

LISE++ beta v.9.2.33

- Update of links with COSY maps
- Automatic calculation of Drift-block (quadrupoles, sextupoles) matrices, new options
- New utility dialog: "The First- and Second-Order Matrix Elements for an Ideal Magnet"
- Dipole (dispersive block): Transport solution (1st and 2-nd orders) including fringing fields
- Edge effect option for transmission calculation (the "Option" dialog)
- Analyzing ROOT histogram files by the BI code
- Corrections, Some Improvements
- Requests to increase
- LISE++ development priorities

9.2.23 11/17/10 Update COSY links

0	ptical I	matrix - Di	1	-	-	_	_	100	-	-	-							×				
	G ; = L ; * G ; . 1 G · Global, L · Block (Local)									C Global			S	econd Orde	er LOCAL m	atrix	only for tran	Monte Carlo smission				
1	Block	matrix							1	Global mat	rix							Beam (sig)				
	1. X	-2.30357	0.00091	0		0	2.88865	1		-2.30357	0.00091	0	0	0	2.88865	[cm]		0.3066				
	2. T	10.75695	-0.43835	0	0 0 0.0001 2					10.75695	-0.43835	0	0	0	-0.0001	[mrad]		2.8416				
	3. Y	0	0	0.75082	0.00118	0	0	3	3					0	0	0.75082	0.00118	3 0	0	[cm]		0.0757
	4. F	0	0	37.35126	1.39051	0	0	4		0	0	37.35126	1.39051	0	0	[mrad]		11.7344				
	5. L	3.10729	-0.12662	0		1	-0.24223	5		3.10729	-0.12662	0	0	1	-0.24223	[cm]		0.821				
	6. D	0	0	0		0	1	6		0	0	0	0	0	1	[%]		0.07				
		/[cm]	/[mrad]	/[cm]	/[mrad]	/[cm]	/[%]	2-nd		/[cm]	/[mrad]	/[cm]	/[mrad]	/[cm]	/[%]		2-nd					
	Det = 0.99993						Det= (0.99993					[:::] ⁻¹	view	V							
	Dispersive (Dipole)						✓ 0k	c	🗙 Ca	ncel ?	Help	¥H	Spectro	ometer matri	×							

