

MICHIGAN STATE UNIVERSITY LISE++

v.9.10.361 from 10/14/16

- 1. "The "Solenoid" block : no more drifts
- 2. "The "Solenoid" block dialog modification
- 3. TwinSol configuration in LISE⁺⁺ package
- 4. TwinSol utility update

"The "Solenoid" block : no more drifts

Μ	IC	CH	110	G A	١N	S	T,	AT	Ē
U	Ν	Т	۷	Ε	R	s	I	Т	γ
I	6	I		S	I	Đ,			Þ

Solenoid 1	? ×
Solenoid settings Field Direction O B, max field 1.35716 + T I, current 22.9972 + A O "." negative	Optical block properties and data Setting Charge state for the Block (Z-Q) 0 Image: Setting Charge state for the Block (Z-Q) 0 0 0 0 0 0 0
Use the "soft-edge" V (L * B / PI) = 0.2568 Tm corrections for solenoid matrix calculations V / Brho = 0.6846	Image: Second
Geometry Coil length = 0.5944 m Modern "non-drift" mode	Tweak 0.1 %
Effective radius = 0.21 m 1-st part = 0.2972 m Block Length = 0.5944 m 2-nd part = 0.2972 m	Setting fragment parameters Mean StDev Method 1. X 0.00 45.68 "Distribution" 2. T 0.00 50.00
MA = MAconst * I MAconst = 0.03613 T/A MA = 0.83089 T B(0) = MA * CoilLength / sqrt(EffRadius^2 + CoilLength^2 / 4)	2. 1 0.00 50.68 Setting fragment distribution parameters before Solenoid, 3. Y 0.00 45.68 parameters before Solenoid, 4. F 0.00 50.68 based on the initial beam vector and its transport through blocks located in front of Solenoid 5. E 1.7 0.0

In the previous version it was impossible to insert an additional block (slits, material and so on) between solenoid drift and solenoid core itself., or to set their apertures independently

"The "Solenoid" block dialog modification

"Old" v.9.9

The "old" solenoid block dialog was based on classical solenoid properties from the TwinSol utility. Solenoid tuning was done with a matrix after the solenoid, what assumed drift existence in the solenoid block.

The new" solenoid block allows to select a block which map matrix will be used for tuning.

"New" v.9.10.361

"The "Solenoid" block dialog modification: block selection for tuning

X/T [mm/mrad]

TwinSol configuration in LISE⁺⁺ package

TwinSol configuration in LISE⁺⁺ package

\config\other*.*

Name	↑Ext	Size	Date
▲[]		<dir></dir>	10/14/2016
FMA	lcn	106,856	09/14/2015
🗧 one_dipole	lcn	5,537	08/25/2002
🖶 one_drift	lcn	6,029	08/25/2002
PRISMA	lcn	57,265	11/19/2014
RESOLUT_1gap	lcn	60,568	02/28/2013
RESOLUT 3gap	len	67 031	02/28/2013
Ŧ TwinSol	lcn	55,171	10/14/2016

