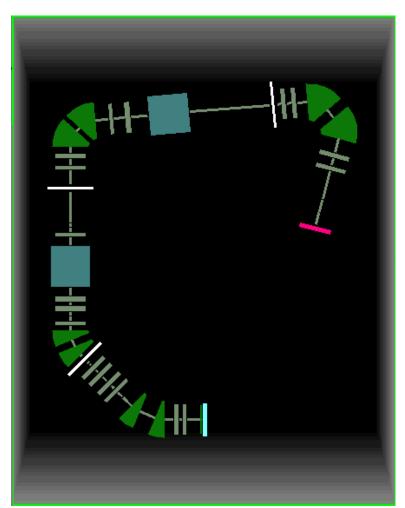


Recoil separator "SECAR" @ MSU

(update)

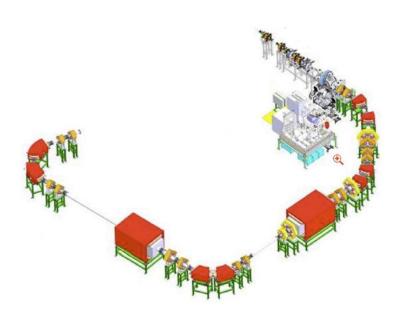
High Order Extended Configurations


Version 9.10.169 from 08/20/2015 Version 9.10.171 from 08/27/2015

(for the update check pages: 11,12, 45, 50-54)

- SECAR documentation
- SECAR phase1
- LISE⁺⁺ modifications for SECAR
- SECAR files location
- SECAR phase 1 with COSY maps
- Optimization with LISE**
- ☐ SECAR phase1: Angular Acceptance
- □ SECAR phase1: Momentum Acceptance
- □ SECAR phase1: Charge states selection
- **■** Experiment $^{15}O(\alpha,\gamma)^{19}Ne$
 - Fusion
 - De-excitation by gamma at low energies vs. kinematics
- Segmented configuration
- Open questions

Link: Separator "SECAR"



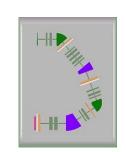
SECAR documentation sources

1. SEparator for CApture Reactions (SECAR) Pre-Conceptual Design Report

Facility for Rare Isotope Beams

FRIB-M41600-RP-000055-R002

SEparator for CApture Reactions (SECAR) Pre-Conceptual Design Report


Issued 1 October 2014

SEparator for CApture Reactions (SECAR) Pre-Conceptual Design Report

H. Schatz^{1,2,3}, M.S. Smith⁴, G.P.A. Berg^{5,3}, M. Couder^{5,3}, J.C. Blackmon⁶, K.A. Chipps^{7,4}, U. Greife⁸, F. Montes^{1,2}, A. Bacher⁹, D.W. Bardayan⁵, A. Chen¹⁰, C. Deibel⁶, L. Erikson¹¹, J. Goerres⁵, U. Hager^{1,2}, D. Lawton^{1,2}, D. Leitner^{1,2}, M. Moran⁵, S.D. Pain⁴, G. Perdikakis^{1,2}, K.E. Rehm^{1,3}, K. Smith^{5,7}, A. Spyrou^{1,2}, M. Syphers^{1,2}, M. Wiescher⁵, W. Wittmer^{1,2}, C. Wrede^{1,2}, X. Wu^{1,2}, A. Zeller^{1,2}

2. COSY file "inputCOSY-MC-4.fox" by G.Berg & M.Couder (Notre Dame)

Helpful information for the recent recoil separator development in LISE++: Documentation for extended configurations of the recoil separator "DRAGON" @ TRIUMF http://lise.nscl.msu.edu/9_10/DRAGON/DRAGON.pdf

SECAR parameters (p.1)

Table 3.3. The optimized longitudinal locations and lengths of the various SECAR elei

Element		Element pro	nerties
Technical	Description		Radius/half
Name	Description	Length(m)/	
111111		angle(deg)	8 P (111)
		1VF/2VF	
DL1	Drift	0.8	
Q1	Quad+Hex	0.25	0.05
DL2	Drift	0.19	
Q2	Quad	0.30	0.068
DL3	Drift	0.58	
B1	Dipole	22.5 deg	1.25/0.03
DL4	Drift	1.00	
B2	Dipole	22.5 deg	1.25/0.03
DL5	Drift	0.77	
DL6	Drift	0.40	
HEX1	Hexapole	0.26	0.11
DL7	Drift	0.27	
Q3	Quad	0.35	0.11
DL8	Drift	0.35	
Q4	Quad	0.35	0.08
DL9	Drift	0.21	
Q5	Quad	0.35	0.06
DL10	Drift	0.145	
DL11	Drift	0.185	
DL12	Drift	0.17	
B3	Dipole	22.5 deg	1.25/0.05
DL13	Drift	0.51	
B4	Dipole	22.5 deg	1.25/0.05
DL14	Drift	0.30	
HEX2	Hexapole	0.26	0.12
DL15	Drift	0.27	
DL16	Drift	0.27	
Q6	Quad	0.34	0.14
DL17	Drift	0.20	
Q7	Quad	0.34	0.13
DL18	Drift	0.50	

VF1	Velocity filter	2.365	0.11
DL19	Drift	0.50	
HEX3	Hexapole	0.26	0.11
DL20	Drift	0.28	
OCT1	Octupole	0.26	0.07
DL21	Drift	1.75	
DL22	Drift	0.872	
Q8	Quad	0.25	0.05
DL23	Drift	0.395	
Q9	Quad	0.30	0.06
DL24	Drift	0.36	
B 5	Dipole	42.5 deg	1.25/ 0.03
DL25	Drift	0.35	
B6	Dipole	42.5 deg	1.25/0.03
DL26	Drift	0.83	
Q10	Quad	0.26	0.09
DL27	Drift	0.65	
Q11	Quad	0.34	0.12
DL28	Drift	1.00	
VF2	Velocity filter	2.365	0.11
DL29	Drift	4.60	
DL30	Drift	0.25	
Q12	Quad	0.30	0.07
DL31	Drift	0.30/0.35	
Q13	Quad	0.30	0.05
DL32	Drift	0.66	
B7	Dipole	55.0 deg	1.25/0.03
DL33	Drift	0.68	
B8	Dipole	55.0 deg	1.25/ 0.03
DL34	Drift	0.86	
Q14	Quad	0.30	0.05
DL35	Drift	0.45	
Q15	Quad	0.30	0.05
DL36	Drift	1.70/1.21	
DL37	Drift	0.75/1.10	
DL38	Drift	0.75/0.40	

SECAR parameters (p.2)

Dipoles	

		Parameter							
	Units	B1	B2	В3	B4	B5	B6	B7	B8
Bending radius	mm	1250	1250	1250	1250	1250	1250	1250	1250
Maximum rigidity	Tm	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Max. magnetic field B	Т	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64
Bending angle, to right	deg	22.5	22.5	22.5	22.5	42.5	42.5	55.0	55.0
Central ray, arc length	mm	490.9	490.9	490.9	490.9	927.2	927.2	1199.	1199.9
Vertical gap, full size	mm	60	60	100	100	60	60	60	60
GFR, dB/B <+/-0.02%	mm	200	200	100	200	100	100	100	100
Pole width	mm	380	380	400	500	300	300	280	280
Entrance s ₁₁		0.1900	0.1150	0.1900	0.1900	0.1890	0.1970	0	0
Entrance s ₁₂	1/m	0.0025	0.0125	1.07	-0.339	0.696	-1.66	0	0
Entrance s ₁₃	1/m ²	0.154	0.198	-9.10	-5.51	-0.953	-50	0	0
Entrance s ₁₄	1/m ³	0.78	-40.77	0.	-0.84	-53.	0.	0	0
Exit s ₂₁		0.1500	0.1150	0.1150	0.1900	-0.172	0.200	0	0
Exit s ₂₂	1/m	-0.019	-0.2448	0.0410	-0.030	-5.928	-4.00	0	0
Exit s ₂₃	1/m ²	0.147	1.411	32.7	-0.364	-26.5	69.	0	0
Exit s ₂₄	1/m ³	0.10	37.47	-57.	-0.15	-940	0.	0	0

Good-field	Horizontal	mm	± 110
Region (GFR)	Vertical	mm	± 35
	Max. B field in GFR	T	0.12
	Effective field length	mm	2365
	Pole gap, vertical	mm	900
Dipole	Pole width, approx	mm	1020
Magnet	B field, homogeneity		± 0.0002 in GFR
	Estimated power	kW	50
	Iron weight	kg	12800
	2 Coils Weight	kg	2300
	Max. E field in GFR	kV/mm	2.7
Electrostatic	Max. Voltages on electrodes	kV	+/- 300
	Effective field length	mm	2365
system	Electrode gap, horizontal	mm	220
	Electrode height, vertical	mm	538

Table 3.10. Specifications of SECAR Velocity Filters

SECAR parameters (p.3)

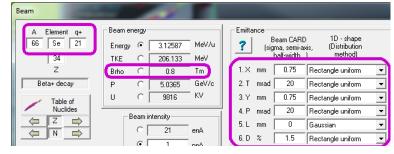


Table 3.4. Quadrupole and multipole field settings for the SECAR C charge state 21, energy 206 MeV).

charge state 2.	1, energy 206 .		
Quadrupole	Radius (m)	Pole tip field	Gradient T/m
		(T)	
Q1	0.05	-0.3654	-7.3080000
Q2	0.068	0.217880	3.2041176
Q3	0.11	0.242643	2.2058455
Q4	0.08	-0.24501	-3.0626250
Q5	0.06	0.1112810	1.8546833
Q6	0.14	0.181721	1.2980071
Q7	0.13	-0.0301435	-0.2318731
Q8	0.05	-0. 15032	-3.0064000
Q9	0.06	0.23438	3.3482857
Q10	0.09	-0.03250	-0.3611111
Q11	0.12	0.1616	1.3466667
Q12	0.07	-0.1820	-2.6000000
Q13	0.05	0.1910	3.8200000
Q14	0.05	0.1290	2.5800000
Q15	0.05	-0.138	-2.7600000
HEX(Q1)	0.05	-0.00289	
HEX1	0.11	0.0103064	
HEX2	0.12	0.011057	
HEX3	0.11	-0.01251	

The optimized ion optics setup was calculated for the transmission of "reference" ions with mass 66, charge 21, and a laboratory energy of 206 MeV corresponding to 3.12 MeV center of mass energy. These ions correspond to the recoiling ^{66}Se ions from the $^{65}\text{As}(p,\gamma)^{66}\text{Se}$ reaction, and have the maximum magnetic rigidity of Bp=0.800 Tm. The field settings for recoils from any particular reaction are then determined by appropriately scaling the optimized settings by the ratio of magnetic rigidities. The lowest design rigidity for our system is 0.14 Tm. In the optimized setup, the maximum design rigidity of 0.8 Tm and a dipole magnet with bending radius of 1.25 m require dipole fields of 0.64 T. The pole tip fields and pole tip radii of the quadrupoles, hexapoles, octupole, and multipole strengths are listed in Table 3.4. The optimum field settings of the velocity filter are 0.1143 T magnetic field and +/- 308.3 kV for the HV on the electrodes, corresponding to an electric field of 2.80kV/mm. Component specifications for the velocity filters are given in Table 3.9 in §3.7.3. The bending radii for the magnetic fields.