Block matrix Global matrix Global matrix Participation Beam (si 2.3124) 1. X = 2.30357 0.00091 0 0 2.88865 [mm] [mmad] [mm] [mmad] [mm] [mmad] [mm] [mmad] [mm] [mm] [mmad] [mm] [m	Block matrix 1. × [-2,30357] 0.00091 0 0 2.88865 [mm] [2.30357] 0.00091 0 0 2.88865 [mm] [2.3124] 2. T 10.7568 0.43835 0 0 0 0.0001 [mm]	G _i G·G	= L _i * (lobal, L - Bl	a i · 1 ock (Local)	- Dime mm	nsion • C c	m	Matrices Block (loc	al) 🔎	C Global			-9	iecond Orde Non 🔎	er LOCAL m C Exist	atrix —	only for tran	Monte Carlo
1. × 2 30357 0.00091 0 0 2.88865 [mm] 2.3124 2. 1 10.7569 0.43835 0 0 0 0.00091 0 0 0.00091 10.7569 0.43835 0 0 0.00001 [mm] 11.7569 0.43835 0 0 0 0.00001 [mm] 11.7569 0.43835 0 0 0 0.00001 [mm] 11.07569 0.43835 0 0 0 0.00011 0 0 0.0001 [mm] 11.07569 0.43835 0 0 0 0.0001 [mm] 0.75082 0.00118 0 0 0 0.075082 0.00118 0 <td< td=""><td>1. × 2 30357 0.00091 0 0 2.88865 [mm] 2.3124 2. T 10.7569 0.43835 0 0 0 0.288865 [mm] [10.7569 0.43835 0 0 0 0.00011 [mmd] [11.7569 0.43835 0 0 0 0.00011 [mmd] 0.7509 0.00011 [mmd] 0.7509 0.00011 0 0 0 0.75082 0.00118 0 [mmd] 0.7509 0</td><td>Block</td><td>matrix</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Global mat</td><td>rix</td><td></td><td></td><td></td><td></td><td></td><td></td><td>– Beam (sig</td></td<>	1. × 2 30357 0.00091 0 0 2.88865 [mm] 2.3124 2. T 10.7569 0.43835 0 0 0 0.288865 [mm] [10.7569 0.43835 0 0 0 0.00011 [mmd] [11.7569 0.43835 0 0 0 0.00011 [mmd] 0.7509 0.00011 [mmd] 0.7509 0.00011 0 0 0 0.75082 0.00118 0 [mmd] 0.7509 0	Block	matrix							Global mat	rix							– Beam (sig
2. T 10.7569 -0.43835 0 0 -0.0001 [mrad] 3. Y 0 0 0.75082 0.00118 0 0 0.0001 [mm] 4. F 0 0 37.3513 1.39051 0 0 0 0.075082 0.00118 0 [mm] 6. D 0 0 0 0 0 0 0 0 0 11.07563 -0.43835 0 0 0 0.75082 0.0011 0 0.75082 0.0011 0 0.75082 0.0011 0	2. T 10.7569 0.43835 0 0 0 0.0001 [mead] 11.0738 3. Y 0 0 0.75082 0.00118 0 0 0 0.0001 [mead] 0.7509 4. F 0 0 37.3513 1.39051 0 0 0 0.75082 0.00118 0 [mm] 5. L 3.10729 -0.12662 0 0 1 -0.24223 [mm] 0.07 /mm< /mmad	1. X	-2.30357	0.00091	0	0	0	2.88865		-2.30357	0.00091	0	0	0	2.88865	[mm]		2.3124
3. Y 0 0 0.75082 0.00118 0 0 0.75082 0.00118 0 0 0.75082 4. F 0 0 37.3513 1.33051 0 0 0 37.3513 1.33051 0 0 0 37.3513 1.33051 0 0 0 37.3513 1.33051 0 0 0 0 37.3513 1.33051 0	3. Y 0 0 0.75082 0.00118 0 0 0.75082 0.00118 0 0 0.75082 4. F 0 0 37.3513 1.33051 0 0 0 37.3513 1.39051 0 0 0 0.75082 0.0118 0 0 0 38.9726 5. L 3.10729 -0.12662 0 0 1 -0.24223 [mm] 31989 0 0 0 1 -0.24223 [mm] 31989 0.07 0 <td< td=""><td>2. T</td><td>10.7569</td><td>-0.43835</td><td>0</td><td>0</td><td>0</td><td>-0.0001</td><td></td><td>10.7569</td><td>-0.43835</td><td>0</td><td>0</td><td>0</td><td>-0.0001</td><td>[mrad]</td><td></td><td>11.0738</td></td<>	2. T	10.7569	-0.43835	0	0	0	-0.0001		10.7569	-0.43835	0	0	0	-0.0001	[mrad]		11.0738
4. F 0 0 37.3513 1.39051 0 0 38.9726 5. L 3.10723 -0.12662 0 1 -0.24223 0 1 -0.24223 31989 6. D 0 0 0 0 0 0 1 -0.24223 mmi 31989 6. D 0 0 0 0 0 0 0 1 -0.24223 mmi 0 <td>4. F 0 0 37.3513 1.39051 0 0 0 37.3513 1.39051 0 0 [mad] 38.9726 5. L 3.10729 -0.12662 0 1 -0.24223 [mm] 31.989</td> <td>3. Y</td> <td>0</td> <td>0</td> <td>0.75082</td> <td>0.00118</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0.75082</td> <td>0.00118</td> <td>0</td> <td>0</td> <td>[mm]</td> <td></td> <td>0.7509</td>	4. F 0 0 37.3513 1.39051 0 0 0 37.3513 1.39051 0 0 [mad] 38.9726 5. L 3.10729 -0.12662 0 1 -0.24223 [mm] 31.989	3. Y	0	0	0.75082	0.00118	0	0		0	0	0.75082	0.00118	0	0	[mm]		0.7509
5. L 3.10729 -0.12662 0 0 1 -0.24223 [mm] 3.1089 6. D 0 0 0 0 1 -0.24223 [mm] 0.07 /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] 0 0 0 0 1 0.24223 [mm] 0.07 /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] 0.07 0.07 0.07 Det = 0.99993 Det = <td>5. L 3.10729 0.12662 0 1 -0.24223 mm] 3.1989 6. D 0 0 0 0 1 -0.24223 mm] 0.07 /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] 0.07 Det = 0.99993 C Import/link COSY map C Import/link COSY map Import // mm /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] Import // mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] 0.07 Dispersive (Dipole) Link to COSY map Import // mm /[mm] <</td> <td>4. F</td> <td>0</td> <td>0</td> <td>37.3513</td> <td>1.39051</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>37.3513</td> <td>1.39051</td> <td>0</td> <td>0</td> <td>[mrad]</td> <td></td> <td>38.9726</td>	5. L 3.10729 0.12662 0 1 -0.24223 mm] 3.1989 6. D 0 0 0 0 1 -0.24223 mm] 0.07 /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] 0.07 Det = 0.99993 C Import/link COSY map C Import/link COSY map Import // mm /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] Import // mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] /[mm] 0.07 Dispersive (Dipole) Link to COSY map Import // mm /[mm] <	4. F	0	0	37.3513	1.39051	0	0		0	0	37.3513	1.39051	0	0	[mrad]		38.9726
6. D 0 0 0 0 1 0 0 0 0 1 [%] 0.07 /[mm] /[mm] /[mm] /[mm] /[mm] /[%] 2-nd /[mm] /[mm	6. D 0 0 0 0 1 0 0 0 1 [¼] 0.07 /[mm] /[m] /[m] <td< td=""><td>5. L</td><td>3.10729</td><td>-0.12662</td><td>0</td><td>0</td><td>1</td><td>0.24223</td><td></td><td>3.10729</td><td>+0.12662</td><td>0</td><td>0</td><td>1</td><td>-0.24223</td><td>[mm]</td><td></td><td>3.1989</td></td<>	5. L	3.10729	-0.12662	0	0	1	0.24223		3.10729	+0.12662	0	0	1	-0.24223	[mm]		3.1989
/(mm) /(m) /(m)	/(mm) /(mrad) /(mm) /(mrad) /(mm) /(%) 2-nd order Det = 0.99993 ☐ Import/link COSY map ☐ Import/link to COSY map ☐ Import/l	6. D	0	0	0	0	0	1		0	0	0	0	0	1	[%]		0.07
Det = 0.99993 Constraint Constrait Constrait Const	Det = 0.99993 Contraction (COSY) map Contraction (COSY) map Dispersive (Dipole) Link to COSY map Image: Cosy (Cosy) Image: Cosy (Cosy) View View Dispersive (Dipole) Image: Cosy (Cosy) Image: Cosy (Cosy) Image: Cosy (Cosy) Image: Cosy (Cosy (Cosy) Image: Cosy (Cosy) Image: Cosy (Cosy (Cosy) Image: Cosy (Cosy (Cosy) Image: Cosy (Cosy (Cosy (Cosy) Image: Cosy (Cosy (Cosy (Co		/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]	2-nd	/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]		2-nd	
Dispersive (Dipole) Link to COSY map	Dispersive (Dipole)	Det =	= 0.99993	Ľ	Import/link	COSY map	<u>c</u>	2 [11]	view	Det = I	0.99993				B2	[:::] ⁻¹	view	
						Tu	rn of	f this	che	ckbo	x In d	order	to k	ill this	s link			
Turn off this checkbox In order to kill this link	Turn off this checkbox In order to kill this link																	