TwinSol working file in LISE⁺⁺ package

files \examples *.* Name ↑ Ext Size Date [] <dir> 10/14/2016 [afission] <dir> 04/06/2015 [Dubna] <dir> 06/02/2016 [Dubna] <dir> 04/06/2015 [GANIL] <dir> 04/06/2015 [GSI-SFRS] <dir> 04/06/2015 [RESOLUT] <dir> 04/06/2015 [RIKEN] <dir> 04/06/2015 [SECAR] <dir> 04/06/2015 [TAMU] <dir> 04/06/2015 [TRIUMF] <dir> 06/02/2016 [Input MC rays inrays 27.475 [DP 116.538 12/29/2014 [FIT constraints Ipp 28.118 05/06/2015 [FMA_32S_58Ni Ipp 173.157 06/07/2016 [PRISMA</dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir>				
Name ↑ Ext Size Date [] <dir> 10/14/2016 [afission] <dir> 04/06/2015 [Dubna] <dir> 06/02/2016 [GANIL] <dir> 04/06/2015 [GSI-SFRS] <dir> 04/06/2015 [RESOLUT] <dir> 04/06/2015 [RIKEN] <dir> 04/06/2015 [TAMU] <dir> 04/06/2015 [TAMU] <dir> 04/06/2015 [TAMU]</dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir>	files\examples*.*			
[] <dir> 10/14/2016 [afission] <dir> 04/06/2015 [Dubna] <dir> 06/02/2016 [GANIL] <dir> 04/06/2015 [GANIL] <dir> 04/06/2015 [GSI-SFRS] <dir> 04/06/2015 [RESOLUT] <dir> 04/06/2015 [RESOLUT] <dir> 04/06/2015 [RIKEN] <dir> 04/06/2015 [SECAR] <dir> 04/06/2015 [TAMU] <dir> 04/06/2015 [TRIUMF] <dir< td=""> 04/06/2015 [Pp 116,538 <td< th=""><th>Name</th><th>↑Ext</th><th>Size</th><th>Date</th></td<></dir<></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir>	Name	↑Ext	Size	Date
[afission] <dir> 04/06/2015 [Dubna] <dir> 06/02/2016 [GANIL] <dir> 01R> [GSI-SFRS] <dir> 04/06/2015 [NSCL] <dir> 04/06/2015 [RESOLUT] <dir> 04/06/2015 [RIKEN] <dir> 04/06/2015 [SECAR] <dir> 04/06/2015 [TAMU] <dir> 04/06/2015 [TRIUMF] <dir> 06/02/2016 [Input MC rays inrays 27.475 [Deg 64,174 12/29/2014 11/2013 [Pp 64,174 12/29/2014 11/202014 [FITconstraints Ipp 28,118 05/06/2015 [PRISMA Ipp 82,331 11/19/2014 [PD 75,327<th>£[]</th><th></th><th><dir></dir></th><th>10/14/2016</th></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir>	£[]		<dir></dir>	10/14/2016
[Dubna] <dir> 06/02/2016 [GANIL] <dir> 11/30/2015 [GSI-SFRS] <dir> 04/06/2015 [NSCL] <dir> 04/06/2015 [RESOLUT] <dir> 04/06/2015 [RIKEN] <dir> 04/06/2015 [SECAR] <dir> 04/06/2015 [TAMU] <dir> 04/06/2015 [TRIUMF] <dir> 04/06/2015 [TRIUMF] <dir> 04/06/2015 [TRIUMF] <dir> 04/06/2015 [TRIUMF] <dir> 06/02/2016 Input MC rays inrays 27.475 CoulombFissionExample Ipp 116.538 12/29/2014 FIT constraints Ipp 28.118 05/06/2015 FMA_32S_58Ni Ipp 173.157 10/07/2016 PRISMA Ipp 82.331 11/19/2014 TwinSol Ipp 75.327 10/14/2016</dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir>	afission]		<dir></dir>	04/06/2015
[GANIL] <dir> 11/30/2015 [GSI-SFRS] <dir> 04/06/2015 [NSCL] <dir> 05/24/2016 [RESOLUT] <dir> 04/06/2015 [RIKEN] <dir> 04/06/2015 [SECAR] <dir> 04/06/2015 [TAMU] <dir> 04/06/2015 [TRIUMF] <dir> 06/02/2016 Input MC rays inrays 27,475 CoulombFissionExample lpp 116,538 12/29/2014 FITconstraints lpp 28,118 05/06/2015 FMA_32S_58Ni lpp 173,157 06/07/2016 PRISMA lpp 82,331 11/19/2014 TwinSol lpp 75,327 10/14/2016</dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir></dir>	🔁 [Dubna]		<dir></dir>	06/02/2016
[GSI-SFRS] <dir> 04/06/2015 [NSCL] <dir> 05/24/2016 [RESOLUT] <dir> 04/06/2015 [RIKEN] <dir> 04/06/2015 [SECAR] <dir> 04/06/2015 [TAMU] <dir> 04/06/2015 [TRIUMF] <dir> 04/06/2015 [TRIUMF] <dir> 04/06/2016 Input MC rays inrays 27.475 CoulombFissionExample Ipp 116.538 12/29/2014 Here_test Ipp 64.174 12/29/2014 FIT constraints Ipp 28.118 05/06/2015 FMA_32S_58Ni Ipp 173.157 06/07/2016 PRISMA Ipp 82.331 11/19/2014 TwinSol Ipp 75.327 10/14/2016</dir></dir></dir></dir></dir></dir></dir></dir>	GANIL]		<dir></dir>	11/30/2015