Beam in LISE++

For SECAR phase1

	REPORT	
	from	COSY
	October	file,
	2014	table v4
element	Т	Т
Q1	-0.3654	-0.3653
Q2	0.2179	0.2179
Q3	0.2426	0.2426
Q4	-0.2450	-0.2450
Q5	0.1113	0.1113
Q6	0.1817	0.1817
Q7	-0.0301	-0.0301
Q8	-0.1503	
Q9	0.2344	
Q10	-0.0325	
Q11	0.1616	
Q12	-0.1820	-0.2200
Q13	0.1910	0.2016
Q14	0.1290	0.1315
Q15	-0.1380	-0.1450
HEX(Q1)	-0.0029	-0.0006
HEX1	0.0103	0.0086
HEX2	0.0111	0.0145
HEX3	-0.0125	-0.0434

SECAR settings in LISE⁺⁺: target – **FP2**

1	2	3	4	5	6		8	9	10	11	12		14	15	16	17	18	19	20	21	22	23
N	Block name	Kind of	Start		DriftMode	B0 (kG)			_				Slits				Ymax	Appert				
or		Block	(m)	(m)	Angle(°)*		Br-dip*	R(m)*	Len(m)*	order	Mode	mode	shape	slit	slit	slit	slit	shape		limit	limit	limit
1.	tuning	Dipole	0.000	0.000	+0.0 *	+2.667	0.8000*	3.00*	0.00*	-			rectn					ellps		+50	-50	+50
2.	dl1	Drift	0.000	0.800	standard								rectn					ellps	-50	+50	-50	+50
3.	Q1	Drift	0.800	0.250	multipole	-3.653	0.8000	5.00	0.25	yes	1		rectn					ellps	-50	+50	-50	+50
4.	d12	Drift	1.050	0.190	standard								rectn					ellps				
5.	Q2	Drift	1.240	0.300	multipole	+2.179	0.8000	6.80	0.30	yes	1		rectn					ellps	-68	+68	-68	+68
6.	d13	Drift	1.540	0.580	standard								rectn					ellps				
7.	B1	Dipole	2.120	0.491	+22.5 *	+2.667	0.8000*	1.25*	0.49*	yes			rectn					rectn			-30	+30
8.	d14	Drift	2.611	1.000	standard								rectn					rectn				
9.	B2	Dipole	3.611	0.491	+22.5 *	+2.667	0.8000*	1.25*	0.49*	yes			rectn					rectn			-30	+30
10.	. d15	Drift	4.102	0.770	standard								rectn					rectn				
11.	. d16	Drift	4.872	0.400	standard								rectn					rectn				
12.	Hex1	Drift	5.272	0.260	multipole	+0.000	0.8000	11.00	0.26	yes	1		rectn					ellps	-110	+110	-110	+110
13.	. d17	Drift	5.532	0.270	standard								rectn					rectn				
14.	. Q3	Drift	5.802	0.350	multipole	+2.426	0.8000	11.00	0.35	yes	1		rectn					ellps	-110	+110	-110	+110
15.	. dl8	Drift	6.152	0.350	standard								rectn					rectn				
16.	. Q4	Drift	6.502	0.350	multipole	-2.450	0.8000	8.00	0.35	yes	1		rectn					ellps	-80	+80	-80	+80
17.	. dl9	Drift	6.852	0.210	standard								rectn					rectn				
18.	. Q5	Drift	7.062	0.350	multipole	+1.113	0.8000	6.00	0.35	yes	1		rectn					ellps	-60	+60	-60	+60
19.	. dl10	Drift	7.412	0.145	standard								rectn					rectn				
20.	dl11	Drift	7.557	0.185	standard								rectn					rectn				
21.	. slits FP1	Drift	7.742	0.000	SLITS								rectn	-100	+100	-50	+50	rectn				
22.	dl12	Drift	7.742	0.170	standard								rectn					rectn				
23.	. B3	Dipole	7.912	0.491	+22.5 *	+2.667	0.8000*	1.25*	0.49*	yes			rectn					rectn			-50	+50
24.	dl13	Drift	8.403	0.510	standard								rectn					rectn			-50	+50
25.	. B4	Dipole	8.913	0.491	+22.5 *	+2.667	0.8000*	1.25*	0.49*	yes			rectn					rectn			-50	+50
26.	. dl14	Drift	9.403	0.300	standard								rectn					rectn				
27.	Hex2	Drift	9.703	0.260	multipole	+0.000	0.8000	12.00	0.26	yes	1		rectn					ellps	-120	+120	-120	+120
	dl15	Drift	9.963	0.270	standard								rectn					rectn				
29.	. dl16	Drift	10.233	0.270	standard								rectn					rectn				
30.	. Q6	Drift	10.503	0.340	multipole	+1.817	0.8000	14.00	0.34	yes	1		rectn					ellps	-140	+140	-140	+140
31.	. dl17	Drift	10.843	0.200	standard								rectn					rectn				
	. Q7	Drift	11.043		multipole	-0.301	0.8000	13.00	0.34	yes	1		rectn					ellps	-130	+130	-130	+130
	. dl18	Drift	11.383		standard								rectn					ellps				
34.	. VF1	Wien	11.883	2.365									rectn					rectn	-110	+110	-35	+35
35.	. dl19	Drift	14.248	0.500	standard								rectn					rectn				
	Hex3	Drift	14.748		multipole	+0.000	0.7999	11.00	0.26	yes	1		rectn					ellps	-110	+110	-110	+110
37.	. dl20	Drift	15.008		standard								rectn					rectn				
38.	Oct1	Drift	15.288	0.260	standard								rectn					ellps	-70	+70	-70	+70
	dl21	Drift	15.548		standard								rectn				7	rectn				
40.	. slits FP2	Drift	17.298	0.000	SLITS								rectn	-150	+150	-100	F100	rectn				

This settings list can be produced in LISE** using menu "Experimental Settings -> Optics -> Optics settings: View and Print"

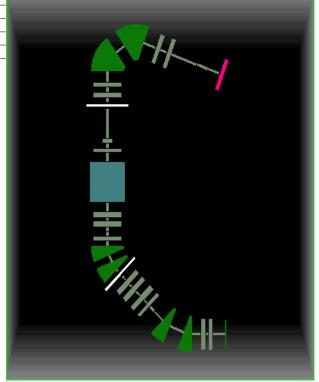
These aperture parameters are used to obtain angular and momentum acceptances of the separator.

SECAR settings in LISE⁺⁺: FP2 – DL38

1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
N Block name	Kind of			DriftMode																	Ymax
or	Block	(m)	(m)	Angle(°)*		Br-dip*	R(m)*	Len(m)*	order	Mode	mode	shape	slit	slit	slit	slit	shape	limit	limit	limit	limit
41. dl22	Drift	17.298		standard								rectn					rectn				
42. Q8	Drift	18.170	0.250	multipole	-1.503	0.7999	5.00	0.25	yes	1		rectn					ellps	-50	+50	-50	+50
43. dl23	Drift	18.420	0.395	standard								rectn					rectn				
44. Q9	Drift	18.815	0.300	multipole	+2.343	0.7999	6.00	0.30	yes	1		rectn					ellps	-60	+60	-60	+60
45. dl24	Drift	19.115		standard								rectn					rectn				
46. B5	Dipole	19.475	0.927	+42.5 *	+2.667	0.8000*	1.25*	0.93*	yes			rectn					rectn			-30	+30
47. dl25	Drift	20.403		standard								rectn					rectn				
48. B6	Dipole	20.753		+42.5 *	+2.667	0.8000*	1.25*	0.93*	yes			rectn					rectn			-30	+30
49. dl26	Drift	21.680		standard								rectn					rectn				
50. Q10	Drift	22.510	0.260	multipole	-0.325	0.8000	9.00	0.26	yes	1		rectn					ellps	-90	+90	-90	+90
51. dl27	Drift	22.770		standard								rectn					rectn				
52. Q11	Drift	23.420		multipole	+1.616	0.8000	12.00	0.34	yes	1		rectn						-120	+120	-120	+120
53. dl28	Drift	23.760		standard								rectn					rectn				
54. VF2	Wien	24.760										rectn					rectn	-110	+110	-35	+35
55. dl29	Drift	27.125		standard								rectn					rectn				
56. slits FP3	Drift	31.725		SLITS								rectn	-150	+150	-100	+100	rectn				
57. dl30	Drift	31.725		standard								rectn					rectn				
58. Q12	Drift	31.975		multipole	-1.820	0.7999	7.00	0.30	yes	1		rectn					ellps	-70	+70	-70	+70
59. dl31	Drift	32.275		standard								rectn					rectn				
60. Q13	Drift	32.575		multipole	+1.910	0.7999	5.00	0.30	yes	1		rectn					ellps	-50	+50	-50	+50
61. dl32	Drift	32.875		standard								rectn					rectn				
62. B7	Dipole	33.535		+55.0 *	+2.667	0.8000*	1.25*	1.20*	yes			rectn					rectn			-30	+30
63. dl33	Drift	34.735		standard								rectn					rectn				
64. B8	Dipole	35.415		+55.0 *	+2.667	0.8000*	1.25*	1.20*	yes			rectn					rectn			-30	+30
65. dl34	Drift	36.615		standard								rectn					rectn				
66. Q14	Drift	37.475		multipole	+1.290	0.8000	5.00	0.30	yes	1		rectn					ellps	-50	+50	-50	+50
67. dl35	Drift	37.775		standard								rectn					rectn				
68. Q15	Drift	38.225		multipole	-1.380	0.8000	5.00	0.30	yes	1		rectn					ellps	-50	+50	-50	+50
69. dl36	Drift	38.525		standard								rectn					rectn				
70. dl37	Drift	40.225		standard								rectn					rectn				
71. dl38	Drift	40.975	0.750	standard								rectn					rectn				
																7					
																	(
																	\				/

This settings list can be produced in LISE** using menu "Experimental Settings -> Optics -> Optics settings: View and Print"

These aperture parameters are used to obtain angular and momentum acceptances of the separator.



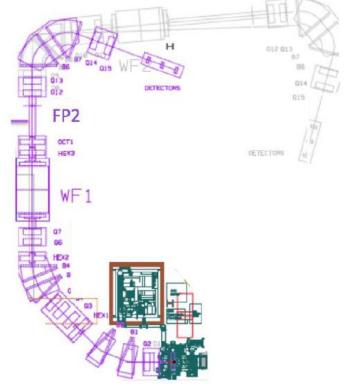
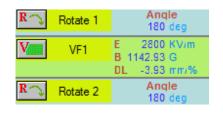
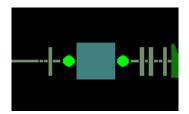
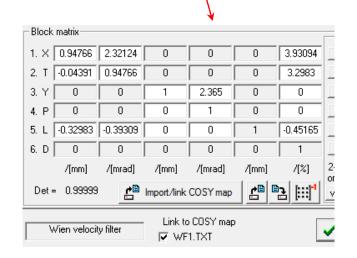
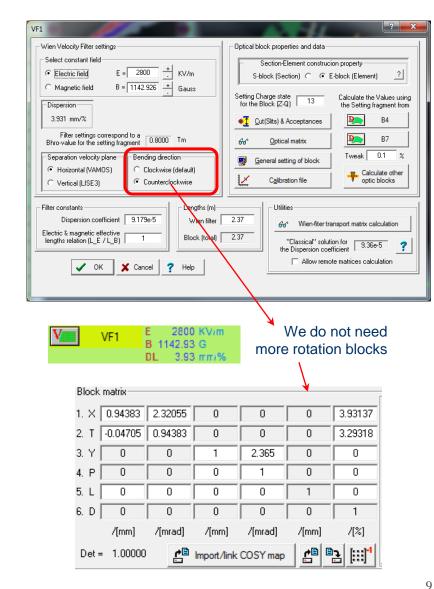

Configuration "SECAR phase1"

Table	3.13. SE	CAR Optimize	ed Setup for a 1 V	F system
Qua	drupole	Radius (m)	Pole tip field	Gradient T/m
			(T)	
Q1		0.05	-0.36534	-7.3068000
Q2		0.068	0.21788	3.2041176
Q3		0.11	0.242644	2.2058545
Q4		0.08	-0.24501	-3.0626250
Q5		0.06	0.11128	1.8546667
Q6		0.14	0.181721	1.2980071
Q7		0.13	-0.0301475	-0.2319038
Q8				
Q9				
Q10)			
Q11	-			
Q12	!	0.07	-0.22000	-3.1428571
Q13	}	0.05	0.20160	4.0320000
Q14	ļ	0.05	0.13147	2.6294000
Q15	;	0.05	-0.1450	-2.9000000
HEX	K(Q1)	0.05	-0.0006	
HEX	K1	0.11	0.008620	
HEX	ζ2	0.12	0.01449	
HEX	ζ3	0.11	-0.0435	
OCT	`1	0.07	0.006225	