Update of links with COSY maps

BLOCK D1 - Dipole	
1_General] Name = D1,1 Available = 1 Length = 8.719000 m SecondOrder = 0 ThirdOrder = 584 COSY file = FifthOrder\IMG1_COSY.TXT	; Name of Block, Constant name 1/0 ; Use 1/0 ; Length block for optical blocks ; Exist - 1, Non - 0 ; Number of lines
Beitore_Quad = 3 After_Quad = 3 QB_DontDraw = 0 QA_DontDraw = 0	; number of quadrupoles after optic device ; number of quadrupoles after optic device
ZmQ = 0 Calibration file = Å1900\Å1900_D1-Z026.cal	; Z - Q = charge state settings

default directory is **\My Documents\LISE\files

• <u>https://www.msu.edu/~portill2/cosy_tools/</u> the algorithms in the COSY language that are required to be used for writing readable higher order maps in LISE++ from M.Portillo

🖶 Upload	linked COSY matrice	es		
LISE 13-12-20	: ++ [\\ 10 10:21:30		\My Documents\LISEbeta\files\keep_cosy.lpp	Print File Save
Block	Name	Number of Lines / Status	Filename	
Dipole Dipole Dipole Dipole Dipole	"D1" "D2" "D3" "D4"	252 252 252 252 252 252	FifthOrder\IMG1_COSY.TXT C:\user\c\lise_pp_92\files\cosy\FifthOr FifthOrder\IMG3_COSY.TXT FifthOrder\IMG4_COSY.TXT	°der∿IMG2_COSY.TXT
Number o	of links: 4	Number of good links: 4		-
 				►

MICHIGAN STATE

SLAC-75 report by Karl L. Brown

108

(54)

K. L.

BROWN

TABLE VIa

Tabulation of the First- and Second-Order Matrix Elements for an Ideal Magnet in Terms of the Key Integrals Listed in Table VIb

R_{11}	= (<i>x</i>	(x_0)	=	$c_x(t) = \cos k_x t$ Definitions:	
R_{12}	= (x	θ_0)	=	$s_x(t) = (1/k_x) \sin k_x t^{\dagger}$ $k_x^2 = (1 - n)h^2$	
R_{16}	= (<i>x</i>	δ)	=	$d_x(t) = (h/k_x^2)[1 - c_x(t)] \qquad \qquad h = 1/\rho_0$	
T_{111}	= (x	$x_{0}^{2})$	=	$(2n - 1 - \beta)h^3I_{111} + \frac{1}{2}k_x^4hI_{122}$	
T_{112}	= (x	$x_0\theta_0$)	=	$hs_{x}(t) + 2(2n - 1 - \beta)h^{3}I_{112} - k^{2}hI_{112}$	
T_{116}	= (x	$ x_0\delta\rangle$	=	$(2 - n)h^2 I_{11} + 2(2n - 1 - \beta)h^3 I_{116} - k^2 h^2 I_{122}$	
T_{122}	= (x	θ_0^2)	=	$(2n-1-\beta)h^3I_{122} + \frac{1}{2}hI_{111}$	
T_{126}	= (<i>x</i>	$\theta_0 \delta$)	-	$(2 - n)h^2 I_{12} + 2(2n - 1 - \beta)h^3 I_{128} + h^2 I_{112}$	Ļ
T_{166}	= (x	δ^2	-	$-hI_{10} + (2 - n)h^2I_{16} + (2n - 1 - \beta)h^3I_{166} + 4h^3I_{166}$	Dr
T_{133}	$= (x + x)^{-1}$	y2)	=	$Bh^{3}I_{122} - 4k^{2}hI_{12}$	ć
T_{134}	= (x	$v_0 \varphi_0$	=	28h ³ / ₁₂₄	*
T_{144}	= (x	q_{0}^{2})	-	$\beta h^3 I_{144} - \frac{1}{2} h I_{10}$	-
R_{21}	= (<i>θ</i>	$ x_0\rangle$	==	$c'_{x}(t) = -k_{x}^{2}s_{x}(t)$	
R_{22}	$= (\theta$	(θ_0)	_	$s'_{x}(t) = c_{x}(t)$	
R ₂₆	= (θ	δ)	=	$d'_x(t) = hs_x(t)$	
T_{211}	$= (\theta$	X_0^2)	=	$(2n - 1 - \beta)h^3 I_{211} + \frac{1}{2}k_x^4 h I_{222} - hc_x(t)c'_x(t)$	
T_{212}	$= (\theta$	$x_0\theta_0$)	=	$hs'_{x}(t) = 2(2n-1-\beta)h^{3}I_{212} - k_{x}^{2}hI_{212} - h[c_{x}(t)s'_{x}(t) + c'_{x}(t)s_{x}(t)]$	
T_{216}	$= (\theta$	$x_0\delta$	=	$(2 - n)h^2 I_{21} + 2(2n - 1 - \beta)h^3 I_{216} - k_x^2 h^2 I_{222} - h[c_x(t) d'_x(t) + c'_x(t) d_y(t)]$	
T_{222}	$=$ (θ	62)	=	$(2n - 1 - \beta)h^3 I_{222} + 4hI_{211} - hs_s(t)s'_s(t)$	
T_{226}	$= (\theta$	$ \theta_0\delta)$	==	$(2 - n)h^2 I_{22} + 2(2n - 1 - \beta)h^3 I_{226} + h^2 I_{212} - h[s_x(t) d'_x(t) + s'_x(t) d_x(t)]$	

