

From 15/03/2012

1

LISE⁺⁺ version 9.4.1

- □ Asymmetry for Gaussian-like momentum distributions
- □ Asymmetry parameter "alpha"
- Extracting the asymmetry coefficient from the Convolution model (Universal parameterization)
- **Example at low energy**
- □ ⁸²Se momentum distribution results (will be soon)

symmetric

-

asymmetric

$$f(x) = A \cdot e^{\frac{-(x-x_0)^2}{2 \cdot \sigma^2}}$$

$$f(x) = A \cdot e^{\frac{-(x-x_0)^2}{2 \cdot \sigma_{low}^2}}, \text{ if } x < x_0 \text{ and } A \cdot e^{\frac{-(x-x_0)^2}{2 \cdot \sigma_{high}^2}}, \text{ if } x > x_0$$

$$CS = A \cdot \sqrt{2 \cdot \pi} \cdot \sigma$$

$$CS = A \cdot \sqrt{2 \cdot \pi} \cdot \sigma \quad \text{where} \quad \sigma = \frac{\sigma_{low} + \sigma_{high}}{2}$$

$$x_{peak} = x_0$$

$$x_{peak} = x_0$$

$$asymmetry coefficient \quad \alpha = \frac{\sigma_{low}}{\sigma} - 1 = 1 - \frac{\sigma_{high}}{\sigma}$$

$$-100\% < \alpha < +100\%$$

 $x_{peak} = x_0$

$$< x> = \frac{\int_{-\infty}^{x_{0}} \frac{-(x-x_{0})^{2}}{2 \cdot (\sigma_{low})^{2}} dx + \int_{x_{0}}^{\infty} x \cdot A \cdot e^{\frac{-(x-x_{0})^{2}}{2 \cdot (\sigma_{high})^{2}}} dx}{\int_{-\infty}^{x_{0}} \frac{-(x-x_{0})^{2}}{2 \cdot (\sigma_{low})^{2}} dx + \int_{x_{0}}^{\infty} A \cdot e^{\frac{-(x-x_{0})^{2}}{2 \cdot (\sigma_{high})^{2}}} dx} = x_{0} - \frac{4 \alpha \sigma}{\sqrt{2 \cdot \pi}}$$

The asymmetry coefficient "alpha" is applied for models [1-3]

asymmetry coefficient " α " (in %) and reduced

width "O" are used to describe an asymmetrical Gaussian momentum distribution

Fragment mean velocity is calculated with the chosen model

then the peak position will be calculated using the asymmetry coefficient "alpha" and the momentum distribution width "sigma"

ſ	Projectile fragmentation											
	Fragment velocity Momentum distribution / Cross section, Excitation energy and etc /											
	Final relation Vf/Vb been used in the program for the setting fragment mean = 0.9892 program for the setting fragment peak = 0.9914											
	Mean Fragment velocity Constant V fragment /V beam = Calculation · A [V.Borrel et al., Z.Pyhs.A314(1983)191] Calculation · B [F.Rami et al., NPA 444(1985)349] Calculation · C [0.Tarasov, NPA 734(2004)536] Calculation · D [from two-body reaction] Calculation · E [D.Morrissey, PRC 39(1989)460] Velocity after reaction can not exceed fragment in the production. Velocity after reaction can not exceed fragment in the production around the production. Velocity form two-body reactions R.Pffaf, D.Morrissey et al., PRC51(1995)1348 Velocity after reaction · E [D.Morrissey, PRC 39(1989)460] Velocity after reaction · E [D.Morrissey Aproj / 2											
	$\frac{v_F}{v_F} = s + \sqrt{1 - \frac{B_n(A_F - A_F)}{A_F E_P}} $ Shift of Vf/Vb relation velocity (s) 0 (default 0) Vf / Vb Energy necessary to ablate one nucleon (Bn) 8 MeV (default 8) 0.993											
	B - F.Rami et al., NPA 444 (1985)349 v_F v_F v_F/Vb g (MeV/fm2) 0.95 v_F v_F/Vb v_F/Vb v_F/Vb v_F/Vb v_F											
	C - convolution Vf / Vb (peak) settings 0.995 Write distribution Vf / Vb (peak) Parameters to file Vf / Vb (peak) Voc X Cancel Y Help											

Asymmetry coefficient from the Convolution model (1)