LISE⁺⁺ modifications for SECAR: WF "bending" direction

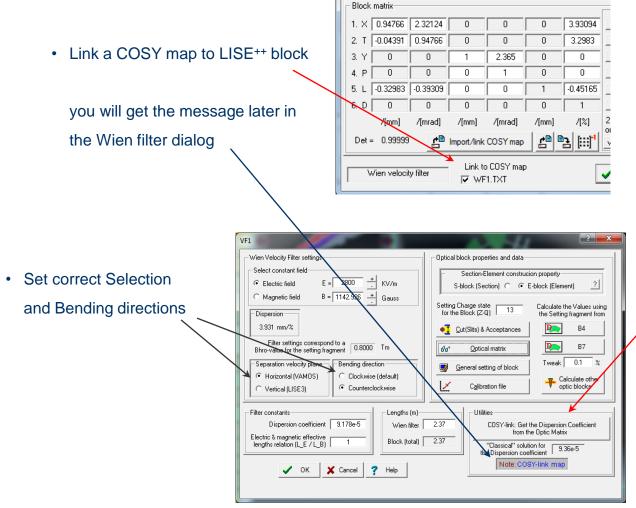

Up to v.9.10.164 only clockwise bending direction



SECAR Wien filter in COSY

CB; WF 7.0 7.0 2.365 0.11 ; {WF1} CB;

v.9.10.165



LISE⁺⁺ modifications for SECAR: WF link to COSY map

v.9.10.168

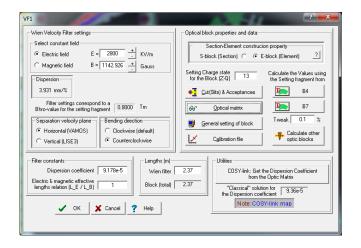
- Wien filter dispersion is "floating" for each ion in LISE++, and is calculated based on the Dispersion coefficient.
- A new option has been developed for consistency in the case of COSY linked map

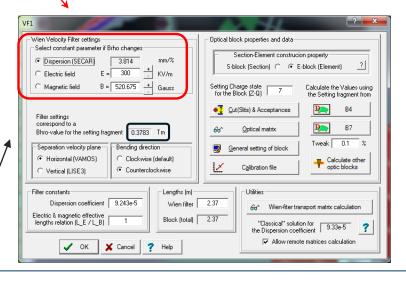
Click the button

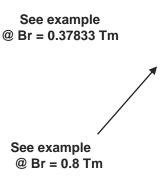
COSY-link: Get the Dispersion Coefficient from the Optic Matrix

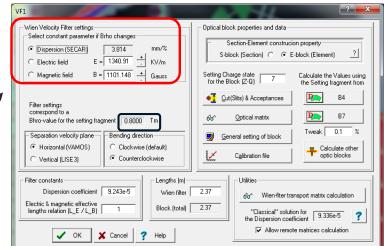
to calculate the dispersion coefficient corresponding to the COSY map.

This coefficient will be valid for all fragments at different energies

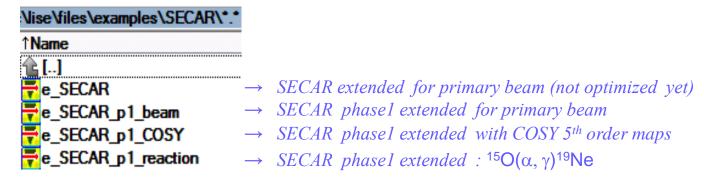

LISE⁺⁺ modifications for SECAR : new Wien Filter constant parameter




Keep "Dispersion" constant if Brho changes is a new option of the Wien filter block


v.9.10.169

v.9.10.170

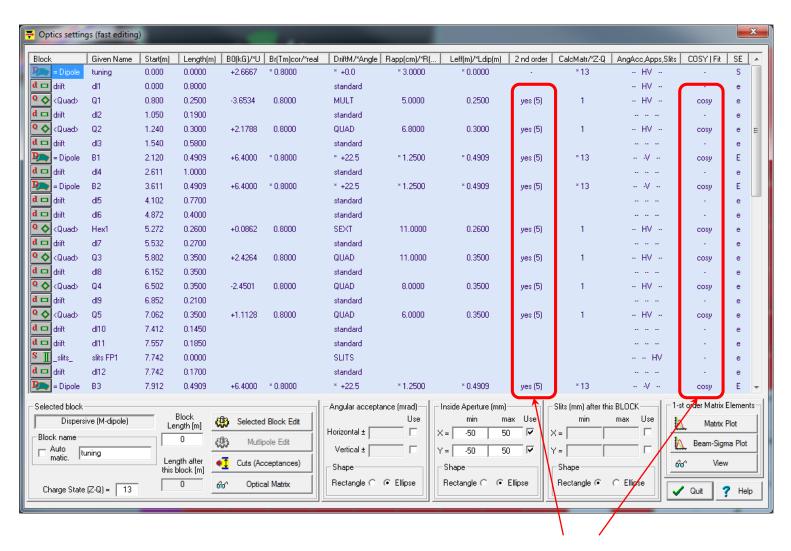


SECAR files location @ LISE⁺⁺ package

Important!! All these files have been update in *version 9.10.171* for the new Fien filter feature "keep dispersion constant"

LISE** files

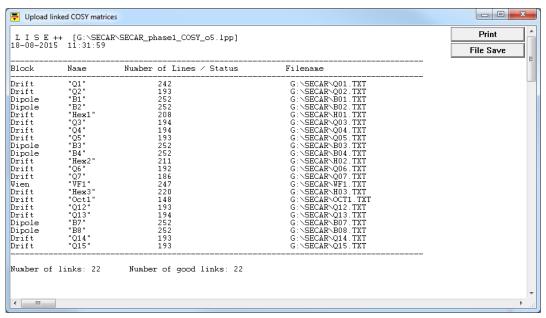
LISE** configurations


SECAR segmented configurations will be done soon

SECAR phase 1 with COSY maps

File: e_SECAR_p1_COSY.lpp

Blocks are linked with 5th order COSY maps



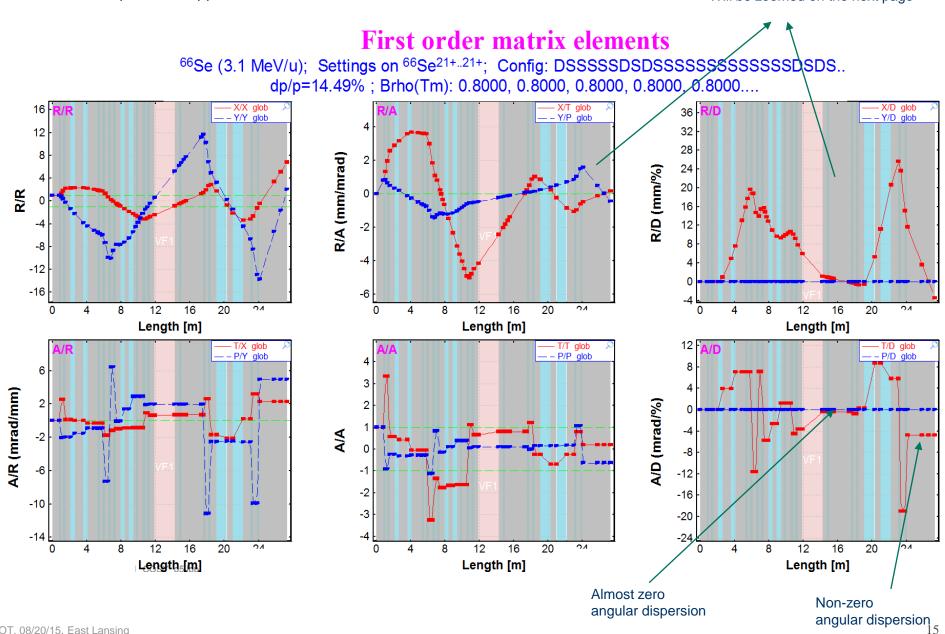
SECAR phase 1 with COSY maps: links

File: e_SECAR_p1_COSY.lpp

List of blocks with 5th order COSY maps

"SECAR v6s.fox" can be used to generate these "local "maps

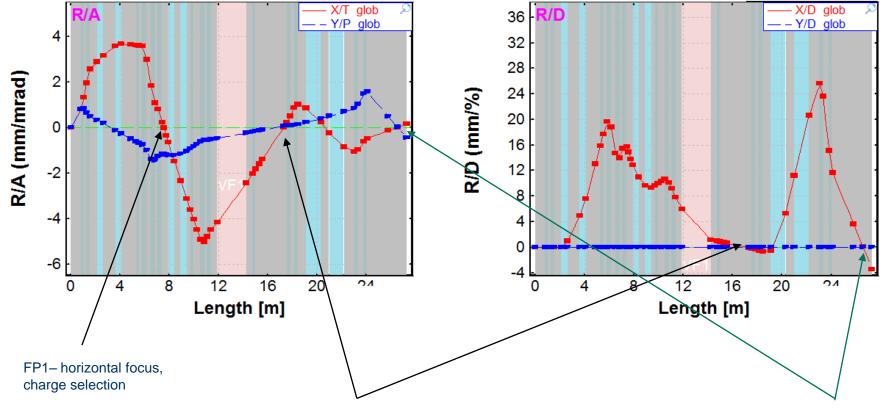
```
UM:
MC RADIUS 22.5 0.030 B1N B1S1 B1S2 7;
                                                         {B1}
PM LISE 'B01.TXT';
                                                         {DL4}
DL 1.0000 ;
MC RADIUS 22.5 0.030 B1N B2S1 B2S2 7;
                                                         {B2}
PM LISE 'B02.TXT';
DL 0.7700 ;
                                                         {DL5}
DL 0.4000 ;
                                                         {DL6}
MH 0.2600 0.008620 0.11;
                                                         {HEX1}
PM LISE 'H01.TXT';
```



SECAR phase 1 with COSY maps: 1st order matrix elements

File: e_SECAR_p1_COSY.lpp

Will be zoomed on the next page

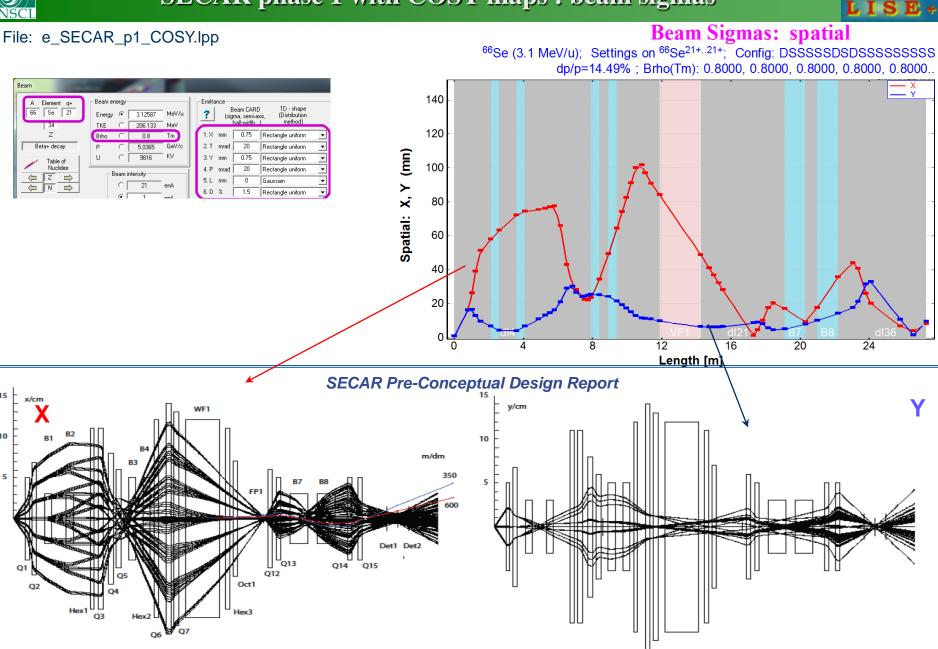


SECAR phase 1 with COSY maps: 1st order matrix elements

File: e_SECAR_p1_COSY.lpp

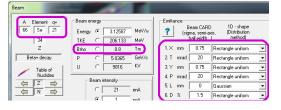
First order matrix elements

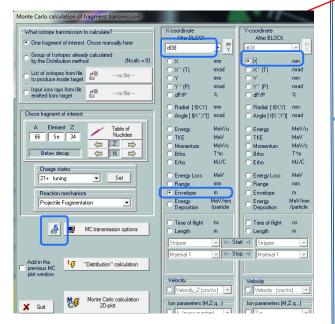
FP2 – double focus, double achromat

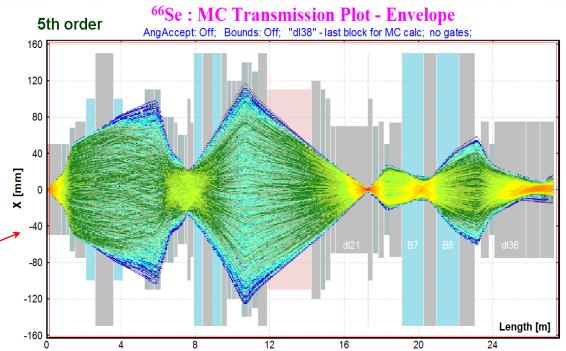

DL37 - double focus, achromat

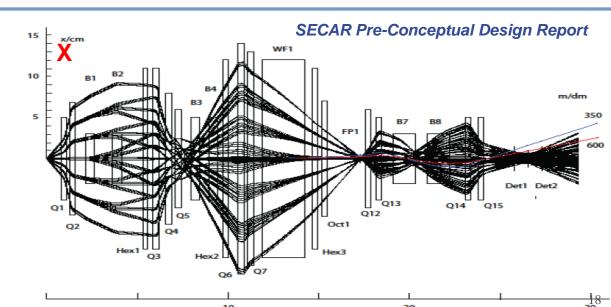
OT, 08/20/15, East Lansing

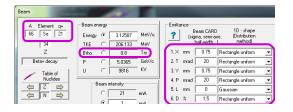
SECAR phase 1 with COSY maps: beam sigmas