$T_{266} = (\theta \mid \delta^2) = -hI_{20} + (2-n)h^2I_{26} + (2n-1-\beta)h^3I_{266} + \frac{1}{2}h^3I_{266} + \frac{1}{2}h^3I_{$
$T_{233} = (\theta \mid y_0^2) = \beta h^3 I_{233} - 4k^2 h I_{23}$
$T_{234} = (\theta \mid y_0 \varphi_0) = \frac{2\beta h^3 (z_0)}{2\beta (z_0)}$
$T_{244} = (\theta \mid \varphi_0^2) = \beta h^3 I_{044} - 4h I_{02}$
$R_{33} = (y \mid y_0) = c_0(t) = \cos k_0 t$
$R_{34} = (y \mid \varphi_0) = s_y(t) = (1/k_y) \sin k_y t$
$T_{313} = (y \mid x_0 y_0) = + 2(\beta - n)h^3 I_{avo} + k^2 k^2 h I$
$T_{314} = (y \mid x_0 \varphi_0) = hs_n(t) + 2(\beta - n)h^3 I_{313} + k_x k_y h I_{324}$
$T_{323} = (y \mid \theta_0 y_0) = + 2(\beta - y)h^3 L_{314} - k_x^2 h L_{314}$
$T_{324} = (y \mid \theta_0 \varphi_0) = + 2(\beta - n)h^3 J_{324} + h J_{314}$
$T_{336} = (y \mid y_0 \delta) = k_y^2 I_{33} + 2(\beta - n)h^3 I_{336} - k_y^2 h^2 I_{324}$
$T_{346} = (y \mid \varphi_0 \delta) = k_y^2 I_{34} + 2(\beta - n)h^3 I_{346} + h^2 I_{323}$
$R_{43} = (\varphi \mid y_0) = c'_{y}(t) = -k_{y}^2 s_{y}(t)$
$R_{44} = (\varphi \mid \varphi_0) = s'_y(t) = c_y(t)$
$T_{413} = (\varphi \mid x_0 y_0) = 2(\beta - \eta)h^3 L_{12} + k^2 k^2 h L_{12} - h_0(\eta) e^{i(\eta)}$
$T_{414} = (\varphi \mid x_0\varphi_0) = hs'_{y}(t) + 2(\beta - m)h^3 L_{113} + k_x^2 h_y^{m_1} H_{24}^{24} - hc_x(t)c'_y(t)$
$T_{423} = (\varphi \mid \theta_0) v_0) = 2(\beta - n)h^3 L_{423} - \frac{k^2 h L_{423}}{k^2 h L_{423}} - h_{5}(t) v'(t)$
$T_{424} = (\varphi \mid \theta_0 \varphi_0) = 2(\beta - n)h^3 I_{424} + h I_{412} - h_5(t)s'(t)$
$T_{436} = (\varphi \mid y_0 \delta) = k_y^2 I_{43} + 2(\beta - n)h^3 I_{436} - k_y^2 h^2 I_{424} - h d_y(t)c_y(t)$
$T_{446} = (\varphi \mid \varphi_0 \delta) = k_y^2 I_{44} + 2(\beta - n)h^3 I_{446} + \frac{h^2 I_{423}}{h^2 I_{423}} - h d_\lambda(t) s'_\nu(t)$

TABLE VID

Tabulation of Key Integrals Required for the Numerical Evaluation of the Second-Order Aberrations of Ideal Magnets

The results are expressed in terms of the five characteristic first-order matrix elements $s_x(t)$, $c_x(t)$, $d_x(t)$, $c_y(t)$, and $s_y(t)$ and the quantities *h* and *n* (assumed to be constant for the ideal magnet over the interval of integration $\tau = 0$ to $\tau = t$). The path length of the central trajectory is *t*. From the solutions of the differential equations [Eq. (29) of Sec. II], the first-order matrix elements for the ideal magnet are:

 $c_x(t) = \cos k_x t$ $s_x(t) = (1/k_x) \sin k_x t$ $d_x(t) = (h/k_x^2)[1 - c_x(t)]$ $c_y(t) = \cos k_y t$ $s_y(t) = (1/k_y) \sin k_y t$ where

$$k_x^2 = (1 - n)h^2$$
, $k_y^2 = nh^2$, and $h = 1/\rho_0$

 ρ_0 is the radius of curvature of the central trajectory.

$$\begin{split} I_{10} &= \int_{0}^{t} G_{x}(t, \tau) \, d\tau = \left[\frac{d_{x}(t)}{h}\right] \\ I_{11} &= \int_{0}^{t} c_{x}(\tau) G_{x}(t, \tau) \, d\tau = \frac{1}{2} t s_{x}(t) \\ I_{12} &= \int_{0}^{t} s_{x}(\tau) G_{x}(t, \tau) \, d\tau = \frac{1}{2k_{x}^{2}} [s_{x}(t) - tc_{x}(t)] \\ I_{16} &= \int_{0}^{t} d_{x}(\tau) G_{x}(t, \tau) \, d\tau = \frac{h}{k_{x}^{2}} (I_{10} - I_{11}) = \frac{h}{k_{x}^{2}} \left[\frac{d_{x}(t)}{h} - \frac{t}{2} s_{x}(t)\right] \\ I_{111} &= \int_{0}^{t} c_{x}^{2}(\tau) G_{x}(t, \tau) \, d\tau = \frac{1}{3} \left[s_{x}^{2}(t) + \frac{d_{x}(t)}{h}\right] \\ I_{112} &= \int_{0}^{t} c_{x}(\tau) s_{x}(\tau) G_{x}(t, \tau) \, d\tau = \frac{1}{3} s_{x}(t) \left[\frac{d_{x}(t)}{h}\right] \end{split}$$

$$\begin{split} & F_{116} = \int_{0}^{t} c_{x}(\tau) \, d_{x}(\tau) G_{x}(t, \tau) \, d\tau = \frac{h}{k_{x}^{2}} (I_{11} - I_{111}) = \frac{h}{k_{x}^{2}} \left\{ \frac{t}{2} s_{x}(t) - \frac{1}{3} \left[s_{x}^{2}(t) + \frac{d_{x}(t)}{h} \right] \right\} \\ & F_{122} = \int_{0}^{t} s_{x}^{2}(\tau) G_{x}(t, \tau) \, d\tau = \frac{h}{k_{x}^{2}} (I_{10} - I_{111}) = \frac{1}{3k_{x}^{2}} \left[2 \frac{d_{x}(t)}{h} - s_{x}^{2}(t) \right] \\ & F_{126} = \int_{0}^{t} s_{x}(\tau) \, d_{x}(\tau) G_{x}(t, \tau) \, d\tau = \frac{h}{k_{x}^{2}} (I_{12} - I_{112}) = \frac{h}{k_{x}^{2}} \left\{ \frac{1}{2k_{x}^{2}} \left[s_{x}(t) - tc_{x}(t) \right] - \frac{1}{3} s_{x}(t) \left[\frac{d_{x}(t)}{h} \right] \right\} \\ & = \frac{h}{6k_{x}^{4}} [s_{x}(t) + 2s_{x}(t)c_{x}(t) - 3tc_{x}(t)] \\ & F_{166} = \int_{0}^{t} d_{x}^{2}(\tau) G_{x}(t, \tau) \, d\tau = \frac{h^{2}}{k_{x}^{4}} (I_{10} - 2I_{11} + I_{111}) = \frac{h^{2}}{k_{x}^{2}} \left\{ \frac{4}{3} \left[\frac{d_{x}(t)}{h} \right] + \frac{1}{3} s_{x}^{2}(t) - ts_{x}(t) \right\} \\ & F_{133} = \int_{0}^{t} c_{y}^{2}(\tau) G_{x}(t, \tau) \, d\tau = \left[\frac{d_{x}(t)}{h} \right] - \left[\frac{k_{x}^{2}}{k_{x}^{2}} - 4k_{y}^{2} \right] \left[s_{x}^{2}(t) - 2 \frac{d_{x}(t)}{h} \right] \\ & F_{134} = \int_{0}^{t} s_{y}^{2}(\tau) G_{x}(t, \tau) \, d\tau = \frac{1}{k_{x}^{2}} - 4k_{y}^{2} \left[s_{y}^{2}(t) - 2 \frac{d_{x}(t)}{h} \right] \\ & F_{134} = \int_{0}^{t} s_{y}^{2}(\tau) G_{x}(t, \tau) \, d\tau = \frac{1}{k_{x}^{2}} - 4k_{y}^{2} \left[s_{y}^{2}(t) - 2 \frac{d_{x}(t)}{h} \right] \\ & F_{134} = \int_{0}^{t} c_{y}(\tau) S_{y}(\tau) G_{x}(t, \tau) \, d\tau = \frac{1}{k_{x}^{2}} - 4k_{y}^{2} \left[s_{y}^{2}(t) - 2 \frac{d_{x}(t)}{h} \right] \\ & F_{134} = \int_{0}^{t} c_{y}(\tau) S_{x}(\tau) \, d\tau = s_{x}(t) \\ & F_{144} = \int_{0}^{t} s_{y}^{2}(\tau) G_{x}(t, \tau) \, d\tau = \frac{1}{k_{x}^{2}} - 4k_{y}^{2} \left[s_{y}^{2}(t) - 2 \frac{d_{x}(t)}{h} \right] \\ & F_{121} = I_{11}^{\prime} = \frac{d}{dt} \int_{0}^{t} c_{x}(\tau) G_{x}(t, \tau) \, d\tau = \frac{1}{2} \left[s_{x}(t) + tc_{x}(t) \right] \\ & F_{122} = I_{12}^{\prime} = \frac{d}{dt} \int_{0}^{t} s_{x}(\tau) G_{x}(t, \tau) \, d\tau = \frac{1}{2} \left[s_{x}(t) + tc_{x}(t) \right] \\ & F_{122} = F_{16}^{\prime} = \frac{d}{dt} \int_{0}^{t} d_{x}(\tau) G_{x}(t, \tau) \, d\tau = \frac{h}{2k_{y}^{2}} \left[s_{x}(t) - tc_{x}(t) \right] \\ & F_{12} = F_{16}^{\prime} = \frac{d}{dt} \int_{0}^{t} c_{x}^{\prime}(\tau) G_{x}(t, \tau) \, d\tau = \frac{h}{2k_{y}^{2}} \left[s_{x}(t) - tc_{x}(t) \right] \\ & F_{12} = F_{16}^{\prime} = \frac{d}{dt} \int_{0}^{t} c_{x}^{\prime}(\tau) G_{x}(t, \tau)$$