[NSCL] <dir> 05/24/2016 [RESOLUT] <dir> 04/06/2015 [RIKEN] <dir> 04/06/2015 [SECAR] <dir> 09/16/2015 [TAMU] <dir> 04/06/2015 [TRIUMF] <dir> 04/06/2016 Input MC rays inrays 27,475 CoulombFissionExample lpp 116,538 12/29/2014 de_e_test lpp 64,174 12/29/2014 FITconstraints lpp 28,118 05/06/2015 FMA_32S_58Ni lpp 173,157 06/07/2016 PRISMA lpp 82,331 11/19/2014 TwinSol lpp 75,327 10/14/2016</dir></dir></dir></dir></dir></dir>	🛅 [GSI-SFRS]		<dir></dir>	04/06/2015
[RESOLUT] <dir> 04/06/2015 [RIKEN] <dir> 04/06/2015 [SECAR] <dir> 09/16/2015 [TAMU] <dir> 04/06/2015 [TRIUMF] <dir> 06/02/2016 Input MC rays inrays 27,475 04/11/2013 CoulombFissionExample lpp 116,538 12/29/2014 de_e_test lpp 64,174 12/29/2014 FITconstraints lpp 28,118 05/06/2015 FMA_32S_58Ni lpp 173,157 06/07/2016 PRISMA lpp 82,331 11/19/2014 TwinSol lpp 75,327 10/14/2016</dir></dir></dir></dir></dir>] [NSCL]		<dir></dir>	05/24/2016
[RIKEN] <dir> 04/06/2015 [SECAR] <dir> 09/16/2015 [TAMU] <dir> 04/06/2015 [TRIUMF] <dir> 06/02/2016 Input MC rays inrays 27.475 04/11/2013 CoulombFissionExample lpp 116.538 12/29/2014 de_e_test lpp 64.174 12/29/2014 FITconstraints lpp 28.118 05/06/2015 FMA_32S_58Ni lpp 173.157 06/07/2016 PRISMA lpp 82.331 11/19/2014 TwinSol lpp 75.327 10/14/2016</dir></dir></dir></dir>] [RESOLUT]		<dir></dir>	04/06/2015
[SECAR] <dir> 09/16/2015 [TAMU] <dir> 04/06/2015 [TRIUMF] <dir> 06/02/2016 Input MC rays inrays 27,475 04/11/2013 CoulombFissionExample lpp 116,538 12/29/2014 How for the e_test lpp 64,174 12/29/2014 FITconstraints lpp 28,118 05/06/2015 FMA_32S_58Ni lpp 173,157 06/07/2016 PRISMA lpp 82,331 11/19/2014 TwinSol lpp 75,327 10/14/2016</dir></dir></dir>] [RIKEN]		<dir></dir>	04/06/2015
[TAMU] <dir> 04/06/2015 [TRIUMF] <dir> 06/02/2016 Input MC rays inrays 27,475 04/11/2013 CoulombFissionExample lpp 116,538 12/29/2014 de_e_test lpp 64,174 12/29/2014 FITconstraints lpp 28,118 05/06/2015 FMA_32S_58Ni lpp 173,157 06/07/2016 PRISMA lpp 82,331 11/19/2014 TwinSol lpp 75,327 10/14/2016</dir></dir>] [SECAR]		<dir></dir>	09/16/2015
[TRIUMF] <dir> 06/02/2016 Input MC rays inrays 27,475 04/11/2013 CoulombFissionExample lpp 116,538 12/29/2014 de_e_test lpp 64,174 12/29/2014 FITconstraints lpp 28,118 05/06/2015 FMA_32S_58Ni lpp 173,157 06/07/2016 PRISMA lpp 82,331 11/19/2014 TwinSol lpp 75,327 10/14/2016</dir>	TAMU]		<dir></dir>	04/06/2015
Input MC rays inrays 27,475 04/11/2013 CoulombFissionExample lpp 116,538 12/29/2014 de_e_test lpp 64,174 12/29/2014 FITconstraints lpp 28,118 05/06/2015 FMA_32S_58Ni lpp 173,157 06/07/2016 PRISMA lpp 82,331 11/19/2014 TwinSol lpp 75,327 10/14/2016	TRIUMF]		<dir></dir>	06/02/2016
CoulombFissionExample lpp 116,538 12/29/2014 de_e_test lpp 64,174 12/29/2014 FITconstraints lpp 28,118 05/06/2015 FMA_32S_58Ni lpp 173,157 06/07/2016 PRISMA lpp 82,331 11/19/2014 TwinSol lpp 75,327 10/14/2016	🖹 Input MC rays	inrays	27,475	04/11/2013
Ipp 64,174 12/29/2014 FITconstraints Ipp 28,118 05/06/2015 FMA_32S_58Ni Ipp 173,157 06/07/2016 PRISMA Ipp 82,331 11/19/2014 TwinSol Ipp 75,327 10/14/2016	CoulombFissionExample	lpp	116,538	12/29/2014
FITconstraints Ipp 28,118 05/06/2015 FMA_32S_58Ni Ipp 173,157 06/07/2016 PRISMA Ipp 82,331 11/19/2014 TwinSol Ipp 75,327 10/14/2016	🗧 de_e_test	lpp	64,174	12/29/2014
FMA_32S_58Ni lpp 173,157 06/07/2016 PRISMA lpp 82,331 11/19/2014 TwinSol lpp 75,327 10/14/2016	FIT constraints	lpp	28,118	05/06/2015
PRISMA lpp 82,331 11/19/2014 TwinSol lpp 75,327 10/14/2016	FMA_32S_58Ni	lpp	173,157	06/07/2016
TwinSol lpp 75,327 10/14/2016	PRISMA	lpp	82,331	11/19/2014
	🕶 TwinSol	lpp	75,327	10/14/2016