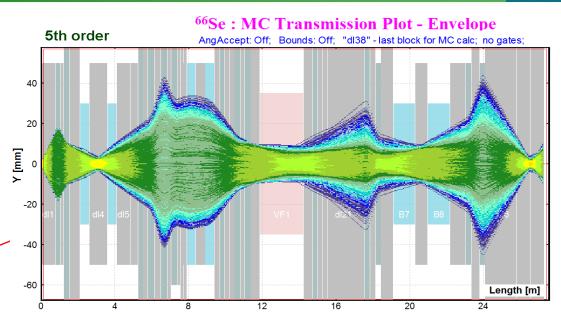



SECAR phase 1 with COSY maps: LISE⁺⁺ MC X-envelope



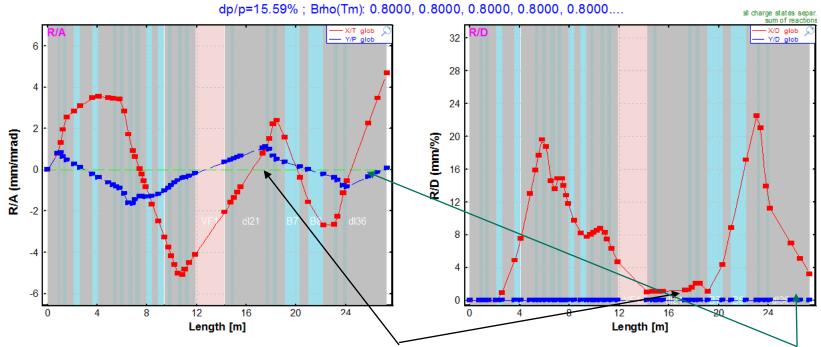

File: e_SECAR_p1_COSY.lpp




SECAR phase 1 with COSY maps: LISE⁺⁺ MC Y-envelope



File: e_SECAR_p1_COSY.lpp


SECAR phase 1 calculated by LISE++

File: **e_SECAR_phase1.l**pp

Using <u>fields</u> from the SECAR Pre-Conceptual Design Report

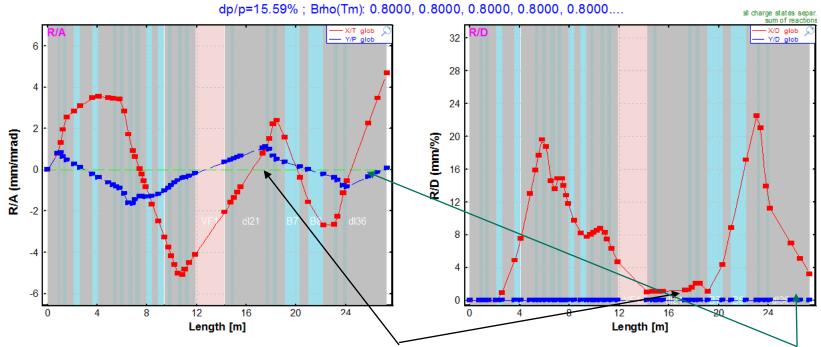
First order matrix elements

FP2 - no double focus, small dispersion

– Global mati	rix					
1.71399	0.7896	0	0	0	1.27182	[mm]
0.75758	0.93241	0	0	0	0.08012	[mrad]
0	0	15.94788	1.06042	0	0	[mm]
0	0	2.52905	0.23087	0	0	[mrad]
-0.4117	-0.9308	0	0	1	-9.86959	[mm]
0	0	0	0	0	1	[%]
/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]	

DL37 - no X-focus, small dispersion

— Global mat	rix					
7.39269	3.46894	0	0	0	5.11233	[mm]
3.19314	1.6336	0	0	0	-2.49489	[mrad]
0	0	-1.96752	-0.13856	0	0	[mm]
0	0	11.19827	0.28033	0	0	[mrad]
2.98263	0.65761	0	0	1	-24.18632	[mm]
0	0	0	0	0	1	[%]
/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]	_~


SECAR phase 1 calculated by LISE⁺⁺

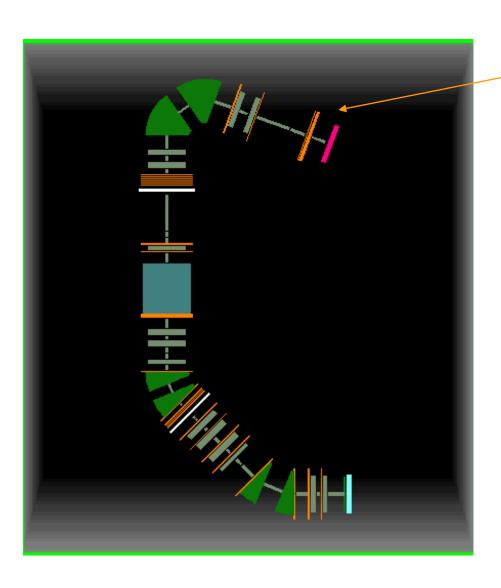
File: **e_SECAR_phase1.**lpp

Using <u>fields</u> from the SECAR Pre-Conceptual Design Report

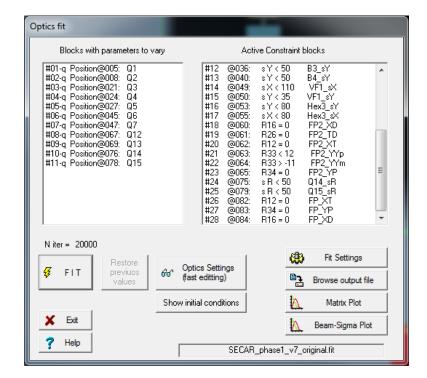
First order matrix elements

FP2 - no double focus, small dispersion

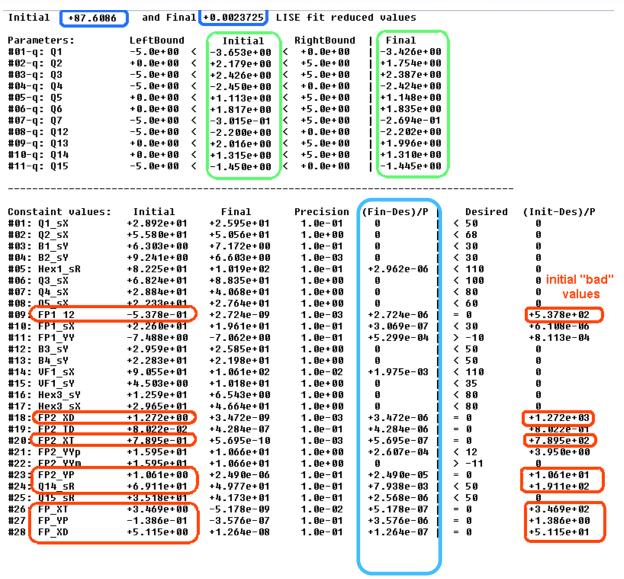
– Global mat	rix					
1.71399	0.7896	0	0	0	1.27182	[mm]
0.75758	0.93241	0	0	0	0.08012	[mrad]
0	0	15.94788	1.06042	0	0	[mm]
0	0	2.52905	0.23087	0	0	[mrad]
-0.4117	-0.9308	0	0	1	-9.86959	[mm]
0	0	0	0	0	1	[%]
/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]	

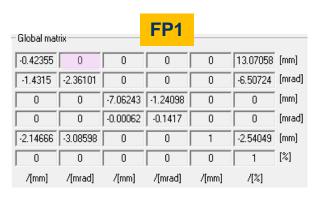

DL37 - no X-focus, small dispersion

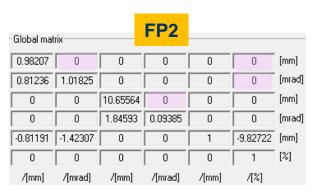
— Global mat	rix					
7.39269	3.46894	0	0	0	5.11233	[mm]
3.19314	1.6336	0	0	0	-2.49489	[mrad]
0	0	-1.96752	-0.13856	0	0	[mm]
0	0	11.19827	0.28033	0	0	[mrad]
2.98263	0.65761	0	0	1	-24.18632	[mm]
0	0	0	0	0	1	[%]
/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]	



SECAR pahse1 optimization in LISE⁺⁺


28 constraints,11 variable fields

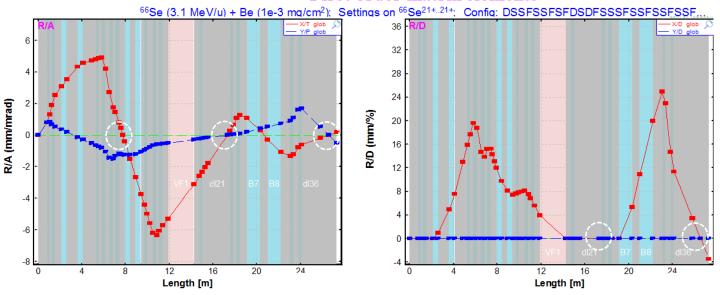

SECAR phase1 optimization in LISE⁺⁺: results



finally all constraints were positively done!!!

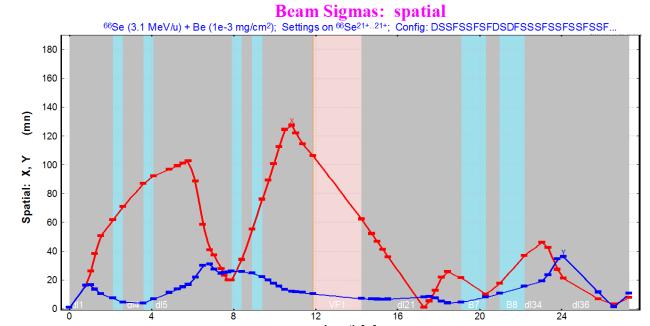
RESULTS

Global mat	rix		DL37	7		
4.03844	0	0	0	0	0.00001	[mm]
1.85669	0.24762	0	0	0	-4.63011	[mrad]
0	0	-1.46124	0	0	0	[mm]
0	0	6.71082	-0.68434	0	0	[mrad]
1.05793	-1.42307	0	0	1	-26.6422	[mm]
0	0	0	0	0	1	[%]
/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]	


23

SECAR phase1 optimization in LISE⁺⁺: results

First order matrix elements

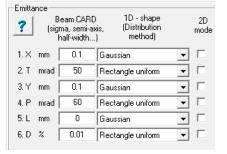

element	Initial	LISE" result	delta
Q1	-3.6534	-3.4260	0.2274
Q2	2.1788	1.7540	-0.4248
Q3	2.4264	2.3870	-0.0394
Q4	-2.4501	-2.4240	0.0261
Q5	1.1128	1.1480	0.0352
Q6	1.8172	1.8350	0.0178
Q7	-0.3015	-0.2694	0.0321
Q12	-2.2000	-2.2020	-0.0020
Q13	2.0160	1.9960	-0.0200
Q14	1.3147	1.3100	-0.0047

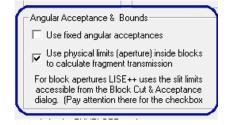
-1.4500

-1.4450

0.0050

Q15

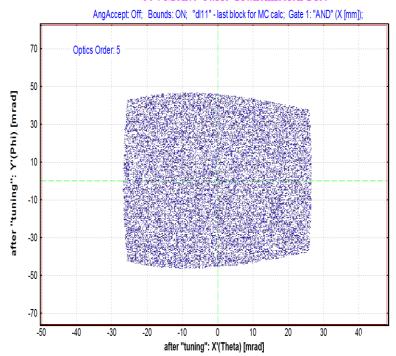

Angular Acceptance


See details for angular acceptance with the next link http://lise.nscl.msu.edu/9_8/SE_blocks.pdf#page=5

