quit Monte Car 2D-p	lo calculation lot	Velocity_Z (cm/ns Ion parameters (M.Z.o A/q		 Velocity_Z [cm. parameters (M) q (ion charge) 		



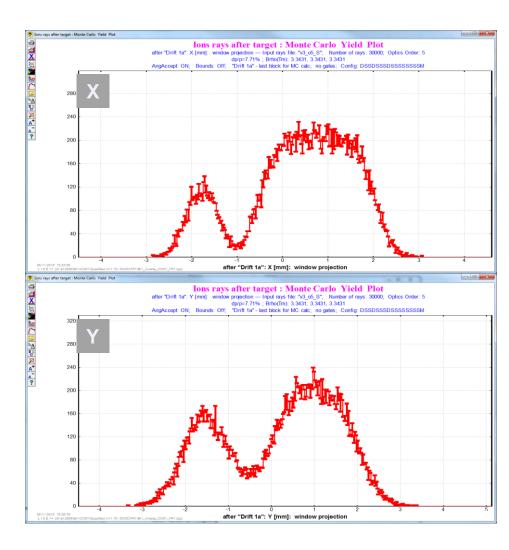

Reverse @ Target <u>2nd order (</u>5->2) With Ideal detector resolution

Fair..

Case 2-2

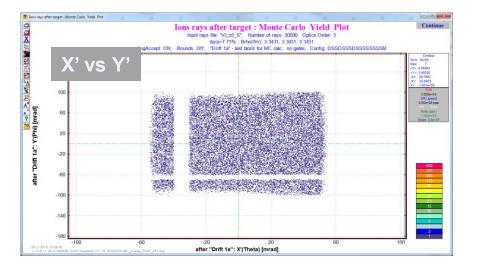

Reverse @ Target 2nd order (5->2) Ideal resolution

Good!

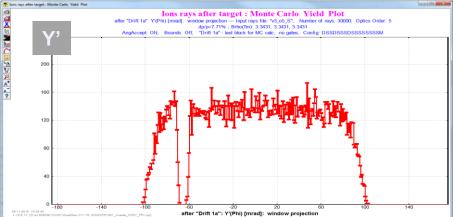


<u> </u>	2		\mathbf{a}	2	
U	a	3		J	

Reverse (② Target
5 th order	(5->5)


Resolution
<u>dX = 0.25 mm</u>
<u>dX' = 0.25 mrad</u>
<u>dY = 0.50 mm</u>
<u>dY' = 0.50 mrad</u>
dE = 0%





	der (5->5)
Res	olution

 $\frac{dX = 0.25 \text{ mm}}{dX' = 0.25 \text{ mrad}}$ $\frac{dY' = 0.50 \text{ mm}}{dY' = 0.50 \text{ mrad}}$ $\frac{dY' = 0.50 \text{ mrad}}{dE = 0\%}$

				Quality of reconstruction				
Reverse Case	Optics	Spatial resolution	dE	x	Y	X'	۲	Global
2-1	5->1	ideal	0	2	7	3	7	3
2-2	5->2	ideal	0	5	8	8	9	7
2-3	5->5	ideal	0	10	10	10	10	10
3	5->5	good	0	8	8	10	9	9
4	5->5	good	0.2%	1	8	4	9	4
5	5->5	poor	0	4	4	8	7	6

Case 3 : current analysis for #12006 experiment (S800) Case 2-1 (inverse 1st order LISE⁺⁺) & 4 (E from ToF) : non-acceptable

