

${\bf LISE^{++}}$ for ${\bf S}^3$

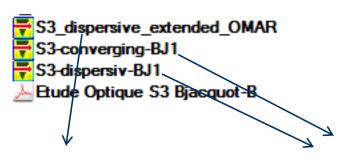
- 1. Introduction
- 2. Segmented configurations
- 3. Extended: Geometry, Corrections
- 4. Optimization
- 5. S³ acceptances
- 6. Outlook

with version 9.10.100 from 05/22/15

Using "Spectrometer description & Beam optics studies

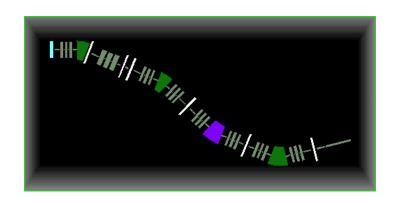
for the operation of S3" (draft) and LISE++ files

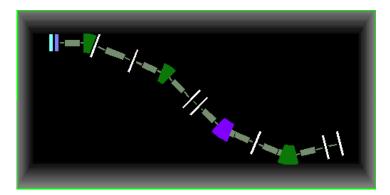
by Bertrand Jacqout and Omar Kamalou


- Initially the plans were to develop LISE** configurations for S3, but Bertrand and Omar have made the main construction part
- Some insignificant updates and corrections, benchmarks
- · The presentation will be updated this weekend
- and then distributed including LISE** files

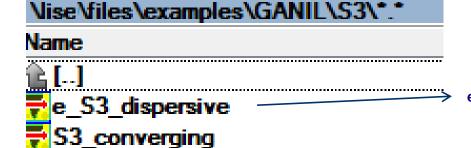
Modified 09/11/2015 for the LISE** package v.9.10.176

GANIL in-house LISE⁺⁺ files



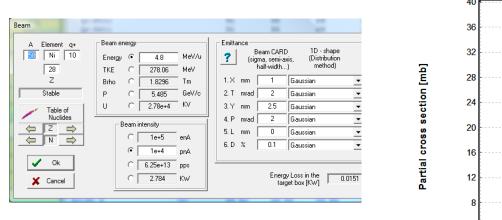


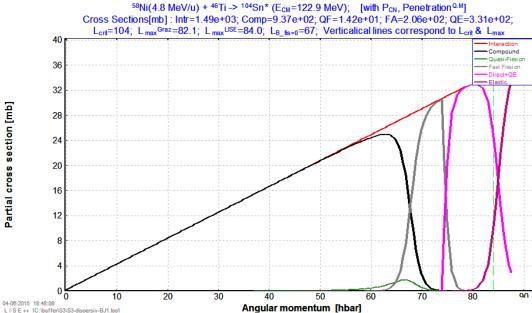
lpp	356,323
lpp	165,515
lpp	184,422
pdf	7,403,564


50% extended - 50% segmented Configurations

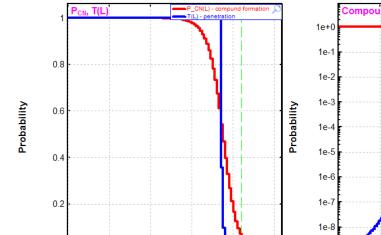
Quads are implemented, But B- & E-dipoles by LISE**

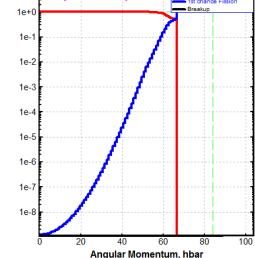
In the LISE++ package v.9.10.176 there are two files :


Corresponds to eS3_dispersive v4_5fit.lpp in this presentation



Beam settings and Reaction for Segmented configurations

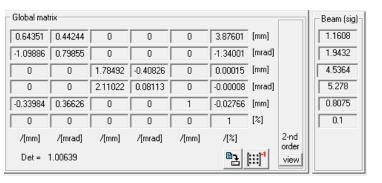


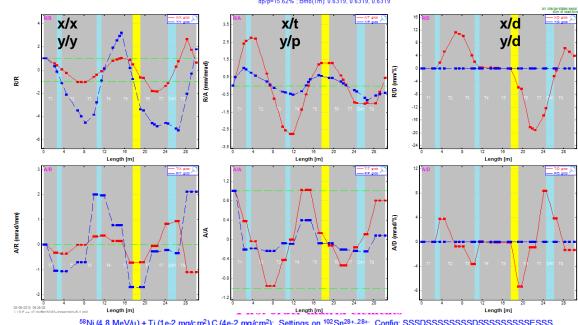


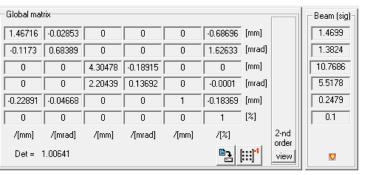
Probabilities as f (L)