<u>Settings</u>

Beam dialog

Monte Carlo options

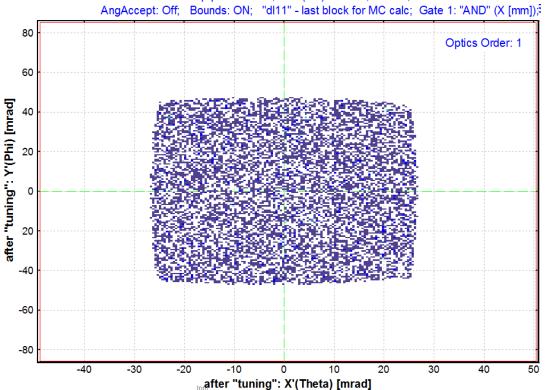


Monte Carlo Transmission settings

Coming to the FP1

⁶⁶Se: Monte Carlo Transmission Plot

Angualr acceptance "Target - FP1"					
	5th order				
X'	26.4	mrad			
Υ'	43.4	mrad			

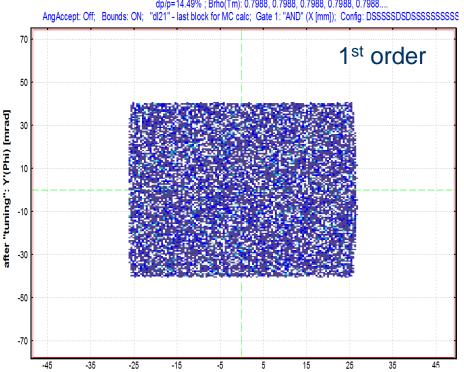


Angular Acceptance : Target – FP1

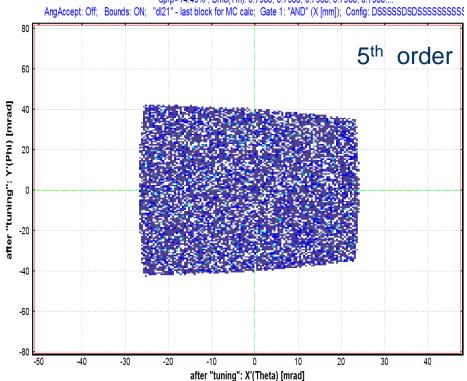
⁶⁶Se: Monte Carlo Transmission Plot

 $^{66} Se~(3.1~MeV/u)$ + Be (1e-4 mg/cm²); Transmitted Fragment $^{66} Se^{21+..21+}$ (beam); dp/p=100.00%; Brho(Tm): 0.7988, 0.7988, 0.7988

Angular acceptance "Target - FP1"					
	1st order				
X'	26.3	mrad			
Υ'	45.8	mrad			



Angular Acceptance: Target - FP2


⁶⁶Se: Monte Carlo Transmission Plot

⁶⁶Se (3.1 MeV/u) + Be (1e-4 mg/cm²); Transmitted Fragment ⁶⁶Se²1+.21+ (beam); Optics Order: 1 dp/p=14.49%; Brho(Tm): 0.7988, 0.7988, 0.7988, 0.7988, 0.7988....

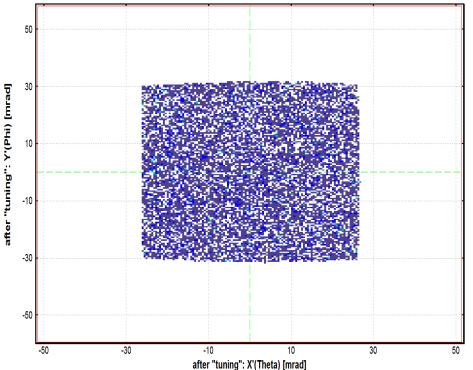
⁶⁶Se: Monte Carlo Transmission Plot

⁶⁶Se (3.1 MeV/u) + Be (1e-4 mg/cm²); Transmitted Fragment ⁶⁶Se^{21+..21+} (beam); Optics Order: 5 dp/p=14.49%; Brho(Tm): 0.7988, 0.7988, 0.7988, 0.7988, 0.7988....

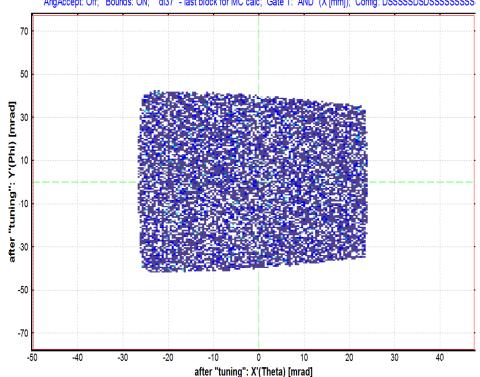
Angular acceptance "Target - FP2"					
	1st order				
X'	26.4	mrad			
Υ'	40.6 mrad				

after "tuning": X'(Theta) [mrad]

Angular acceptance "Target - FP2"				
	5th order			
X'	25.2	mrad		
Υ'	39.8	mrad		


SECAR phase1 Angular Acceptance: Target – DL37

⁶⁶Se: Monte Carlo Transmission Plot


 $^{66}Se~(3.1~MeV/u)$ + Be (1e-4 mg/cm²); Transmitted Fragment $^{66}Se^{21+..21+}$ (beam); Optics Order: 1 dp/p=14.49%; Brho(Tm): 0.7988, 0.7988, 0.7988, 0.7988, 0.7988....

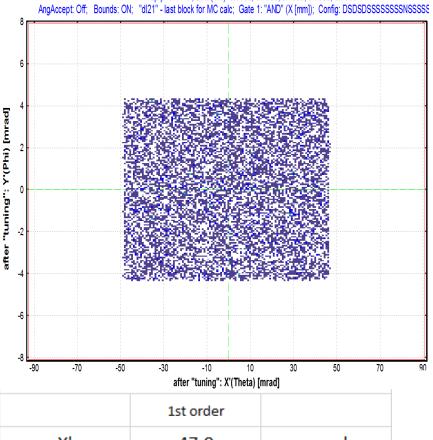
Ang Accept: Off; Bounds: ON; "dl37" - last block for MC calc; Gate 1: "AND" (X [mm]); Config: DSSSSDSDSSSSSSSSS

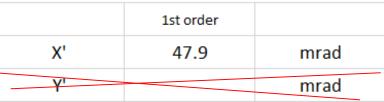
⁶⁶Se: Monte Carlo Transmission Plot

 $^{66}Se~(3.1~MeV/u)$ + Be (1e-4 mg/cm²); Transmitted Fragment $^{66}Se^{21+..21+}$ (beam); Optics Order: 5 dp/p=14.49% ; Brho(Tm): 0.7988, 0.7988, 0.7988, 0.7988, 0.7988....

Angular acceptance "Target - DL37"					
	1st order				
Χ'	26.5	mrad			
Υ'	31.4	mrad			

Angular	Angular acceptance "Target - DL37"				
	5th order				
X'	25.2	mrad			
Y'	40.0	mrad			

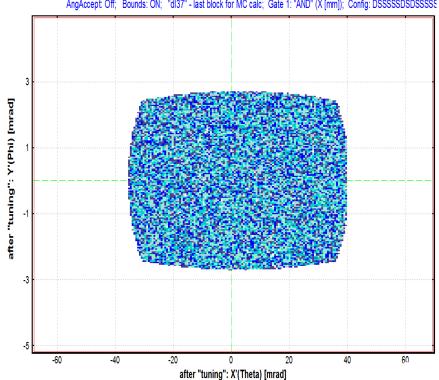

SECAP phase1 Angular Acceptance: sectors



FP1 - FP2

⁶⁶Se: Monte Carlo Transmission Plot

 66 Se (3.1 MeV/u) + Be (1e-4 mg/cm²); Transmitted Fragment 66 Se $^{21+.21+}$ (beam); Optics Order: 1 dp/p=9.11%; Brho(Tm): 0.7988, 0.7988, 0.7988, 0.7988, 0.7988

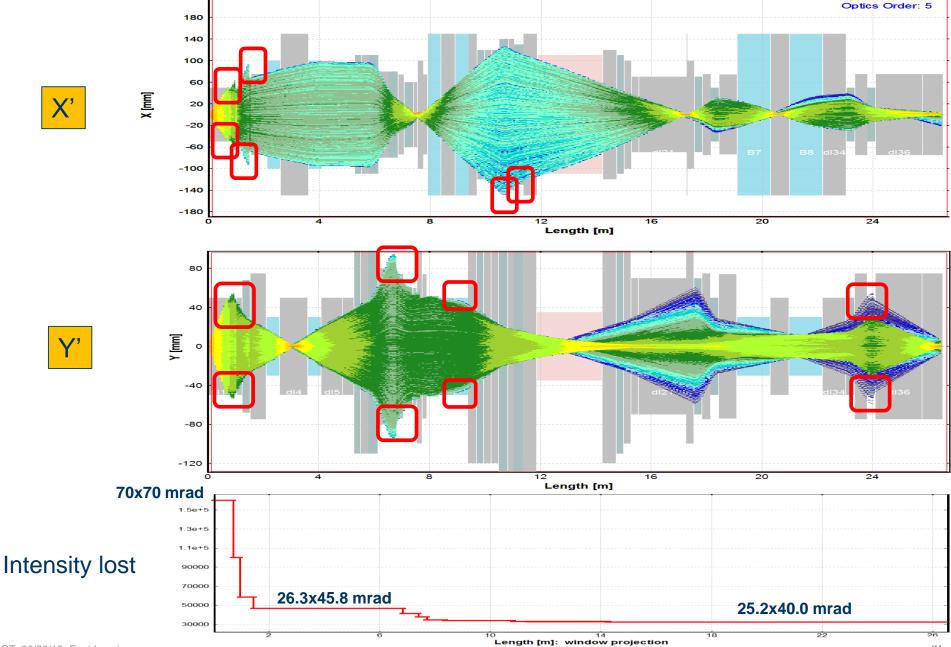

There is not vertical focus at FP1! It is impossible to use vertical angular acceptance here

FP2 - DL37

⁶⁶Se: Monte Carlo Transmission Plot

 ^{66}Se (3.1 MeV/u) + Be (1e-4 mg/cm²); Transmitted Fragment $^{66}\text{Se}^{21+.21+}$ (beam); Optics Order: 1 dp/p=100.00%; Brho(Tm): 0.7988, 0.7988, 0.7988

AngAccept: Off; Bounds: ON; "dl37" - last block for MC calc; Gate 1: "AND" (X [mm]); Config: DSSSSSDSDSSSSS

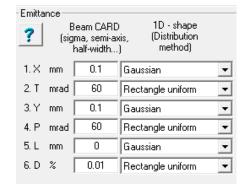


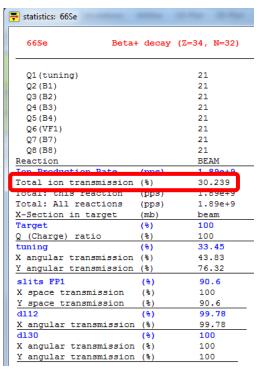
Angular acceptance "FP2 - DL37"				
	1st order			
X'	36.8	mrad		
Υ'	5.24	mrad		

Angular Emittance Loss (5th order optics)

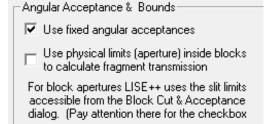
Angular Acceptances in the SECAR phase1 file

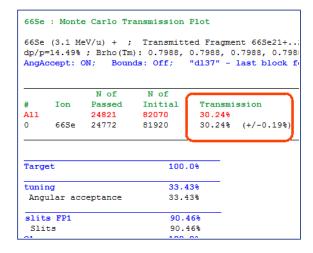
Angular acceptances used in the SECAR phase1 configurations				
Target- FP1				
X'	26.3	47.9	36.8	mrad
Y'	45.8		5.24	mrad