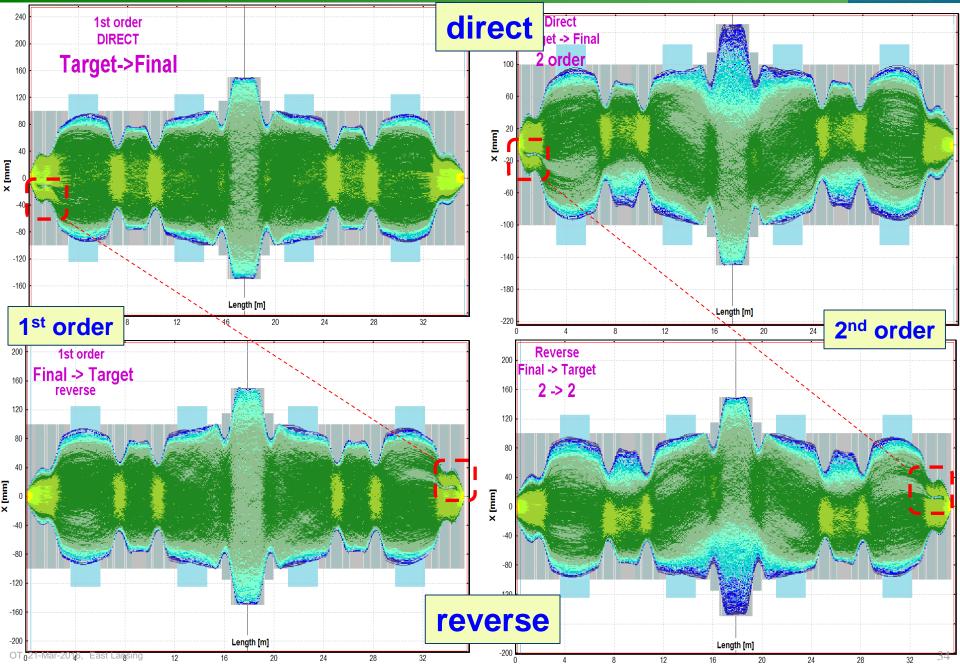
We need (MH) for this S800 particular case*

- (1) at least 2nd order,
- (2) good spatial resolution,
- (3) an energy measurement that is clearly better than a typical TOF measurement.

* for A1900 (achromatic case) the conclusions may be different

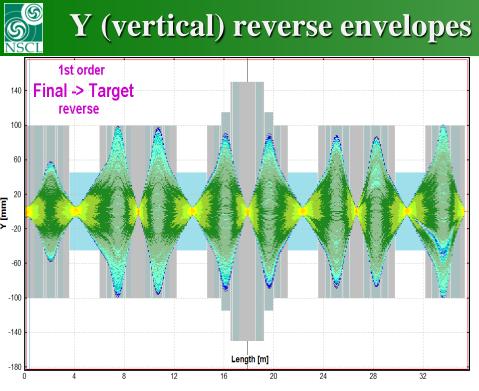
Reverse technique and detector resolution: A1900

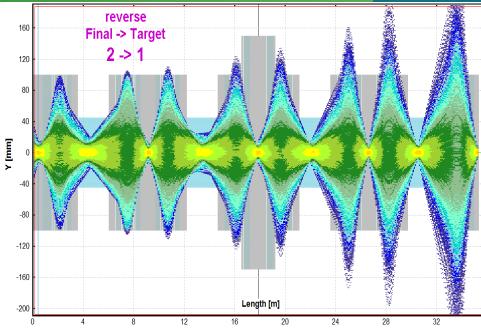
http://lise.nscl.msu.edu/doc/e12006/A1900_reverse_resolution.pdf

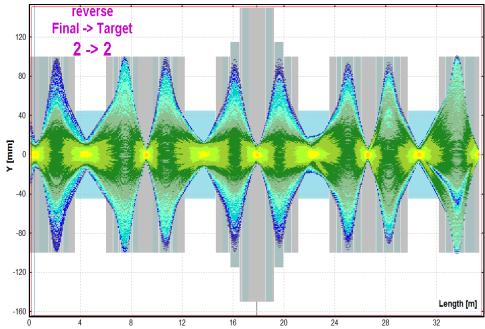

- 1. LISE-type reverse file creation
- 2. Optics (1→1)
- 3. Optics ($2\rightarrow 1$)
- 4. Detector resolution for optics $(1 \rightarrow 1)$
- 5. Contribution of straggling in wedge
- 6. Some remarks: charge states
- 7. Summary

Direct file:http://lise.nscl.msu.edu/9_10/reverse/A1900_direct.lppReverse file:http://lise.nscl.msu.edu/9_10/reverse/A1900_Lreverse.lpp