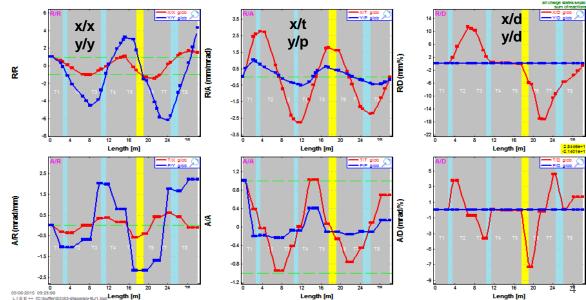
58Ni(4.8 MeV/u) + 46Ti -> 104Sn* (E_{CM}=122.9 MeV); h_omega=5.0 L_{crit}=104; L_{max}Graz=82.1; L_{max}LISE=84.0; Nuclear potential: WoodSaxon Vertical lines correspond to L_{critical} & L_{maximum}

Angular Momentum, hbar




Segmented configurations optics


First order matrix elements


converging

dispersive

statistics: 102Sn

Q (Charge) ratio

Unstopped in material

(왕)

(%)

5.6

100

12.24

100

19.47

100

22.52

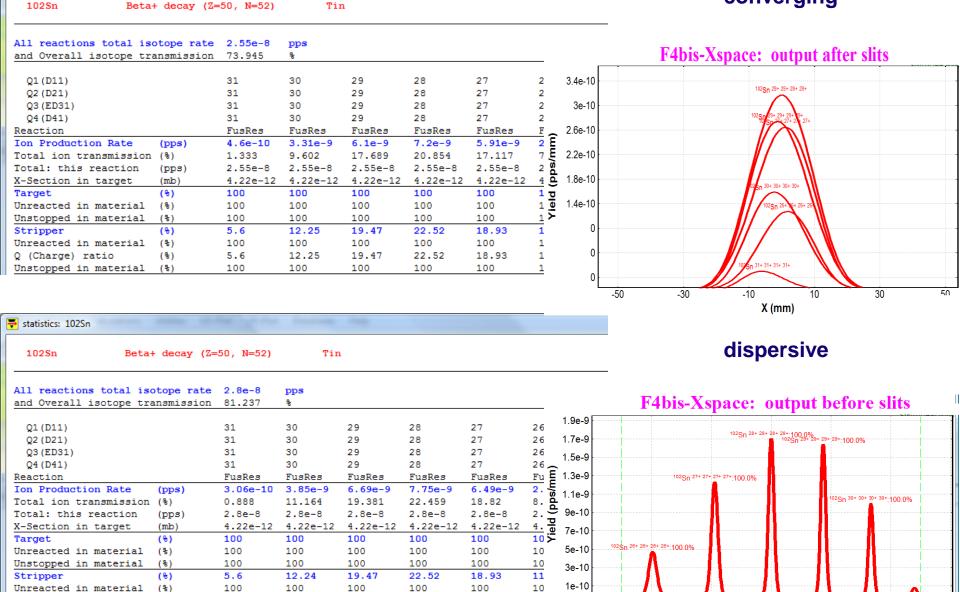
100

18.93

100

11

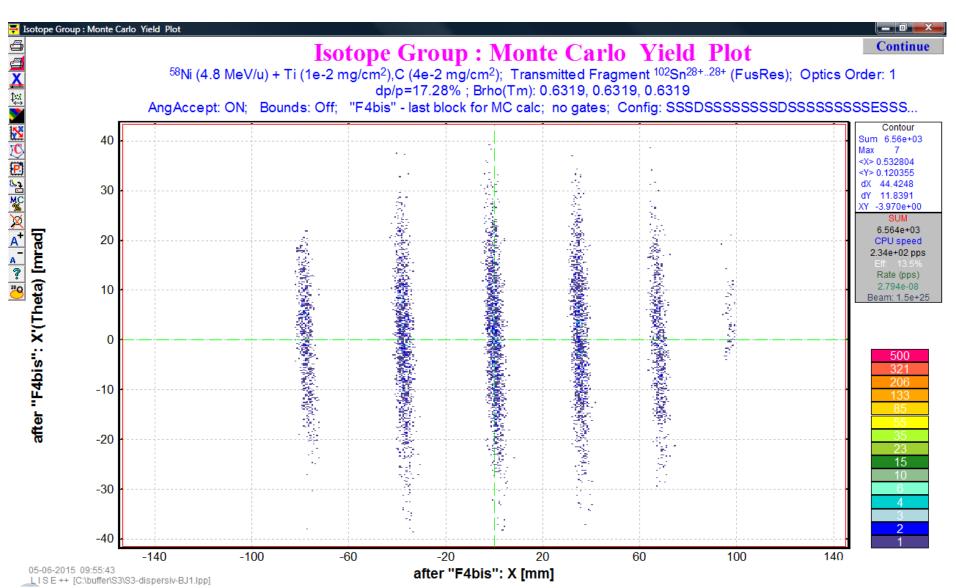
10


-1.20

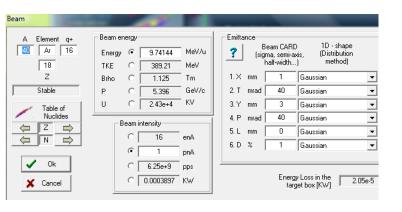
Segmented configurations transmissions

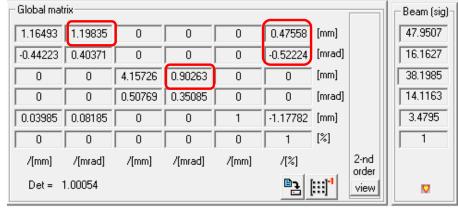
converging

X (mm)