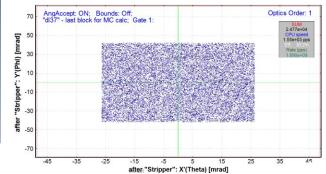

! [ILE. G. NOECAR NOEC	ar_huaser_c	opi_op w	TUH_AA.I	עע /								1
1	2	3	4	5	6	7	8	9	10	11	12	13	14
N	Block name	Kind of	Start	Length	DriftMode	B0(kG) /	Br-corrsp	Rapp(cm)	$L_{eff(m)}$	2nd		AngAc	: Slits
or		Block	(m)	(m)	Angle(*)*		Br-dip*	R(m)*	Len(m)*	order	Mode	mode	shape
1.	tuning	Dipole	0.000	0.000	+0.0 *	+2.663	0.7988*	3.00*	0.00*			HV	rectn
2:	dll	Drift	0.000	0.800	standard	Ty. 003	0.7500*	3.00*	0.00*	_			rectn
3.	01	Drift	0.800	0.250	multipole	-3.653	0.8000	5.00	0.25	ves	1		rectn
4.	ăl2	Drift	1.050	0.190	standard /	/ 0.000	0.0000	0.00	0.20	,00	-		rectn
5.	Q2	Drift	1.240/	0.300	multipole	+2.179	0.8000	6.80	0.30	ves	1		rectn
6.	āīs	Drift	1.548	0.580	standard					,	-		rectn
7.	B1	Dipole	2.1/20	0.491	+22.5	+6.390	0.7988*	1.25*	0.49*	yes			rectn
8.	d14	Drift	2,611	1.000	standard					-			rectn
9.	B2	Dipole	3.611	0.491	+22.5 *	+6.390	0.7988*	1.25*	0.49*	yes			rectn
10.	d15	Drift /	4.102	0.770	standard					-			rectn
11.		Drift /	4.872	0.400	≢ tandard								rectn
12.	Hex1	Drift/	5.272	0.260	multipole	+0.000	0.8000	11.00	0.26	yes	1		rectn
13.		Drift	5.532	0.270/	standard								rectn
14.		Dr i ft	5.802	0.350	multipole	+2.426	0.8000	11.00	0.35	yes	1		rectn
	d18	Drift	6.152	0.380	standard								rectn
16.		Drift	6.502	0 350	multipole	-2.450	0.8000	8.00	0.35	yes	1		rectn
	d19	Drift	6.852	9.210	standard								rectn
18.		Drift	7.062	0.350	multipole	+1.113	0.8000	6.00	0.35	yes	1		rectn
	dl10	Drift	7.412	0.145	standard								rectn
	dl11	Drift	7.557	0.185	standard								rectn
21.	dl12	Drift	7.742	0.000	SLITS							 H-	rectn
22.	B3	Drift Dipole	7 742	0.170 0.491	standard +22.5 *	+6.390	0.7988*	1.25*	0.49*			H-	rectn
	dl13	Drift	8.403	0.491	+22.5 * standard	+6.370	U./900*	1.25*	0.49*	yes			rectn rectn
	B4	Dipole /	8.913	0.310	+22.5 *	+6.390	0.7988*	1.25*	0.49*	ves			rectn
	dl14	Drift	9.403	0.491	standard	+0.370	0./200*	1.25*	0.47*	yes			rectn
	Hex2	Drift /	9.703	0.300	multipole	+0.000	0.8000	12.00	0.26	ves	1		rectn
28		Drift	9.963	0.270	standard	+0.000	0.0000	12.00	0.20	yes	-		rectn
	d116	Drift	10.233	0.270	standard								rectn
30.		Draft	10.503	0.340	multipole	+1.817	0.8000	14.00	0.34	ves	1		rectn
31.		Drift	10.843	0.200	standard	11.017	5.0000	21.00	0.04	y	-		rectn
32.		Drift	11.043	0.340	multipole	-0.301	0.8000	13.00	0.34	ves	1		rectn
	ā118 /	Drift	11.383	0.500	standard					,	-		rectn
	VF1	Wien	11.883	2.365									rectn
35.	dl19 /	Drift	14.248	0.500	standard								rectn
36.		Drift	14.748	0.260	multipole	+0.000	0.7999	11.00	0.26	ves	1		rectn
37.	d120	Drift	15.008	0.280	standard						_		rectn
38.	Oct1	Drift	15.288	0.260	beam-line								rectn
39.	d121 /	Drift	15.548	1.750	standard								rectn
40.	alita P2	Drift	17.298	0.000	SLITS								rectn
	d130	Drift	17.298	0.250	standard							HV	rectn
42.		Drift	17.548	0.300	multipole	-2.200	0.7999	7.00	0.30	yes	1		rectn
43.		Drift	17.848	0.300	standard								rectn
44.	Q13	Drift	18.148	0.300	multipole	+2.016	0.7999	5.00	0.30	yes	1		rectn

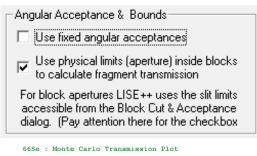


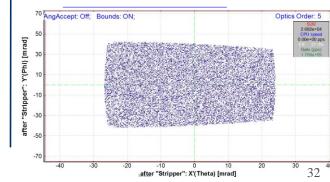
Angular Acceptances transmission benchmarks




"Distribution" method With set Angular Acceptances



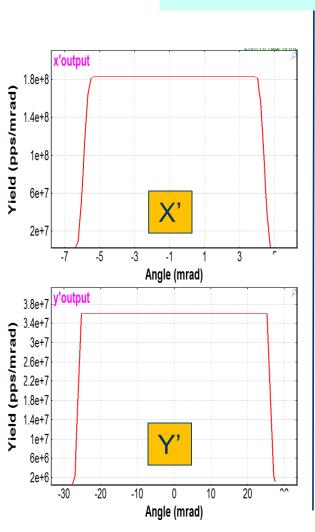

"Monte Carlo" method With set Angular Acceptances No bounds

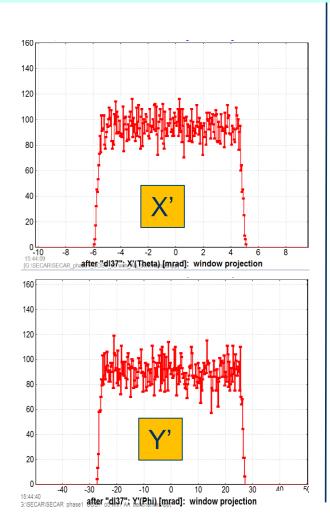

"Monte Carlo " method No Angular Acceptances WITH bounds

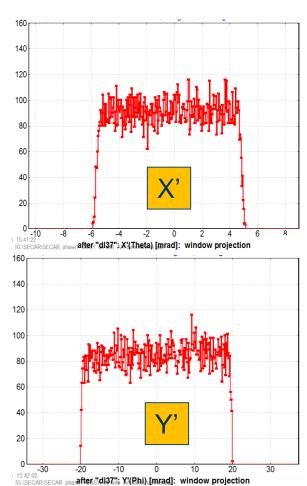
66Se (3.1 MeV/u) + ; Transmitted Fragment 66Se21+...2 dp/p=14.49%; Brho(Tm): 0.7988, 0.7988, 0.7988, 0.7988 AngAccept: Off; Bounds: ON; "dl37" - last block for

#	Ion	N of Passed	N of Initial	Transmission
All	66Se	26874	98253	27.35%
0		26824	98080	27.35% (+/-0.17%)

Target	100.0%
tuning	100.0%
d11	83.65%
Inside of bounds	83.65%
Q1	59.38%
Inside of bounds	59.38%
Q2	79.60%
Inside of bounds	79.60%
Q4	88.46%
Inside of bounds	88.46%

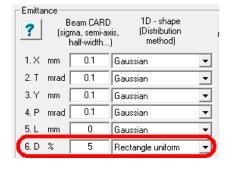


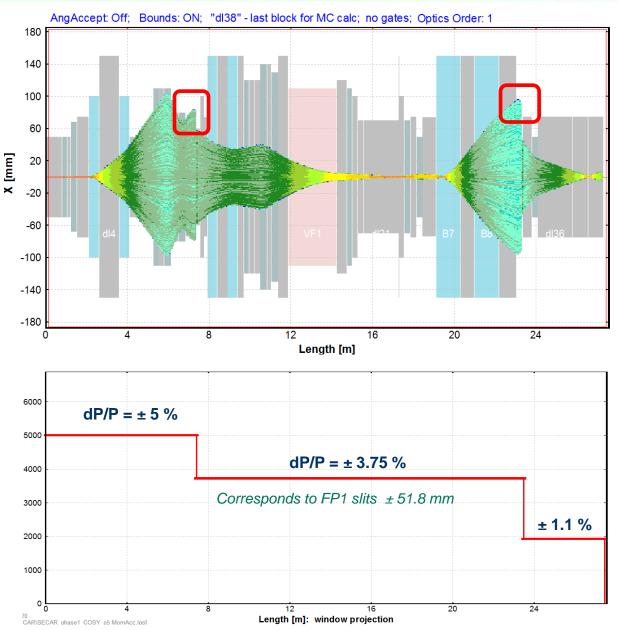

Angular Acceptances transmission benchmarks



"Distribution" method With set Angular Acceptances "Monte Carlo" method With set Angular Acceptances No bounds "Monte Carlo" method
No Angular Acceptances
WITH bounds

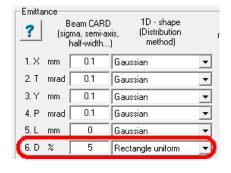
@ DL38

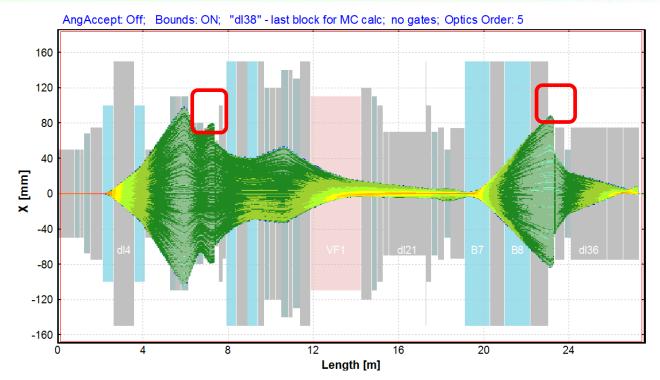


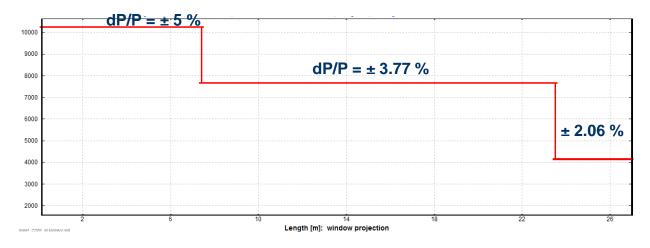


Momentum Acceptance

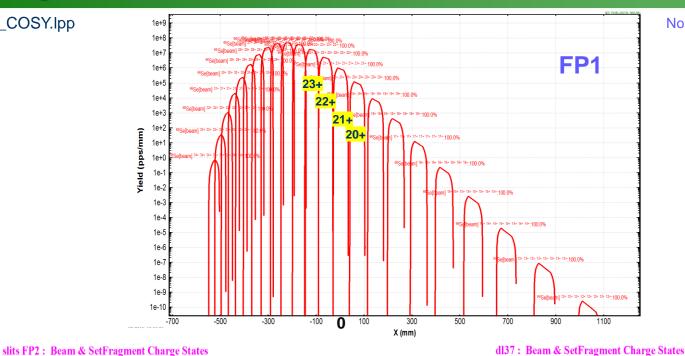
1st order



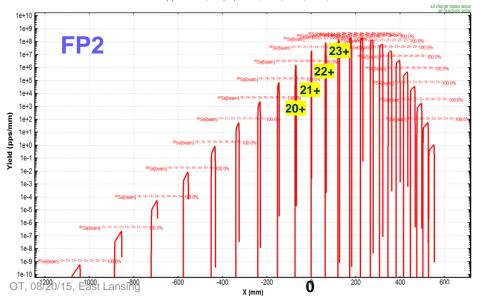


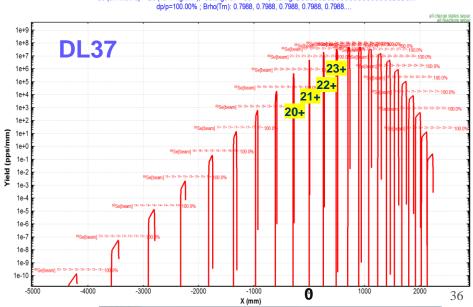

Momentum Acceptance

5th order



Charge States Selection: "Distribution" method

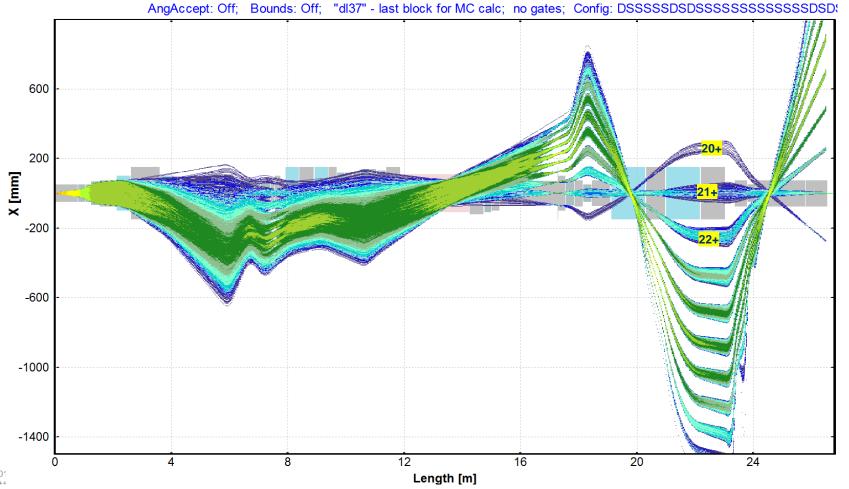



No slits, no apertures

⁶⁶Se (3.1 MeV/u) + Be (1e-4 mg/cm²); Settings on ⁶⁶Se^{21+,21+}; Config: DSSSSSDSDSSSSSSSSSSSSSSSDSDS.