(continuca)

Bending magnet (dipole) example

Quadrupole example

1. Matrix Elements for a Pure Quadrupole Field

For a pure quadrupole, the matrix elements are derived from those of the general case by letting $\beta = 0$, $k_x^2 = k_q^2$ and $k_y^2 = -k_q^2$, where

$$k_q^2 = -nh^2 = (B_0/a)(1/B\rho)$$

LISE++ dispersive block : Transport solution

9.2.32 Dipole (dispersive block): Transport solution of 1st and 2-nd orders including fringing fields

D1		X
Dispersive block Birhoi 346006 + Tm B 1.11615 + T C I 68.86 + A Radius 3.1 m Angle 45 deg	Optical block properties and data Setting Charge state for the Block (Z-Q) Image: Cut(Slits) & Acceptances & O & O Image: Cut(Slits) & Acceptances & O Image: O Image: O Setting O Image: O	Calculate the Values using the Setting fragment from Target D2 Tweak 0.1 % Calculate other optic blocks
🗸 ок 🗶	Cancel ? Help 60	TRANSPORT calculations

Entrance Face + Bending Magnet + Exit Face

Three optical arrays (1st and 2nd) inside the dispersive block class are calculated the final dispersive block matrices, which will be used in transmission calculations.

D1	-	No 1		×
Bending magnet s	ettings			
? Help	- Type Code	Description	Value	Dimension
BENDING MAGNET SETTINGS	16.5 16.7	g/2 - Vertcal half-aperture of bending magnet K1 - an intergal related to the extent of the fringing filed of a bending magnet K2 - a second intergal related to the extent of	0	cm
ENTRANCE FACE OF BENDING MAGNET	16.12	the fringing filed of a bending magnet 1/R1 - where R1 is the radius of curvature of the entrance face Beta1 - Angle of pole-face rotation	0	1/m degrees
, 	4.0 2.43	5 1.116 $n = -\left[\frac{1}{h B_{y}}\left(\frac{\partial B_{y}}{\partial x}\right)\right]$	$\left _{\substack{x=0\\y=0}}\right = \left $	0
MAGNET	in the parer (Radius, Bfi	tit dialog eld, angle) $\beta = \left[\frac{1}{2h^2 B_y} \left(\frac{\partial^2 B_y}{\partial x^2}\right)\right]$	$\left \begin{array}{c} x = 0 \\ y = 0 \end{array} \right = \left \begin{array}{c} x = 0 \\ y = 0 \end{array} \right $	0
EXIT FACE OF BENDING MAGNET	16.13 2.0	1/R2 - where R2 is the radius of curvature of the exit face Beta2 - Angle of pole-face rotation	0	1/m degrees
Calcualte 2nd or matrix elements	rder	🞸 Calculate Optical matrix	ок :	Cancel

LISE++ dispersive block : Transport solution

From the results of Section III, we conclude that for an ideal magnet the matrix elements of R are simple trigonometric or hyperbolic

8. Evaluation of the First-Order Matrix for Ideal Magnets

1. 0

-

Bending magnet.