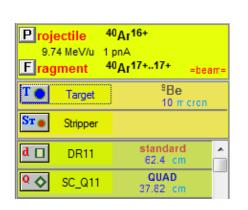


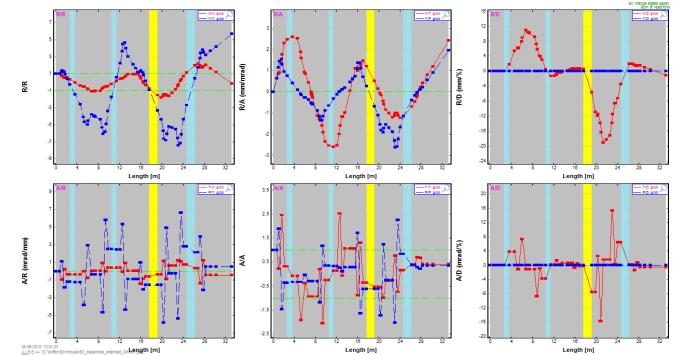
Monte Carlo segmented configuration transmissions


Dispersive, 1st order . X/T @ F4 bis



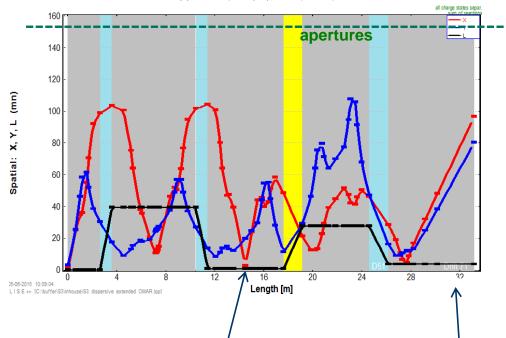
In-house Extended dispersive configuration



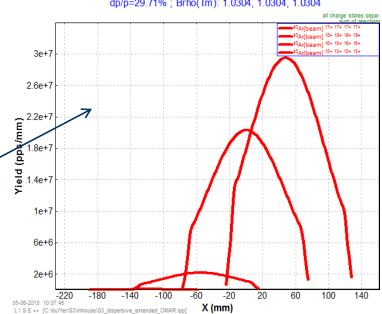


Dispersive, 1st order. @ F4 bis

First order matrix elements



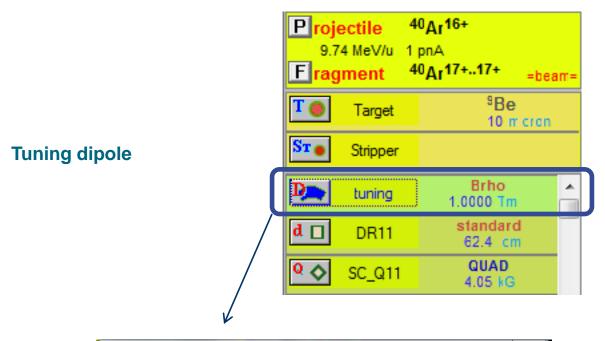
In-house Extended dispersive configuration

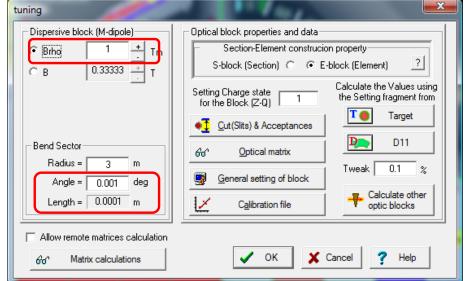


Beam Sigmas: spatial

40Ar Stabl	le (Z=18, N	=22)	Argon		
All reactions total iso	otope rate	5.42e+9	pps		
and Overall isotope tra	ansmission	86.7	8		
Q1 (D11)		18	17	16	15
Q2 (D22)		18	17	16	15
Q3(ElecDip 1)		18	17	16	15
Q4 (D51)		18	17	16	15
Reaction		BEAM	BEAM	BEAM	BEAM
Ion Production Rate	(pps)	3.07e+9	2.12e+9	2.26e+8	7.15e+6
Total ion transmission	(%)	49.102	33.864	3.619	0.114
Total: this reaction	(pps)	5.42e+9	5.42e+9	5.42e+9	5.42e+9
X-Section in target	(mb)	beam	beam	beam	beam
Target	(%)	56.65	38.98	4.18	0.162
X space transmission	(%)	100	100	100	100
Y space transmission	(%)	100	100	100	100
Unreacted in material	(%)	100	100	100	100
Q (Charge) ratio	(%)	56.66	38.99	4.18	0.162
Unstopped in material	(%)	100	100	100	100