Aperture and slits should set correctly!!! Angular acceptance should be deduced in order to use this configuration properly in the "Distribution" mode

ock	Given Name	Start(m)	Length(m)	BORGIZ	Br(Tm)cor/*real	DriftM/*Angle	Bapp(cm)/*B(m)	Leff(m)/*Ldip(m)	2 nd order	CalcMatr/*7-0	Anglace Apps Slits	COSYLE	E SE
	Drift 1	0.000	0.4325	Dolivatio	Di(Thijcol/Tear	standard	Trapp(citi)/ Tr(iti)	con(m)/ colp(m)	2110 01061	Calcinativ 2-9			р <u>ос</u>
∏ slits	Slit 1	0.432	0.0000			SLITS					- HV HV		e
🗖 drift	before Sol1	0.432	0.4688			standard					HV		е
Solenoid	Solenoid 1	0.901	0.5944	1.3572 T	0.3751		Eff 0.210	Coil 0.594		×0	HV		е
🗖 drift	after Sol1	1.496	1.1338			standard					- HV		е
I _slits_	Crossover	2.630	0.0000			SLITS					- HV HV		е
🗖 drift	bef Sol2	2.630	1.2078			standard					HV		е
🛃 Solenoid	Solenoid 2	3.837	0.5944	1.2691 T	0.3751		Eff 0.210	Coil 0.594		× 0	HV		е
🗖 drift	after Sol2	4.432	1.1398			standard					HV		е
I _slits_	Slits 2	5.572	0.0000			SLITS					- HV HV		е
🗖 drift	last	5.572	0.4220			standard							е

OT@NSCL.MSU 10/14/16

TwinSol working file in LISE⁺⁺ package

files\examples*.*			
Name	↑Ext	Size	Date
▲[]		<dir></dir>	10/14/2016
🗀 [afission]		<dir></dir>	04/06/2015
🗀 [Dubna]		<dir></dir>	06/02/2016
🗀 [GANIL]		<dir></dir>	11/30/2015
🛅 [GSI-SFRS]		<dir></dir>	04/06/2015
🗀 [NSCL]		<dir></dir>	05/24/2016
🗀 [RESOLUT]		<dir></dir>	04/06/2015
🗀 [RIKEN]		<dir></dir>	04/06/2015
[SECAR]		<dir></dir>	09/16/2015
🛅 [TAMU]		<dir></dir>	04/06/2015
🛅 (TRIUMF)		<dir></dir>	06/02/2016
🕒 Input MC rays	inrays	27,475	04/11/2013
CoulombFissionExample	lpp	116,538	12/29/2014
<mark>≓</mark> de_e_test	lpp	64,174	12/29/2014
FIT constraints	lpp	28,118	05/06/2015
FMA_32S_58Ni	lpp	173,157	06/07/2016
TwinSol	ipp Ipp	75,327	10/14/2016

Length [m]

Monte Carlo solution

TwinSol utility update

Twin Sol: B-field (@ ray trajectory)

⁴He²⁺ (E=1.69 MeV/u or Ptrans=0.112 GeV/c) Emittance:1.5,125,1.5,150 Init.Ray:1.5,125,1.5,150 1st SOL: L1=1.2m L2=1.4m Coil=0.6m B0=1.359T Efield=No; 2nd SOL: L1=1.5m L2=1.4m Coil=0.6m B0=1.271T Efield=No

It happened if x (or y, or r) is larger that R_eff.

In reality this ray could not pass "TwinSol" : out of its apertures