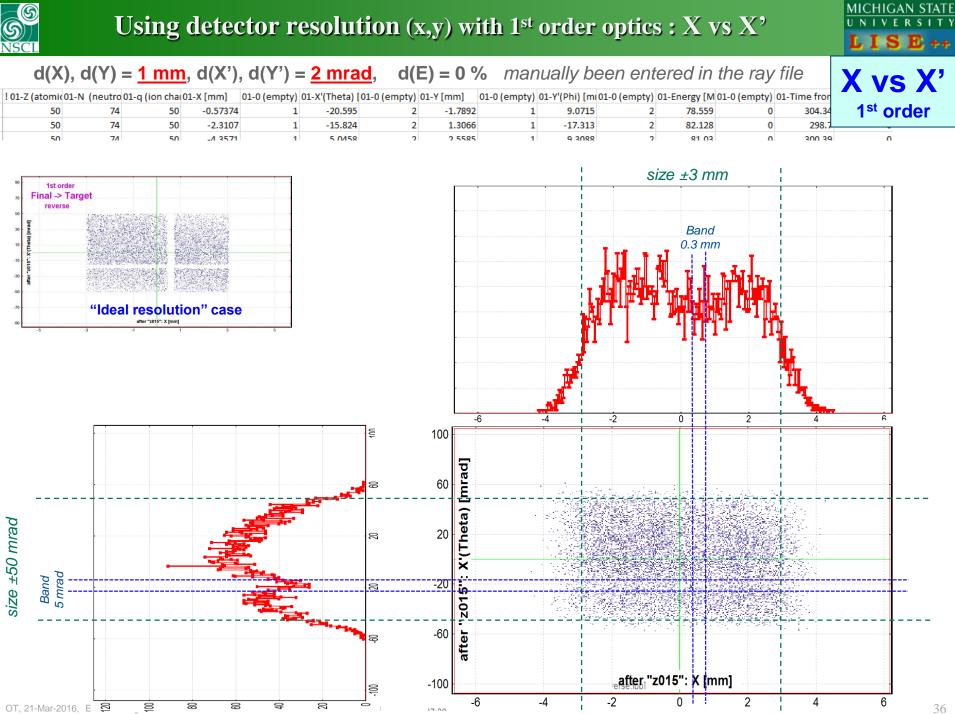
S NSCL

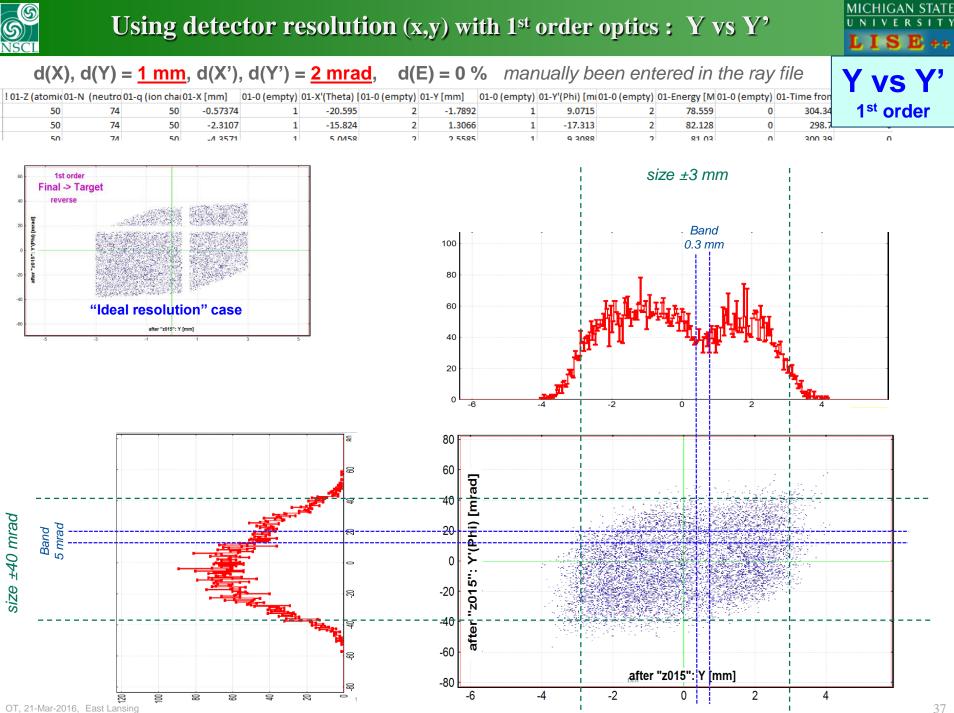

X (horizontal) direct & reverse envelopes for 1^{st} & 2^{nd} order optics





Y (vertical) reverse envelopes for different order optics





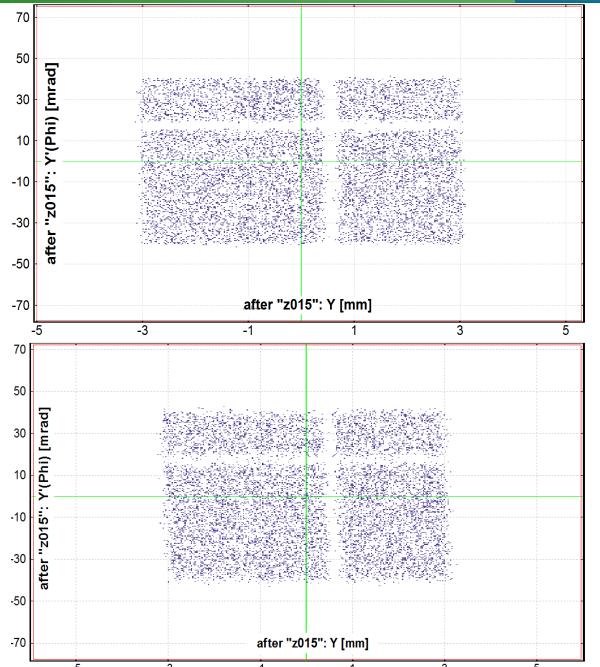