F4bis-Xspace: output after slits



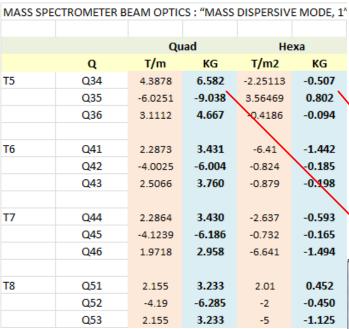

Good @ F2

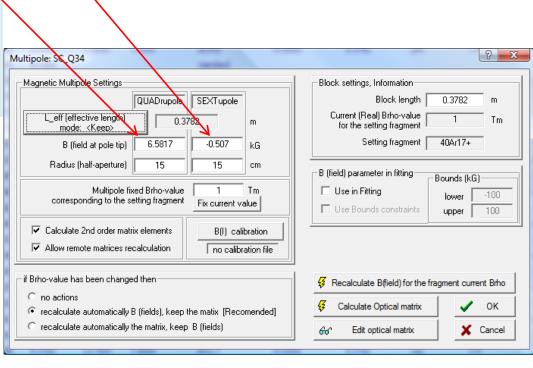
Bad @ F4 bis

Quad fields have been checked, Sext fields been entered

	S3MS_1: NOMINAL, momentu for Magnetic rigidity = 1.000 T	•	•			
Triplet	Quadrupole (T/m) B1= dB_y/dx	Hexapole (T/m^2) B2= d^2B_y/d^2x	Octupole (T/m³) B3= d³B _v /d³x			
	Q11 = + 2.700	HX11=0	OC11=0			
T1	Q12=-5.563	HX12=+2.86	OC 12=0			
	Q13=+2.700	HX13=- 0.667	OC 13= +20			
	Q21 = +1.331	HX21=+1.60 (B2eff*)	No octupolar correction			
T2	Q22 = -2.131	HX22=+1.27 (B2eff*)	No octupolar correction			
	Q23=+1.331	HX23=+1.12 (B2eff*)	No octupolar correction			
	Q24= +2.408	HX24=+4.01	OC 24=- 37.2			
T3	Q25= -4.3992	HX25=+1.15	OC 25=0			
	Q26= +2.156	HX26=+6.36	OC 26=0			
	Q31 =+2.702	HX31=+1.82	OC 31=0			
T4	Q32 =-5.266	HX 32=0	OC 32=+59.5			
	Q33=+2.702	HX 33=0	OC 33=0			

		Quad		Hexa	
	Q	T/m	KG	T/m2	KG
T1	Q11	2.7	4.050	0	0.000
	Q12	-5.563	-8.345	2.86	0.644
	Q13	2.7	4.050	-0.667	-0.150
T2	Q21	1.331	1.997	1.6	0.360
	Q22	-2.131	-3.197	1.27	0.286
	Q23	1.331	1.997	1.12	0.252
T3	Q24	2.408	3.612	4.01	0.902
	Q25	-4.3992	-6.599	1.15	0.259
	Q26	2.156	3.234	6.36	1.431
T4	Q31	2.702	4.053	1.82	0.410
	Q32	-5.266	-7.899	0	0.000
	Q33	2.702	4.053	0	0.000

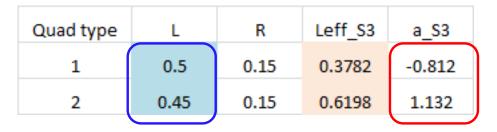

	S3MS_1 : for Magnetic rigidity = 1.000 T	7/m	
Triplet	Quadrupole (T/m) B1= dB _y /dx	Hexapole (T/m²) B2= d²B _y /d²x	Octupole (T/m³) B3= d³B _y /d³x
	Q34 = +4.3878	HX34=-2.25113	OC34= 0
T5	Q35= -6.0251	HX 35=-3.56469	OC 35=+59.8
	Q36=+3.1112	HX36=-0.4186	OC 36=-38.8
	Q41 = +2.2873	HX 41=-6.410	OC 41= 0
T6	Q42 =-4.0025	HX 42=-0.824	OC 42= 0
	Q43=+2.5066	HX 43=-0.879	OC 43= 0
	Q44= +2.2864	HX 44=-2.637	OC 44= -30.2
T7	Q45=4.1239	HX 45=-0.732	OC 45= 0
	Q46=+1.9718	HX 46=-6.641	OC 46= 0
	Q51 =+2.1550	HX 51=+2.01 for T ₁₂₇ =0	OC 51=-28.7
T8	Q52 =-4.190	HX 52=-2.0 for T ₁₂₇ =0	OC 52=+130.0
	Q53=+2.155	HX 53= -5.0 for T ₁₂₇ =0	OC 53= 130.0


MASS SPE	CTROMETER B	EAM OPTION	CS: "MASS	DISPERSIV	E MODE, 1"
		Qu	ıad	Hexa	
	Q	T/m	KG	T/m2	KG
T5	Q34	4.3878	6.582	-2.25113	-0.507
	Q35	-6.0251	-9.038	3.56469	0.802
	Q36	3.1112	4.667	-0.4186	-0.094
T6	Q41	2.2873	3.431	-6.41	-1.442
	Q42	-4.0025	-6.004	-0.824	-0.185
	Q43	2.5066	3.760	-0.879	-0.198
T7	Q44	2.2864	3.430	-2.637	-0.593
	Q45	-4.1239	-6.186	-0.732	-0.165
	Q46	1.9718	2.958	-6.641	-1.494
T8	Q51	2.155	3.233	2.01	0.452
	Q52	-4.19	-6.285	-2	-0.450
	Q53	2.155	3.233	-5	-1.125