Projectile fragmentation

Fragment velocity / Momentum distribution / Cross section, Excitation energy and etc / Final relation Vf/Vb been used in the mean = 0.9892 40Ar(140.0 MeV/u) + Be -> 32S program for the setting fragment peak = 0.9914 To obtain distribution characteristics from different Mean Fragment velocity Options models for the current configuration (beam, target, C Constant V fragment / V beam = 1 Velocity after reaction can not exceed fragment velocity from two-body reaction kinematics (at 0 C Calculation - A [V.Borrel et al., Z.Pyhs.A314(1983)191] degree). It is important for pick-up reactions! fragment) Assume symmetric velocity distribution around C Calculation - B [F.Rami et al., NPA 444(1985)349] Aproj / 2. Important for light fragment production. Use velocity shift for pick-up reactions C Calculation - C [0.Tarasov, NPA 734(2004)536] R.Pffaf, D.Morrissev et al., PRC51(1995)1348 ☑ Exclude this shift for (p,n) and (n,p) reactions C Calculation - D [from two-body reaction] Calculation - E [D.Morrissey, PRC 39(1989)460] dE/dA = 8 at Afrag = Aproj Vf / Vb = 0.989 (both default 8 MeV) 8 at Afrag = Aproj / 2 C:\user\c\lise_pp_94\results\32S.velocity V.Borrel et al., Z.Pyhs. A314(1983)191 40Ar(140.0 MeV/u) + Be -> 32S Shift of Vf/Vb relation (default 0) VEZ VE velocity (s) $B_n(A_P - A_F)$ 0.993 sigmaR_g 234.97. Velocity Mom.width vv0_mean vv0_peak Goldhaber 0.9928 0.9950 Asymmet SepEnergy Energy necessary to sigma 230.56 sigma_g 265.21 sigmaL_g 295.44 177 MeV (default 8) v_P Ar Er 8 ablate one nucleon (Bn) Borrel Goldhaber 11.40 DJM DJM 0.9892 0.9914 245.92 282.89 315.13 250 6 11.40 B - F.Rami et al., NPA 444 (1985)349 Rami Friedman 0.9917 0.9932 155.37 178.72 199.09 . 34 11 40 Information (only for simple target) 190.67 197.2 Convol 0.9958 0.9968 165.75 184.08 3.46 8.00 g (MeV/fm2) 0.95 Qg dS Vfrag /Vbeam_from_ 25 Vf / Vb 222.35 227.22 0.9916 0.9953 193.30 9.95 39.08 v_F 1.076 200.24 Convol 44 47 two-body reaction 0.992 47.08 $A_{\mathbf{x}} E_{\mathbf{z}}$ 39.1 Convol 0q+dS 0.9910 0.9952 197.53 251 92 202.53 10.87 vp S[MeV] Angle (deg) 0.0 Prefragment 33.9 🔽 use prefragr V of C.M. / Vbeam 0.816 Mass set by user calculated C - convolution 🔲 Make default Vf 7 Vb (peak) Write distribution **.** 0.995 parameters to file 🕐 Help 🖌 ОК 🗙 Cancel Fragment momentum distribution : <Convolution> method Convolution of Gaussian (Fragmentation) and Exponent (Friction) distributions Dimension of the plot Settings for Gaussian distribution 40Ar(140.0 MeV/u) + Be -> 32S NZ chart ONE-dimensional C TWO-dimensional P0 (MeV/C) = 16931 $\left(\frac{p - p_0 + \frac{\sigma_{II}^2}{\tau} - shift \cdot \tau}{\sqrt{2} \sigma_{II}}\right)$ Convolution method characteristic to draw a plot Vf/Vb from settings = 0.989 $f(p) \approx \exp\left(\frac{p}{\tau}\right) \cdot \left|1 - ferr\right|$ 01 : v/v0: mean Mom.distribution = [1] D.J.Morrissey σ₀= 87 MeV/c Pk 02 : v/v0: peak 03 : FWHM*g $\sigma_{II}^{2} = \left(\sigma_{0}^{conv}\sqrt{\beta_{P}}\right)^{2} \frac{A_{F}^{*}(A_{P} - A_{F}^{*})}{A_{P} - 1} \quad \tau = \frac{coef}{\beta}\sqrt{A_{F}^{*} \cdot E_{S}}$ σ_{II} = 282.9 MeV/c (*) C 05 : sigma 06 : PsigmaL*g 07: PsigmaR*g Settings for convolution US: Asymmetry FWHM / Vf/Vb 09: SepEnergy Separation Energy Es coef shift 2.355 (×) P(Ymax) tau neak mean C 10: tau C Even C N-2Z C Energy from Qg 8.0 3.344 0.158 190.7 111.5 16859 0.997 0.996 C KND/Z Excitation from dSurface 39.1 0.149 222.4 221.0 16788 0.995 0.992 3 C sum(value); Z=const 0.995 0.991 O Qg + dSurface 47.1 2.936 0.153 227.2 237.4 16778 See the next slide sum(value): A=cons 🗸 ок 🗙 Quit Me\ MeV/c MeV/c MeV/c C sum(value); N=cor 0000 = 91.5 MeV/c g = | 0.95 MeV/fm^2 (*) · with Gamma-factor 🔲 Make default A Plot 1D Plot - Conv.Analysis 🖌 ОК 🔶 Help X Cancel