Using detector resolution (x,y) with 1st order optics : X vs X'

MICHIGAN STATE

Using detector resolution (x,y) with 1st order optics : Y vs Y'

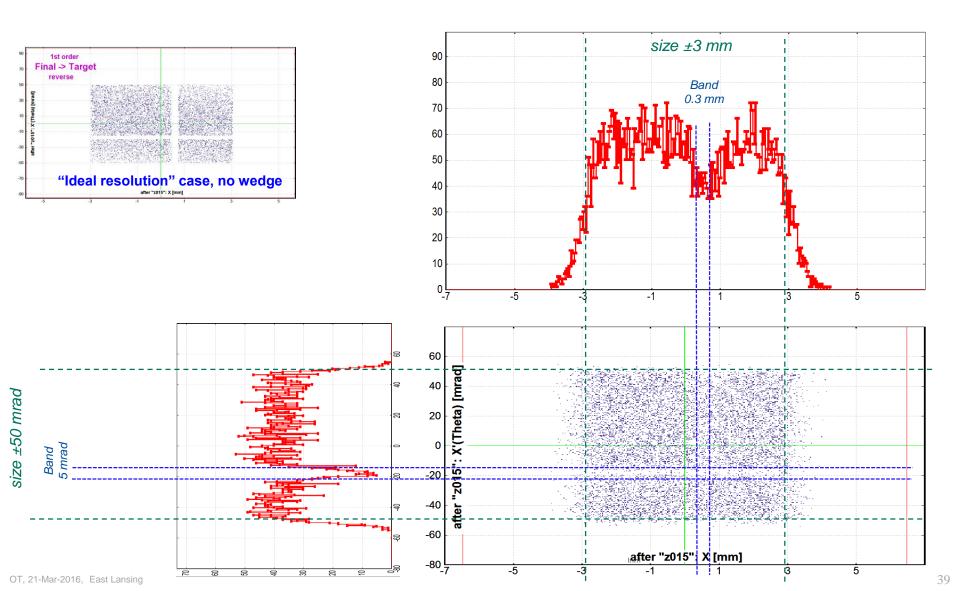
MICHIGAN STATE

Contribution of straggling in wedge : Y vs Y'