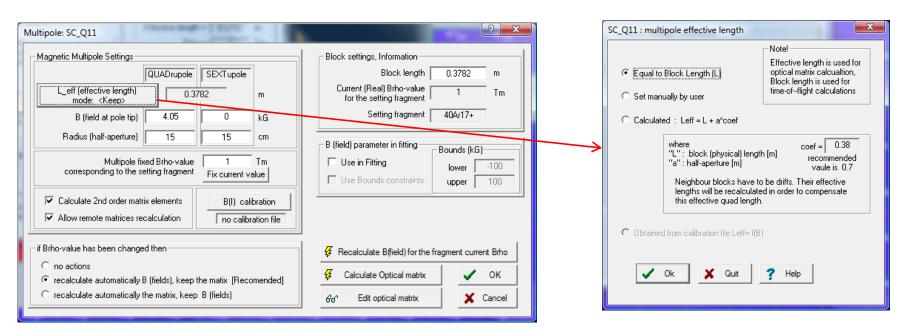
Quad fields have been checked, Sext fields been entered

Second triplet parameters have been modified

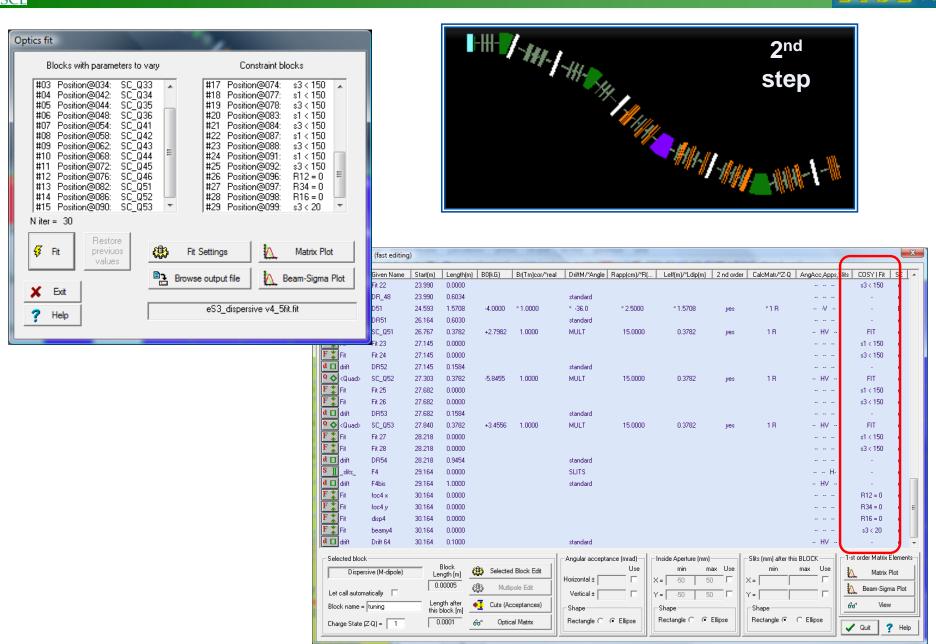
d □ drift	DR21	3.589	0.9585
<quad></quad>	NSC_Q21	4.547	0.6080
d □ drift	DR22	5.155	0.1470
Q ♦ <quad></quad>	NCS_Q22	5.302	0.6130
d □ drift	DR23	5.915	0.1470
<quad></quad>	NCS_Q23	6.062	0.6130
d □ drift	DR_24	6.675	0.4635


maximum nora at poro		V.1 E	
Triplet 2 (normal conducting, open)			
S3N-DR21	mm	1035	1035-(619.8-450)/2=950.6
S3N-Q21 type N.C. open Triplet 2(L=2141.8)	mm	450	619.8
S3N-DR22	mm	310	310-(619.8-450)=141.2
S3N-Q22 type N.C. open	mm	450	619.8
S3N-DR23	mm	310	310-(619.8-450)=141.2
S3N-Q23 type N.C. open	mm	450	619.8
S3N-DR24	mm	825	825-(619.8-450)/2=740.6
F1	mm	0	0
	•		

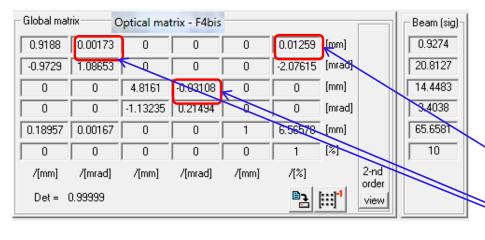
Final File for fitting after updates and modifications: eS3_dispersive v4.lpp

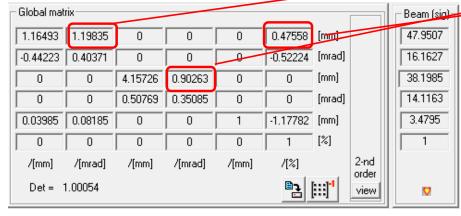


Effective lengths


Wrong geometrical values in the document

Should be around 0.5-1.0





Short optimization test

Dispersive, 1st order. @ F4 bis

A lot of improvement and optimization should be done more in the LISE++ optimization process !!!!