LISE++ [Nonar

Asymmetry coefficient from the Convolution model (2)

Example at low energy (⁴⁰Ar 40 MeV/u), #1

Projectile fragmentation											
Fragment velocity ; Momentum distribution / Cross section, Excitation energy and etc /											
40Ar(40.0 MeV/u) + Be → 32S											
Parallel momentum distribution been used in the program (MeV/c) = 230.6 with Gamma-factor = 240.5*											
Parallel momentum distribution											
• [1] A.S.Goldhaber $\sigma_{11}^2 = \sigma_0^2 \frac{A_F (A_P - A_F)}{A_P - 1}$ $\sigma_0 = 90$ $\sigma_{11} = 230.6$ Phys.Lett.B 53(1974)306 $\sigma_{11}^2 = \sigma_0^2 \frac{A_F (A_P - A_F)}{A_P - 1}$ $\sigma_0 = 90$ $\sigma_{11} = 230.6$											
C [2] D.J.Morrissey $\sigma_{II}^2 = \sigma_M^2 (A_p - A_p)$ $\sigma_{III} = 87$ $\sigma_{III} = 245.9$ Phys.Rev.C 39(1989)460											
C [3] WA.Friedman Phys.Rev.C 27(1983)569 $\sigma_{II}^{2} = \frac{\mu}{2x_{0}} \left[\frac{1+0.5y}{\sqrt{1+y}} + \frac{1}{\mu x_{0}} \right]$ settings $\sigma_{II} = 155.4$											
Asymmetry coefficient for Gaussian-like distributions [1-3] $alpha(\aleph) = 32$ $\alpha = \frac{\sigma_{low}}{\sigma_{ll}} - 1 = 1 - \frac{\sigma_{high}}{\sigma_{ll}}$? Help											
C [4] Universal parameterization (Convolution) $\sigma_0^{conv} = 91.5$ $\sigma_{II} = 212.6$ O.Tarasov, NPA 734(2004)536 settings $\sigma_0^{conv} = 91.5$ $\sigma_{II} = 212.6$											
Corrections of the momentum distribution width											
$\Box \begin{array}{c} \text{[a] Coulomb energy correction [W.A.Friedman, PRC} \\ 27(1983) 569 \end{array} \qquad $											
$\label{eq:constraint} \begin{tabular}{l} \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$											
Perpendicular momentum distribution											
$\sigma_{\rm p}^2 = \sigma_{\rm p}^2 + \sigma_{\rm p}^2 \frac{A_{\rm F}(A_{\rm F}-1)}{100} \qquad \sigma_{\rm p} = 200 \qquad \text{MeV/c} \qquad \qquad$											
Δ_= 280.3 MeV/c ✓ OK X Cancel ? Help											

C:\user\c\l	lise_pp_94\result		x								
40Ar(40.0	MeV∕u) + B	Print									
Velocity Borrel DJM Rami Convol Convol Convol	Mom.width Goldhaber DJM Friedman Qg dS Qg+dS	vv0_mean 0.9747 0.9538 0.9708 0.9829 0.9654 0.9634	vv0_peak 0.9875 0.9674 0.9794 0.9920 0.9902 0.9906	sigma 230.56 245.92 155.37 157.01 212.58 220.97	sigma_g 240.46 256.48 162.04 163.76 221.71 230.46	sigmaL_g 317.40 338.56 213.89 186.60 283.22 297.91	sigmaR_g 163.51 174.41 110.19 140.91 160.20 163.01	Asymmetry 32.00 32.00 32.00 13.95 27.74 29.27	SepEnergy 8.00 39.08 47.08		III
<											

MICHIGAN STATE

NIVERSITY

"Distribution" method

Monte Carlo method