38

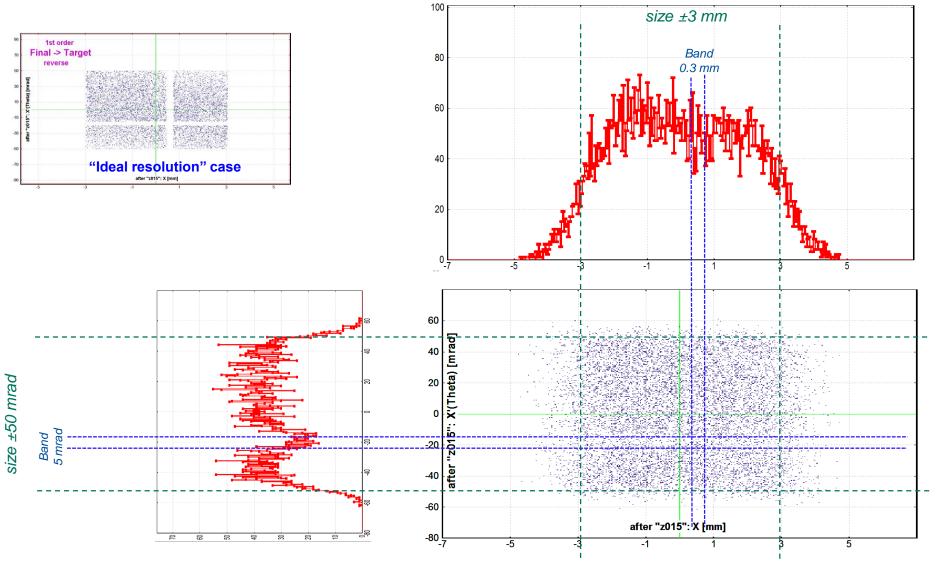
Thick wedge: 40% of range



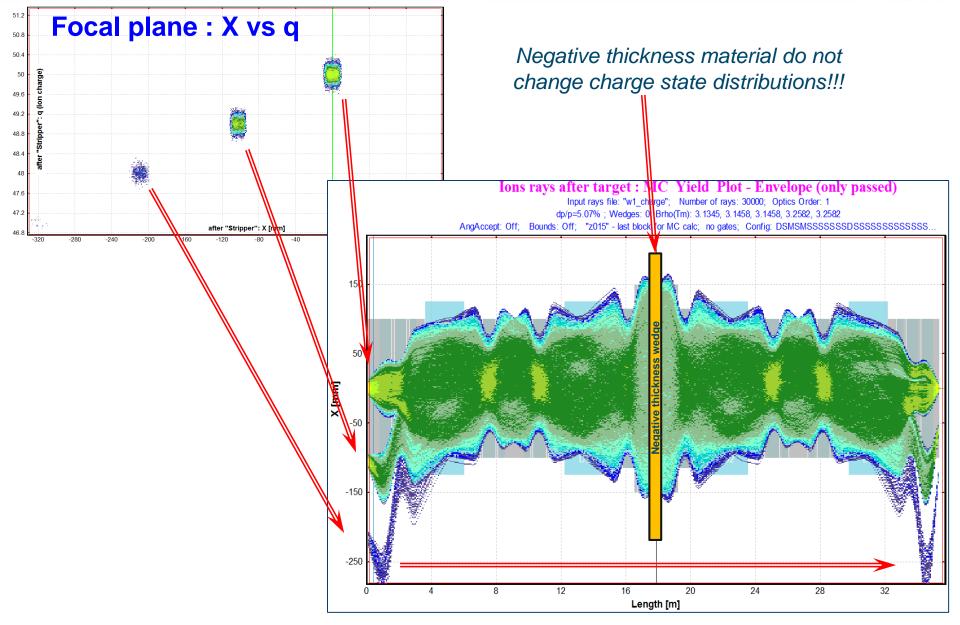
X vs X'