28.218

28.218

28.218

29.164

29.164 30.164

30.164

38.164

30,164

30.164

0.0000

0.0000

0.9454

0.8000

1.0000

0.0000

0.0000

0.0000

0.0000

0.1000

s1 < 150

s3 < 150

R12 = 0

R34 = 0

R16 = 0

s3 < 20

е

e

e

Fit 27

Fit 28

DR54

F4bis

foc4 x

foc4 u

disp4

beamu4

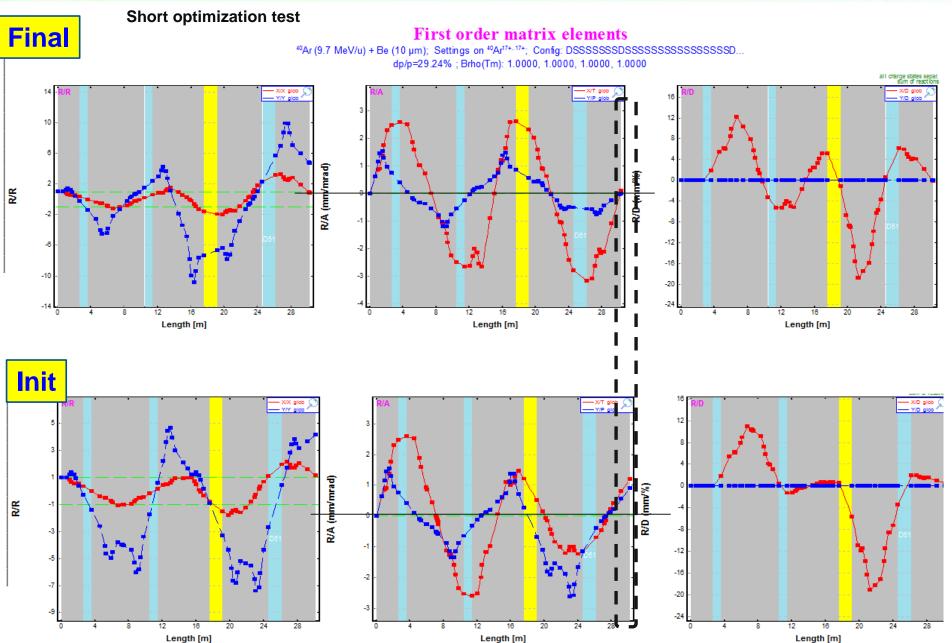
Drift 64

F4

d □ drift

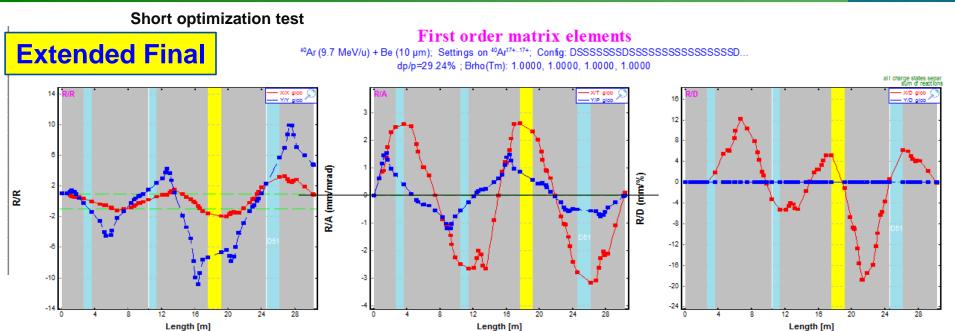
d □ drift

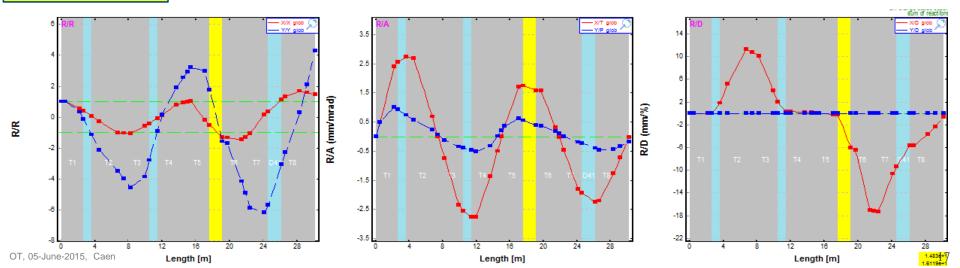
F 🔭 Fit

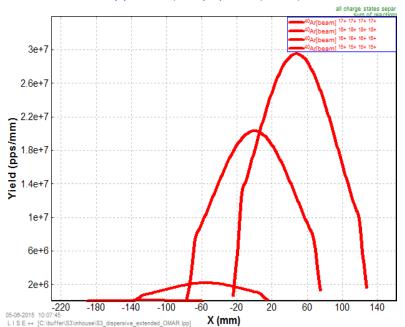

drift 🗖

slits_

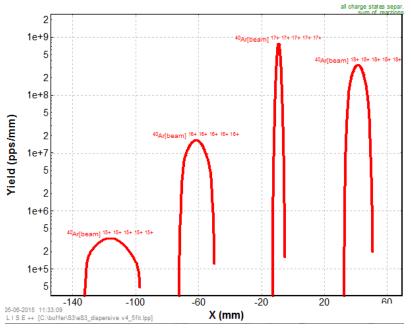
 $\mathbf{s} \parallel$







Short optimization test



F4bis-Xspace: output after slits

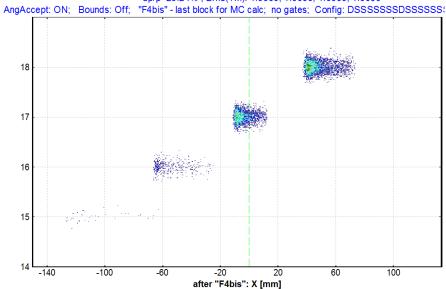
foc4 x-Xspace: output after slits