	iunctions.	The general resu	it for an elem	ient of lengtr	1 L 15	Solution from the new
	cos	$k_x L = \frac{1}{k_x} \sin k_x L$	0	0	$0 \frac{h}{k_x^2} \begin{bmatrix} 1 \\ - \\ \cos k_x L \end{bmatrix}$	and Second-Order
	- k _x s	in $k_x L \cos k_x L$	0	0	$0 \qquad \left(\frac{h}{k_x}\right) \sin k_x L$	Ideal Magnet"
	R =	0 0	$\cos k_y L$	$\frac{1}{k_y}\sin k_y L$	0 0	
	$\frac{h}{k_x}$ si	$0 \qquad 0$ $n k_x L \frac{h}{k_x^2} [1 - 1]$	−k, sin k,L 0	$\cos k_{y}L$	$0 \qquad 0$ $1 \qquad \frac{h^2}{k_x^3} [k_x L$	
		$-\cos k_x L$	0	0	$-\sin k_x L$]	
Entrance face	where for a	dipole (bending) magnet, we	have defined	(7:	Exit face
SYSTEM AND SPECTROMETER DESIGN		$k_x^2 = (1$	<i>– n)h</i> ² and	$k_y^2 = nh^2$		
The results of these calculations yield the following matrix el	Foraj	oure quadrupole.	, the <i>R</i> matri	x is evaluated	l by letting	118 K. L. BROWN
for the fringing fields of the entrance face of a bending magnet:	L	$k_x^2 =$	k_q^2 and k_y^2	$= -k_q^2$		The matrix elements for the fringing fields of the exit face of a bending magnet are:
$R_{12} = 0$ $T_{111} = -(h/2) \tan^{2} \beta_{1}$ $T_{133} = (h/2) \sec^{2} \beta_{1}$ $R_{21} = -(1/f_{x}) = h \tan \beta_{1}$ $R_{22} = 1$ $T_{211} = (h/2R_{1}) \sec^{3} \beta_{1} - nh^{2} \tan \beta_{1}$ $T_{212} = h \tan^{2} \beta_{1}$ $T_{216} = -h \tan \beta_{1}$ $T_{233} = h^{2}(n + \frac{1}{2} + \tan^{2} \beta_{1}) \tan \beta_{1} - (h/2R_{1}) \sec^{3} \beta_{1}$ $R_{33} = 1$ $R_{34} = 0$ $T_{313} = h \tan^{2} \beta_{1}$ $R_{43} = -(1/f_{y}) = -h \tan (\beta_{1} - \psi_{1})$ $R_{44} = 1$ $T_{413} = -(h/R_{1}) \sec^{3} \beta_{1} + 2h^{2}n \tan \beta_{1}$ $T_{423} = -h \tan^{2} \beta_{1}$ $T_{436} = h \tan \beta_{1} - h \psi_{1} \sec^{2} (\beta_{1} - \psi_{1})$ All nonlisted matrix elements are equal to zero. The quantity ψ_{1} correction to the transverse focal length when the finite extent fringing field is included. ⁽⁹⁾ $\psi_{1} = Khg \sec \beta_{1}(1 + \sin^{2} \beta_{1}) + higher order terms in (hg)$	(57) is the of the					$R_{11} = 1$ $R_{12} = 0$ $T_{111} = (h/2) \tan^{2} \beta_{2}$ $T_{133} = -(h/2) \sec^{2} \beta_{2}$ $R_{21} = -1/f_{x} = h \tan \beta_{2}$ $R_{22} = 1$ $T_{211} = (h/2R_{2}) \sec^{3} \beta_{2} - h^{2}(n + \frac{1}{2} \tan^{2} \beta_{2}) \tan \beta_{2}$ $T_{212} = -h \tan^{2} \beta_{2}$ $T_{233} = h^{2}(n - \frac{1}{2} \tan^{2} \beta_{2}) \tan \beta_{2} - (h/2R_{2} \sec^{3} \beta_{2} - T_{234} = h \tan^{2} \beta_{2})$ $R_{33} = 1$ $R_{34} = 0$ $T_{313} = -h \tan^{2} \beta_{2}$ $R_{43} = -1/f_{y} = -h \tan (\beta_{2} - \psi_{2})$ $R_{44} = 1$ $T_{413} = -(h/R_{2}) \sec^{3} \beta_{2} + h^{2}(2n + \sec^{2} \beta_{2}) \tan \beta_{2}$ $T_{414} = h \tan^{2} \beta_{2}$ $T_{436} = h \tan \beta_{2} - h\psi_{2} \sec^{2}(\beta_{2} - \psi_{2})$ (58) All nonlisted matrix elements are zero. $\psi_{2} = Khg \sec \beta_{2}(1 + \sin^{2} \beta_{2}) + higher order terms in (hg)$ and K is evaluated for the exit fringing field.

Edge effect for transmission distribution cuts

9.2.33 12/10/10 Edge cut effect option for transmission calculation (the "Option" dialog)

Preferences	
Starting configuration at loading the program	A1900_2010.lcn Browse Browse Browse
Display 1 Sum of all reactions (pps) Display 2 Total transmission (%) Angular acceptance Shape ellipse	Cross Section Fit C File CS File Settings Calculate spectrometer settings using
Method jacobian: sqrt(ax*ay)	value of the momentum distribution
 (♥ Yes (default) ○ No (recommended for extended configurations) Dimension of distribution (NP) recommended calculation WITH 32 ▼ 64 calculation WITH 32 ▼ 32 	Calculation threshold 1.0e-10 Charge States No Charge States Sound Soun
wedge calculation 32 - 16	Show transmission calculation time
Target optimization options Scheme options Plot options	Hold angles of an inclination of a target and a stripper together Primary beam scattering in a target Charge State Optimization Debugging Mode Distribution Debugging Mode (file 'distrib.txt') Check LlZ-file consistency (Configurations) Check LlZ-file consistency (Options)