1st order

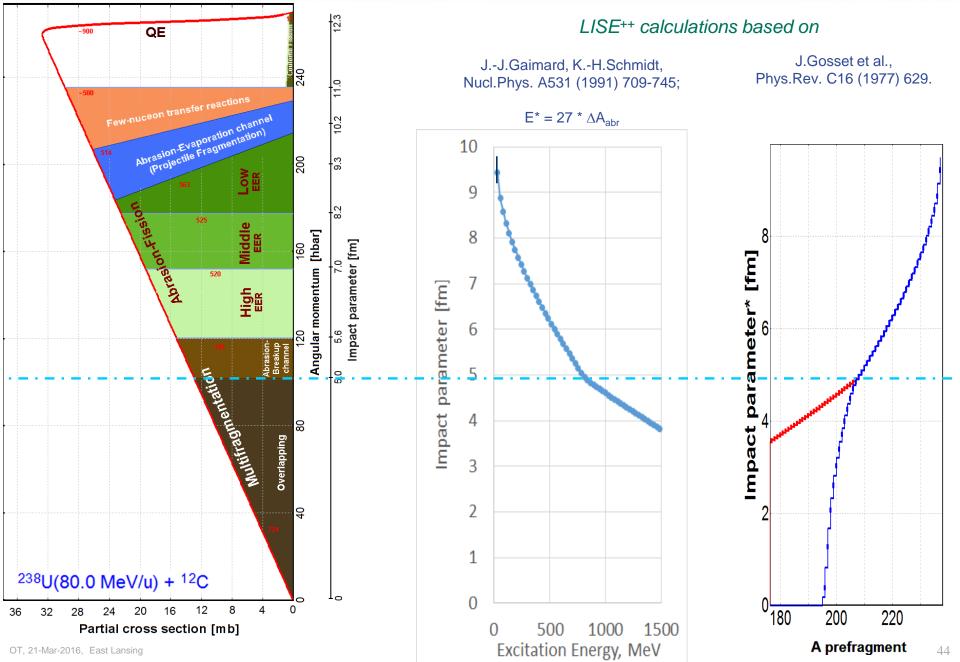
Thin wedge: 10% of range



X vs X' 1st order


Thick wedge: 40% of range

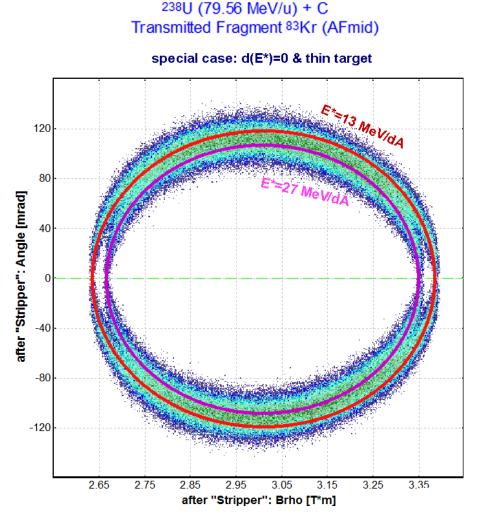
Charge states in reverse technique

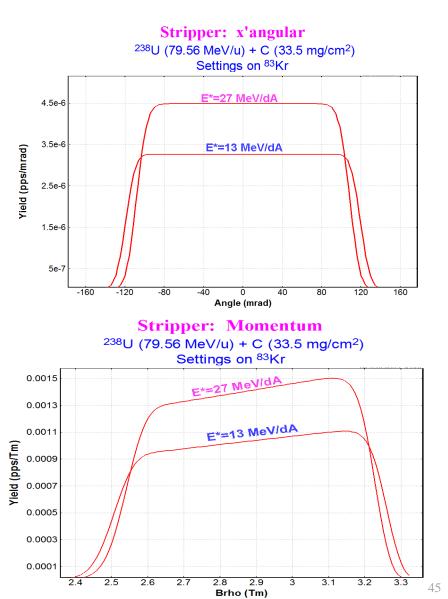

- 1. The A1900 LISE-type reverse configuration has been created, its benchmarks have been done
- 2. High order optics is important in the reverse A1900 case. COSY-type reverse configuration should be tested.
- 3. LISE-type second order optics operates well in the reverse A1900 case
- 4. Energy resolution at the final focal plane detectors is not a key factor in the reverse A1900 case comparing to the S800 case
- 5. Use of thick wedge destroys reverse resolution quality in the horizontal spatial plane