File: eS3_dispersive v4.lpp

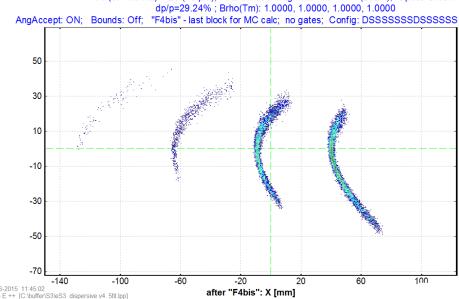
File: eS3_dispersive v4_5fit.lpp

after "F4bis": q (ion charge)

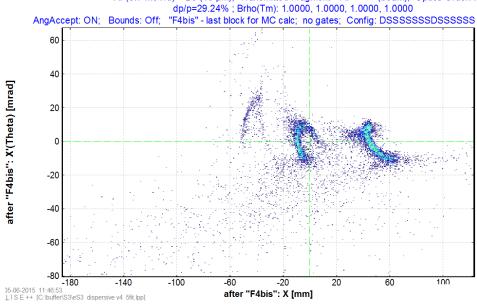
after "F4bis": X'(Theta) [mrad]


Optimization

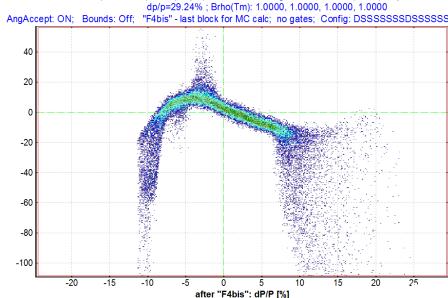
after "F4bis": X'(Theta) [mrad]


Isotope Group: Monte Carlo Yield Plot

 40 Ar (9.7 MeV/u) + Be (10 µm); Transmitted Fragment 40 Ar $^{17+..17+}$ (beam); Optics Order: 1 dp/p=29.24%; Brho(Tm); 1.0000, 1.0000, 1.0000, 1.0000


Isotope Group: Monte Carlo Yield Plot

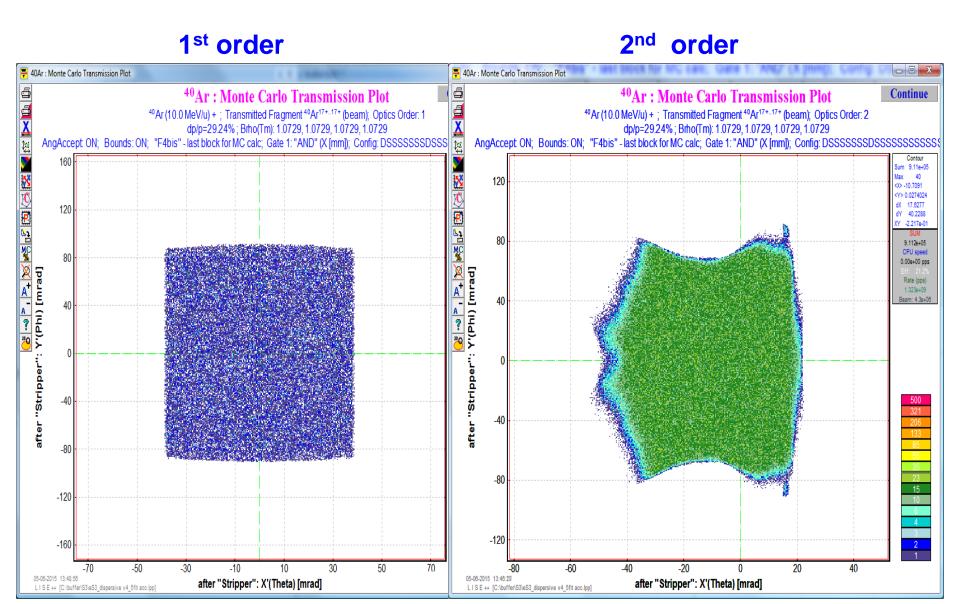
⁴⁰Ar (9.7 MeV/u) + Be (10 μm); Transmitted Fragment ⁴⁰Ar^{17+...17+} (beam); Optics Order: dp/p=29.24%; Brho(Tm): 1.0000, 1.0000, 1.0000