Recommended to turn off the "edge effect" for extended configurations to prevent decrease of transmission due to multiple cut of tails

G

Edge effect for transmission distribution cuts

G

FRIP

D1-Xspace: output after slits ⁴⁰Ar (140.0 MeV/u) + Be (500 µm); Settings on ⁴⁰Ar; Config: DDSWDDMMSMM dp/p=1.00%; Wedges: 0; Brho(Tm); 3.8685, 3.8685, 3.8685, 3.8685

12

ROOT histogram vs. BI code in LISE++

MICHIGAN STATE UNIVERSITY LISE++

9.2.18 10/07/10 9.2.21 10/26/10

Analyzing 1D-historgam ROOT files by the BI code Analyzing 2D-historgam ROOT files by the BI code

//====== Macro generated from object: h02/Z:Am3Q
//====== by ROOT version5.26/00
TH2F *h02 = new TH2F("h02","Z:Am3Q",512,-35,-10,512,40,70);
h02->SetBinContent(40,1);
h02->SetBinContent(61,1);
h02->SetBinContent(63,2);
h02->SetBinContent(64,1);
h02->SetBinContent(67,3);
h02->SetBinContent(73,1);
h02->SetBinContent(77,1);
h02->SetBinContent(79,3);
h02->SetBinContent(80,2);

ROOT histogram vs. BI code in LISE++

- 9.2.9 09/01/10 Request to increase a number of isotopes for MC group // MP
- 9.2.12 09/03/10 Number of possible MC generator rays has been increased to 1 000 000 // MP
- 9.2.19 10/14/10 Increasing number of rows in the "Show Transmission" window, as well string size to avoid crash // мн
- 9.2.30 11/30/10 Increasing possible number of blocks from 94 to 194 // MP

- 9.2.8 08/27/10 Corrections in MC transmission calculation against crash in reaction place with negative energy // MP
- 9.2.10 09/02/10 Energy loss in detector, where particle is stopped
- 9.2.11 09/02/10 Normalization in Energy deposition for group of isotopes // MP
- 9.2.13 09/07/10 New isotopes history added for Z=26,27,48,56 //MT
- 9.2.14 09/15/10 New isotopes history added for Z=23,36,47; neutron-rich observed isotopes line updated for Z=63-92 // MT
- 9.2.15 09/15/10 Corrections for TKE-calculations in pseudo MC plot // JB
- 9.2.16 09/23/10 MC List of isotopes: modification to pass the target block for initialization // MP
- 9.2.17 10/05/10 correction: crash with rotation blocks in PseudoMC mode
- 9.2.20 10/20/10 Mouse position: fonts; no initial identification in the case of a lot of isotopes
- 9.2.25 11/21/10 correction: indexation in dynamical submenu has been changed // MP
- 9.2.26 11/24/10 correction: links to COSY matrices // MP
- 9.2.27 11/24/10 correction: the transmission statistics dialog

LISE++ development priorities

1	Subject	priority	
2	>>> ADA (Abrasion-Dissipation-Ablation) model creation	LongTerm project	
3	>>> ETACHA implementation	LongTerm project	
4	>>> Evaporation cascade: create Monte Carlo version	LongTerm project	
5	>>> Develop a subroutine to calculate a reduced dispersion for large values of dP/P	LongTerm project	
6	>>> Implementation of Intranuclear cascade (INC) model in LISE++ Windows	LongTerm project	
7	>>> Ray tracing in LISE++	LongTerm project	
8	>>> The "MOTER" code development	LongTerm project	
9	>>> Custom shape degfrader optimization in MC mode for high order optics	LongTerm project	
10	>>> Minimization in LISE++ (which can be used for MC, TRANSPORT, Ray tracing cases)	LongTerm project	
11	Linked COSY matrices reload in LISE++ by user demand in the LISE code	high priority	done
12	Recalculate optical matrices of quadropoles according to Brho by pressing one button	high priority	done
13	increasing number block limit up to 200 (was 100)	high priority	done
14	quadrupoles: option matrix or field calculations	high priority	done
15	second order martrix for dipole and entrance and exit face of dipoles	high priority	done
16	ideal magnet solution (tabulation) : first and second order	high priority	done
17	Cross section for stripper	medium	
18	High order : write documentation and put source for COSY files	medium	done?
19	Target thickness deffect	medium	
20	Discovery of isotopes : utilities, database, plots	medium	
21	Wedge (including curved profile wedge) inclination	medium	
22	Write full LISE++ documentation	medium	
23	Brho method to measure T1/2 (MC: possibility of decay in flight)	low	
24	Create possibility to Insert a material before the target	low	
25	Dispersion method for secondary target: check DJM case	low	
26	Fission without angular acceptances: low transmission for analytical solution	low	
27	High order optics calculation: improvement, adaptation GICOSY format	low	
28	MOCADI <-> LISE++ converter	low	
29	Transport <-> LISE++ converter	low	
30	m-rad dimensions for LISE++ optics	low	
31	PACE4 : request from TRIUMF	low	
32	Problem with Projectile Fragmentation in the Catcher utility	low	
33	Simulation reactions in Si-telescope in MC mode	low	
34	Three-body kinematics relativistic calculator	low	
35	Water wedge procedure (wedge with one moving plane and filled by liquid)	low	