Reaction mechanisms, Abrasion-Fission

²³⁸U(80MeV/u) + C reaction scheme as impact parameter function

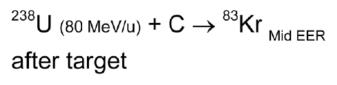
MICHIGAN STATE UNIVERSITY LISE++

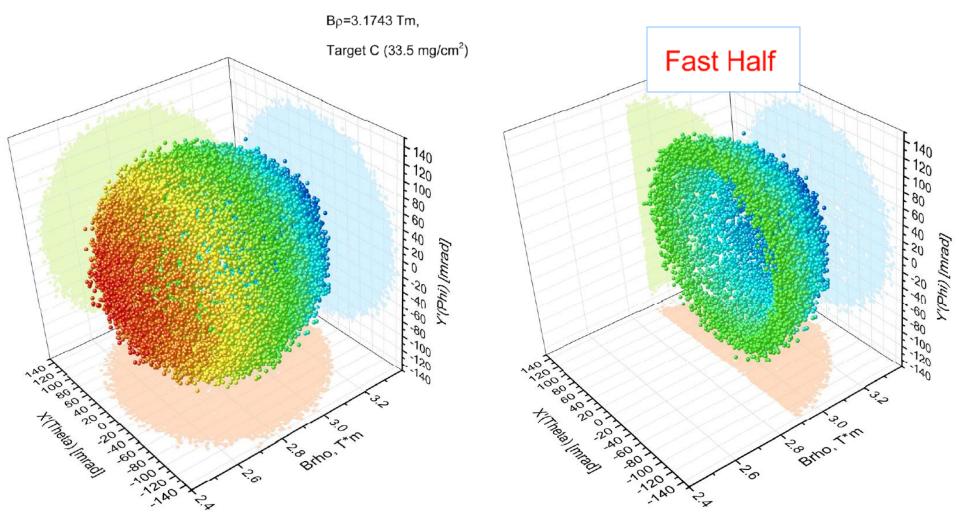




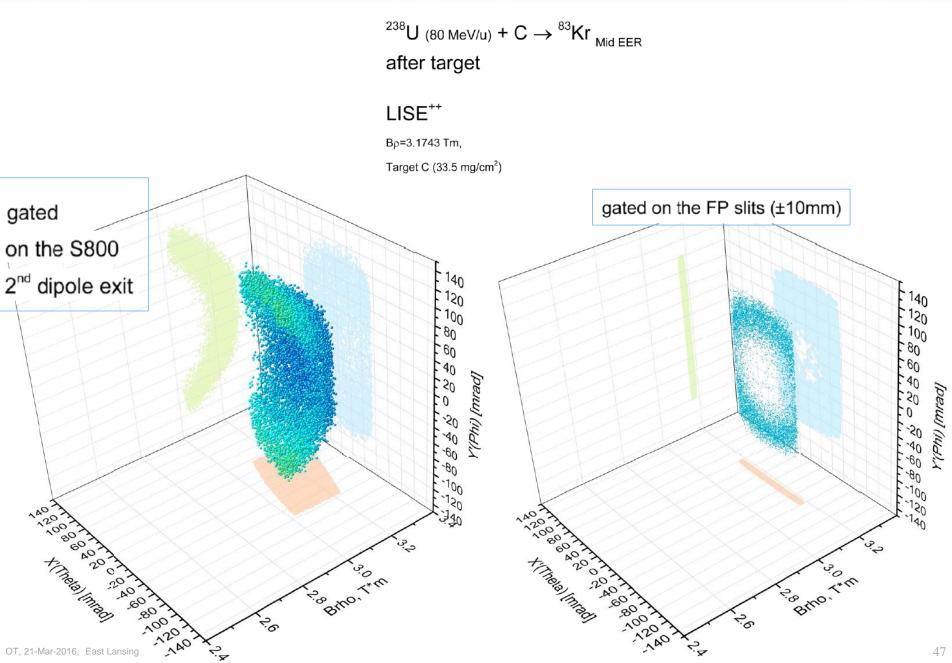
Monte Carlo method

Distribution method

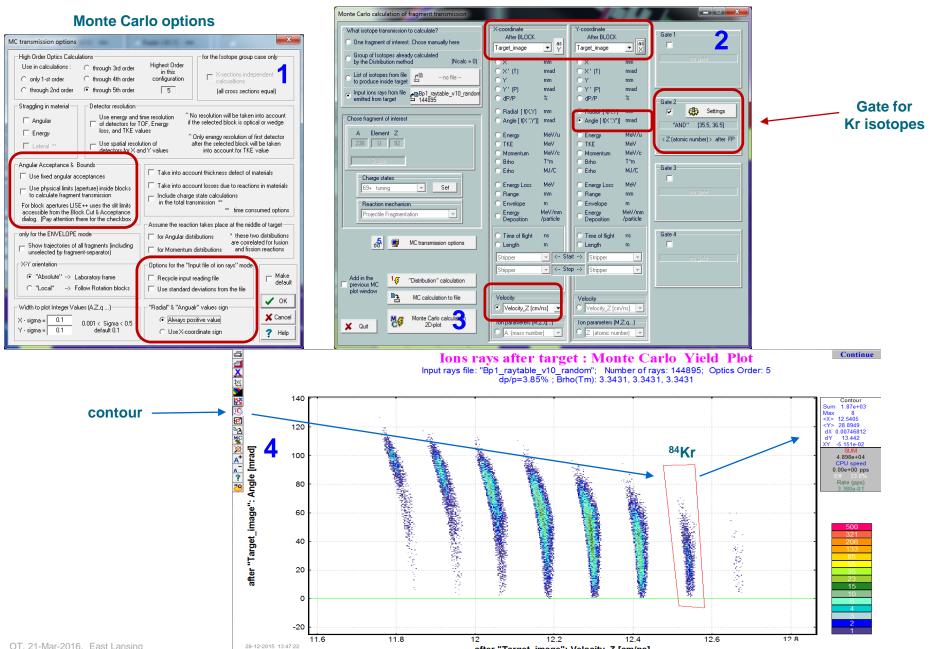




3D fission kinematics

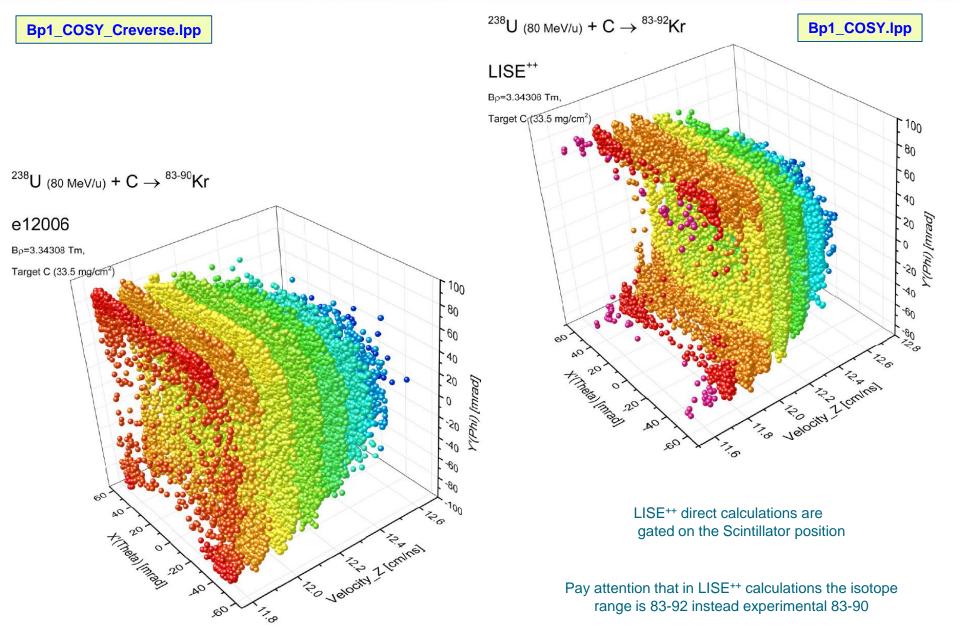

LISE⁺⁺

3D fission kinematics



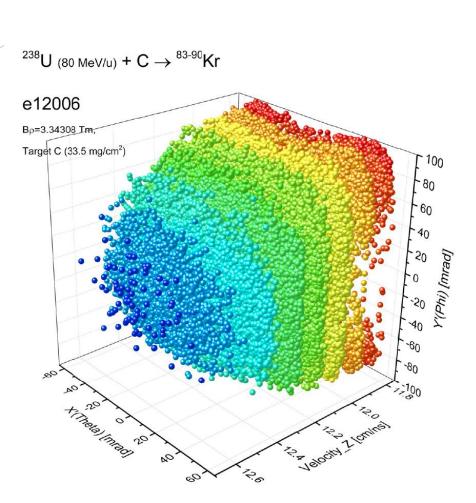
Velocity-Z vs Theta plot

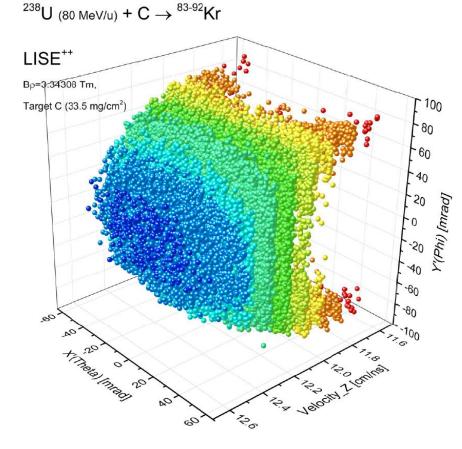
MICHIGAN STATE NIVERSITY E ++


LISE++ [G:\e12006\Br1\Bp1 COSY Creverse.lpp]

after "Target_image": Velocity_Z [cm/ns]

Velocity-Z vs X,Y-Angles 3D-plots @ S800 Target position





MICHIGAN STATE UNIVERSITY LISE++

Bp1_COSY_Creverse.lpp

Bp1_COSY.lpp

LISE⁺⁺ direct calculations are gated on the Scintillator position

Pay attention that in LISE⁺⁺ calculations the isotope range is 83-92 instead experimental 83-90

- Thanks to a large group of MSU colleagues for discussions and help during this reverse technique development
- e12006 analysis with the reverse technique was done jointly with M.Bowry and A.Gade