Isotope Group: Monte Carlo Yield Plot

⁴⁰Ar (9.7 MeV/u) + Be (10 μm); Transmitted Fragment ⁴⁰Ar^{17+..17+} (beam); Optics Order: 2

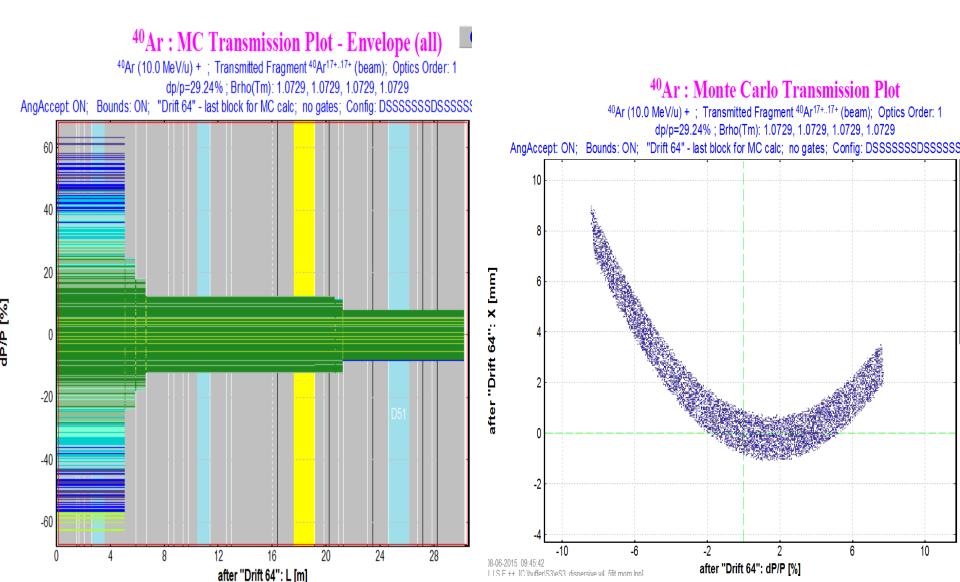
⁴⁰Ar: Monte Carlo Transmission Plot

 40 Ar (9.7 MeV/u) + Be (10 μ m); Transmitted Fragment 40 Ar $^{17+...17+}$ (beam); Optics Order: dp/p=29.24%; Brho(Tm): 1.0000, 1.0000, 1.0000, 1.0000



S³ angular acceptances (example with the previous configuration)

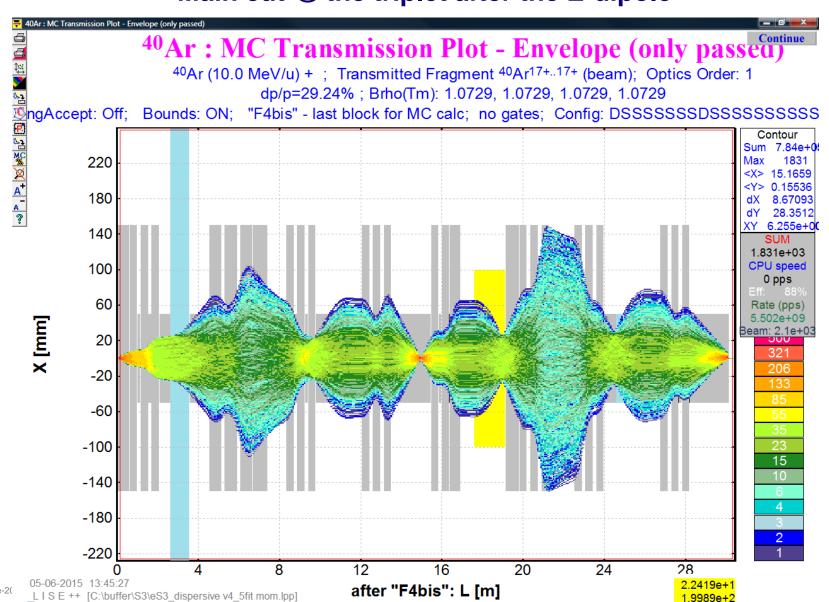
Short optimization test only for demonstration!!!



S³ momentum acceptance

Short optimization test only for demonstration!!!

File: eS3_dispersive v4_5fit mom.lpp



S³ acceptances: envelope

Short optimization test only for demonstration!!!

Main cut @ the triplet after the E-dipole

Outlook

- Update of extended configurations
 - **❖** Based on LISE⁺⁺ calculations (2nd order) -- possibility to optimize
 - ❖ Based on other sophisticated codes 5 order for aberrations observations
- Update of user (segmented) configurations
- Effective lengths issue is a main key
- Multipole calibrations