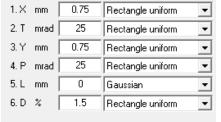
dp/p=100.00%; Brho(Tm): 0.7988, 0.7988, 0.7988, 0.7988, 0.7988.

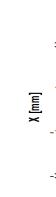
Charge States Selection: Monte Carlo solution

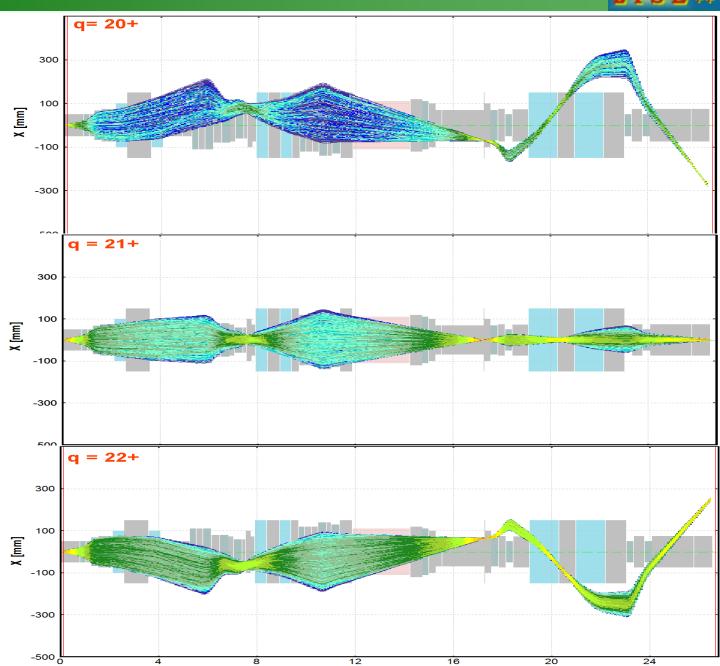


No slits, no apertures

1st order


Isotope Group : MC Yield Plot - Envelope (only passed)


⁶⁶Se (3.1 MeV/u) + Be (1e-4 mg/cm²); Transmitted Fragment ⁶⁶Se^{21+..21+} (beam); Optics Order: 1 dp/p=100.00%; Brho(Tm): 0.7988, 0.7988, 0.7988, 0.7988, 0.7988....

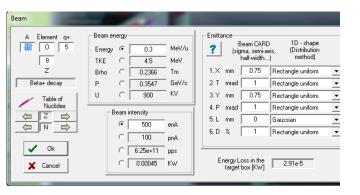


Charge States Selection: Monte Carlo solution

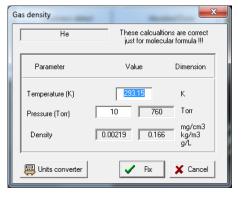
1st order

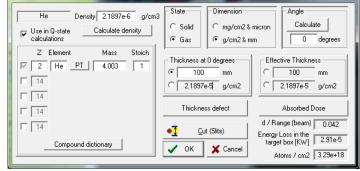
Lenath [m]

Experiment $^{15}O(\alpha, \gamma)^{19}Ne$


Table 3.14. Transmission results for a set of crucial reactions from the target to the final focus in the single VF system.

Reaction	Energy (MeV/u)	Transmission
¹⁵ O(α,γ) ¹⁹ Ne	0.3	95


LISE⁺⁺ settings


File: e_SECAR_phase1_reaction.lpp

Beam

Target

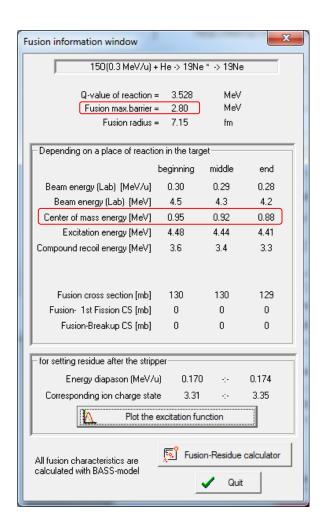
Production mechanism

Settings

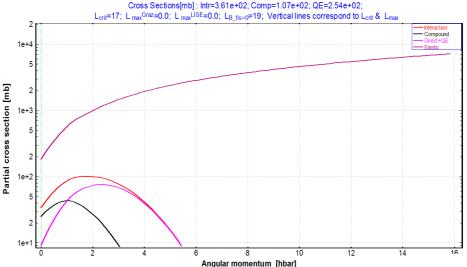
Fusion -> Residual

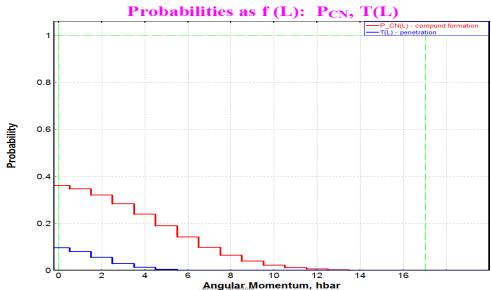
Charge states:

5 - [< 15AMeV] G.Schiwietz, P.Grande, NIM B175-177 (2001) 125-131


Energy Losses

1 - [H -base] J.F.Ziegler et al, Pergamon Press, NY (low energy)

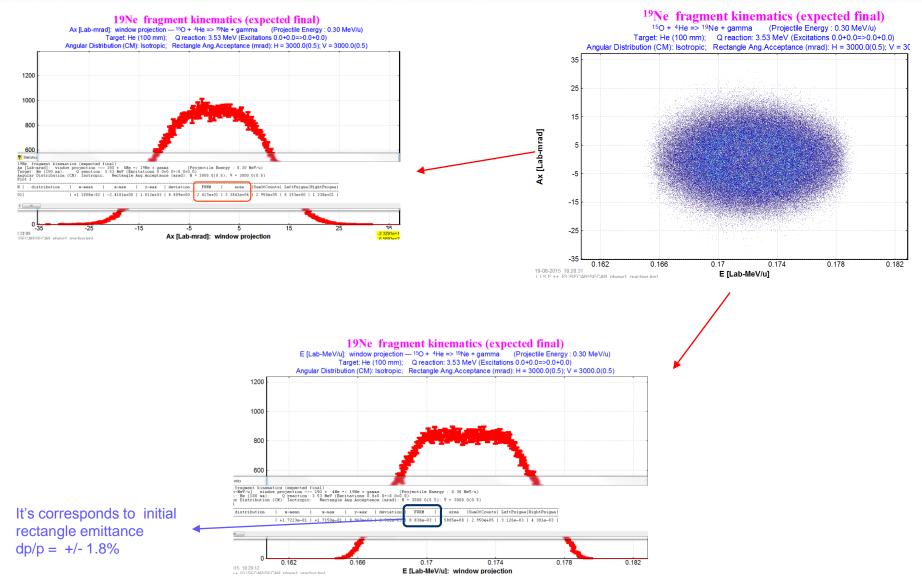

Experiment ${}^{15}O(\alpha, \gamma){}^{19}Ne$: sub-barrier fusion



Partial cross sections

 $^{15}O(0.3 \text{ MeV/u}) + ^{4}\text{He} -> ^{19}\text{Ne*} (E_{CM}=0.9 \text{ MeV}); [no P_{CN}, Penetration^{Q.M}]$ Cross Sections[mb]: Intr=3.61e+02; Comp=1.07e+02; QE=2.54e+02;

Experiment $^{15}O(\alpha, \gamma)^{19}Ne$: kinematics

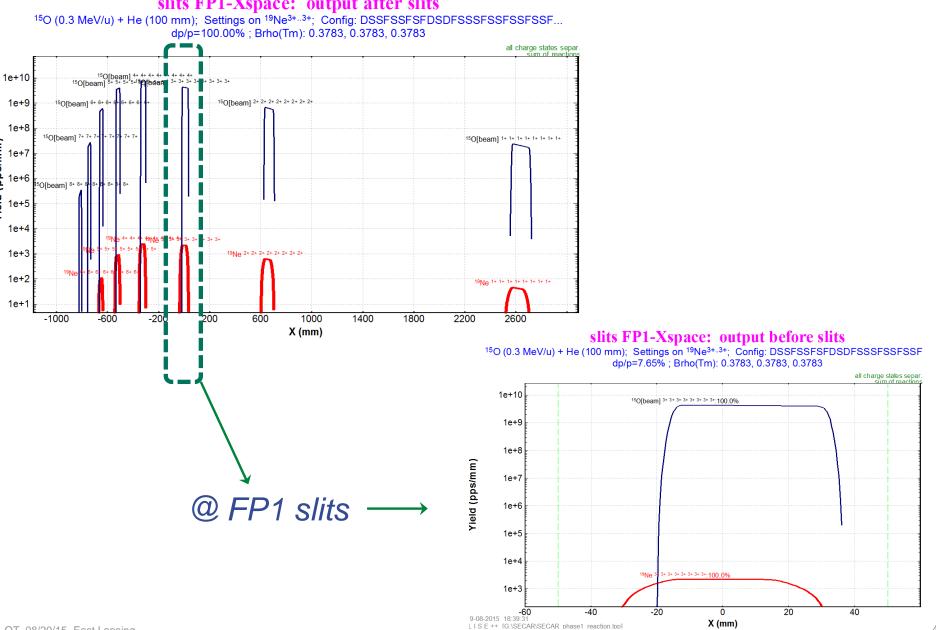


Please check the kinematics discussion for the DRAGON separator http://lise.nscl.msu.edu/9_10/DRAGON/DRAGON.pdf#page=51

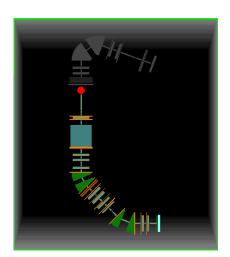
Experiment $^{15}O(\alpha, \gamma)^{19}Ne$: two-body kinematics

Experiment ${}^{15}O(\alpha, \gamma){}^{19}Ne$: kinematics

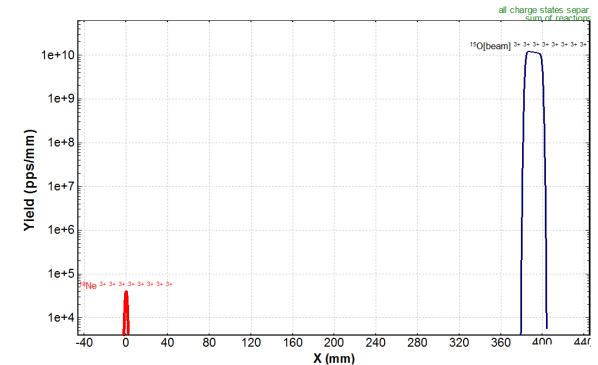
In order to obtain distributions corresponding to two-boy kinematics HI+gamma it is possible to change the initial beam emittance as

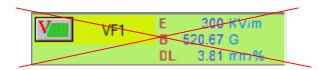

_ Emitta	nce-				– Emitta	noo		
?	(sig	eam CARD ma, semi-a: half-width	kis, (Distribution		?	B (sig	leam CARD ma, semi-as half-width	ris, (Distribution
1. X	mm	2	Gaussian	•	1. X	mm	0.75	Gaussian 🔻
2. T	mrad	1	Gaussian	▼	2. T	mrad	8.9	Gaussian 🔻
3. Y	mm	2	Gaussian	•				
4. P	mrad	1	Gaussian	▼	3. Y	mm	0.75	Gaussian _
5. L	mm	0	Gaussian	<u></u>	4. P	mrad	8.9	Gaussian
		1		-	5. L	mm	0	Gaussian 🔻
6. D	%	'	Gaussian		6. D	%	1.8	Rectangle uniform 🔻

Experiment $^{15}O(\alpha, \gamma)^{19}Ne$: selection



Experiment ${}^{15}O(\alpha, \gamma){}^{19}Ne$: selection @ FP2



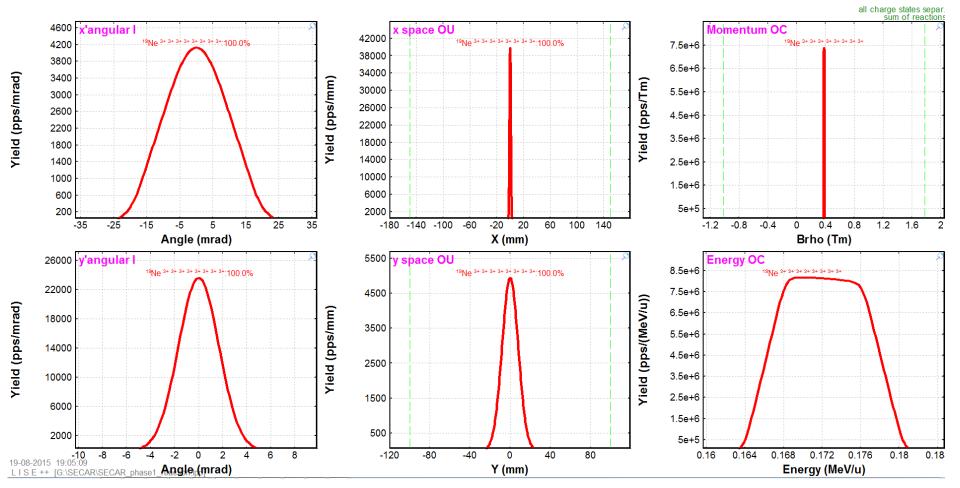

In front of the Mass Slits (FP2) with the Charge slits and Angular acceptances

dl21-Xspace: output after slits

¹⁵O (0.3 MeV/u) + He (100 mm); Settings on ¹⁹Ne^{3+..3+}; Config: DSSFSSFSFDSDFSSSFSSFS dp/p=7.65%; Brho(Tm): 0.3783, 0.3783, 0.3783, 0.3783, 0.3783

Pay attention for The Wien filter parameters!!! The purpose of E(or B) choice is to compensate dispersion after dipoles!

It has been solved in the version 9.10.171 with the new option "keep dispersion constant"

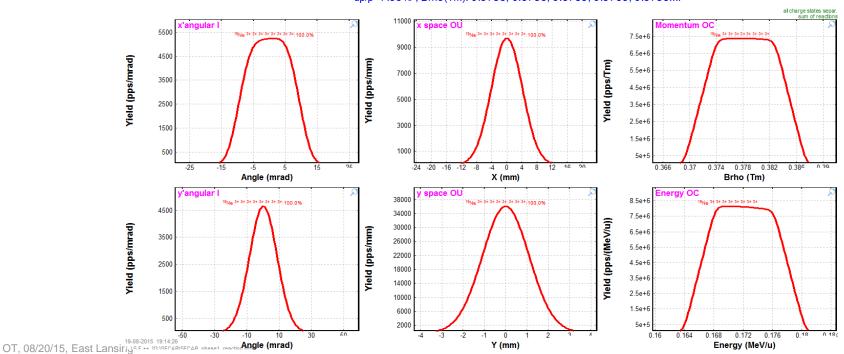


Experiment $^{15}O(\alpha, \gamma)^{19}Ne$: selection

¹⁹Ne³⁺ after the Mass Slits (FP2)

slits FP2

Experiment $^{15}O(\alpha, \gamma)^{19}Ne$: selection


¹⁹Ne³⁺ after the DL37

Only ¹⁹Ne³⁺ passing through the separator!

19Ne Beta	+ decay	(Z=10, N=9)	
Q1(tuning)		3	
Reaction		FusRes	
Ion Production Rate	(pps)	9.9e+4	
Total ion transmission	(용)	37.077	
Total: this reaction	(pps)	9.9e+4	—
Total: All reactions	(pps)	9.9e+4	
X-Section in target	(mb)	1.3e+2	
Target	(%)	39.09	
Unreacted in material	(%)	100	— ¹⁹ Ne ³⁺ transmission 94.8%
Q (Charge) ratio	(%)	39.09	
Unstopped in material	(%)	100	Main cut by the 2-nd
tuning	(%)	99.32	horizontal angular
X angular transmission	(%)	99.32	<u> </u>
Y angular transmission	(%)	100	acceptance
d112	(%)	95.59	

dl37

 ^{15}O (0.3 MeV/u) + He (100 mm); Settings on $^{19}\text{Ne}^{3+.3+}$; Config: DSSFSSFSDSDFSSSFSSFSSFSSF... dp/p=7.65% ; Brho(Tm): 0.3783, 0.3783, 0.3783, 0.3783, 0.3783....

Segmented configuration -- should be done soon

Extended

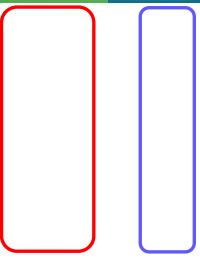
Detail configuration for experts

90 blocks

Segmented

"Easy" configuration for regular users

11 blocks (5 sectors, 3 material blocks and 3 slits)

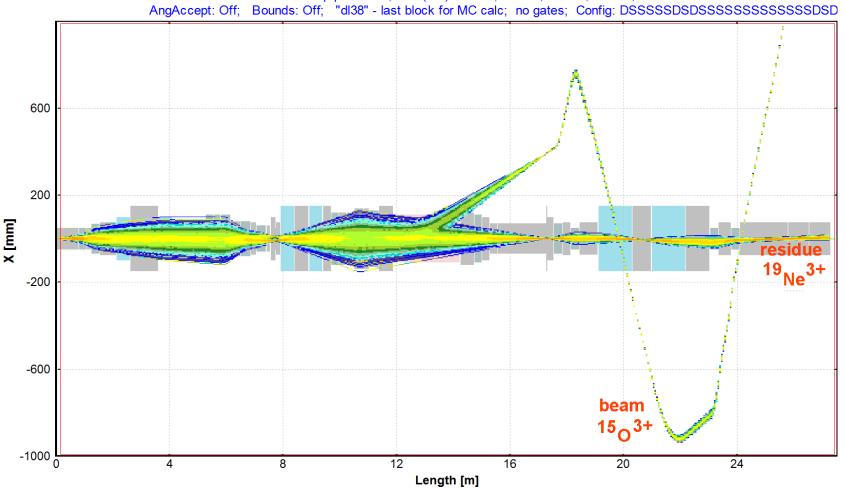


Will be done soon!

Segmented configuration

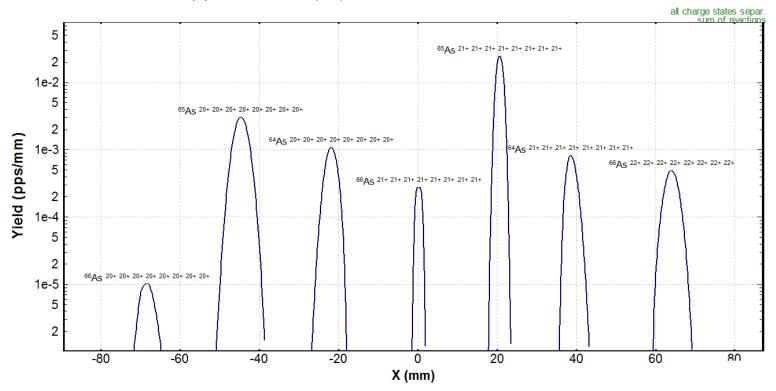
Pay attention for cut settings: 4 angular acceptances, 3 slits

5 sectors (segments)


Will be done soon!

Request: Beam and Fragment in one plot

¹⁵O (0.3 MeV/u) + He (100 mm); Transmitted Fragment ¹⁵O^{3+.3+} (beam); Optics Order: 1 dp/p=7.65%; Brho(Tm): 0.3783, 0.3783, 0.3783, 0.3783, 0.3783....

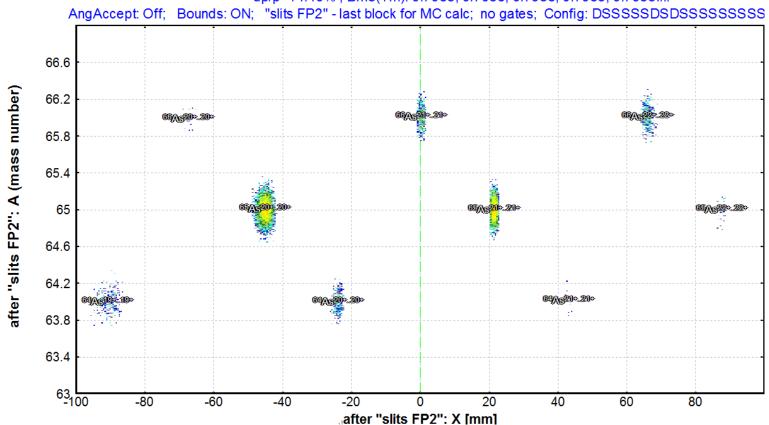

Request: Mass selection

"Fake" reaction (fragmentation of 66Se) was used to obtain bunch of isotopes with different masses with wide energy distributions

Analytical solution 1st order

slits FP2-Xspace: output after slits

Request: Mass selection



"Fake" reaction (fragmentation of 66Se) was used to obtain bunch of isotopes with different masses with wide energy distributions

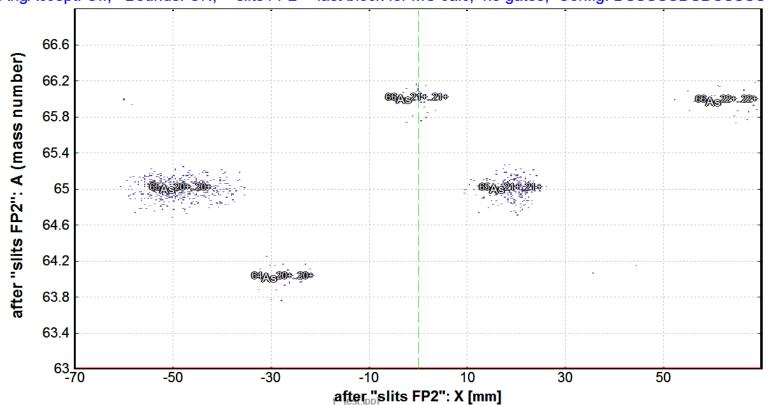
Monte Carlo solution 1st order

Isotope Group : Monte Carlo Yield Plot

⁶⁶Se (3.1 MeV/u) + Be (1e-4 mg/cm²); Transmitted Fragment ⁶⁶Se^{21+..21+} (beam); Optics Order: 1 dp/p=14.49%; Brho(Tm): 0.7988, 0.7988, 0.7988, 0.7988, 0.7988....

Request: Mass selection

53


"Fake" reaction (fragmentation of 66Se) was used to obtain bunch of isotopes with different masses with wide energy distributions

Monte Carlo solution 5th order

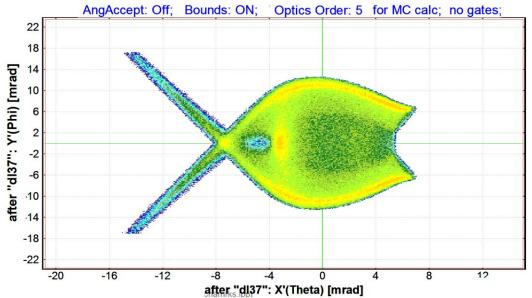
Isotope Group: Monte Carlo Yield Plot

⁶⁶Se (3.1 MeV/u) + Be (1e-4 mg/cm²); Transmitted Fragment ⁶⁶Se^{21+..21+} (beam); Optics Or dp/p=14.49%; Brho(Tm): 0.7988, 0.7988, 0.7988, 0.7988, 0.7988....

AngAccept: Off; Bounds: ON; "slits FP2" - last block for MC calc; no gates; Config: DSSSSSDSDSSSSS

Summary

54


Open Questions:

- Develop the two-body kinematics mechanism in the case HI & γ
- Primary beam scattering (large angles)
- Wien characteristics utility to compensate dipole dispersion

It has been solved in the version 9.10.171 with the new option "keep dispersion constant"

Acknowledgement:

to Hendrik Schatz and Fernando Motes for documents and files providing, to Mauricio Portillo with COSY actions

