

1

LISE++ version 9.4.90 From 30.01.2013

□ Initial RESOLUT scheme

- □ Angular acceptance of the Solenoid block
- □ Calculated RESOLUT values for ²⁵AI (5 MeV/u) beam
- 1-st Solenoid tuning
- □ Three gaps RF-buncher in COSY
- □ Three RF-bunchers in LISE++
- **2-nd Solenoid tuning**
- **Three RF-bunchers in LISE++ vs. Reaction (separation, transmission)**
- **RESOLUT : 1 gap RF-buncher solution**
- **RESOLUT (1 gap RF-buncher) : optimization**
- **Summary, Outlook**
- + update

LISE++ version 9.4.103 From 28.02.2013

Note: RF-buncher block is

block "RF buncher" – link to v.9.4.24

effective in MC mode

The code operates under MS Windows environment and provides a highly user-friendly interface. It can be freely downloaded from the following internet addresses:

Initial RESOLUT scheme

 \leftarrow

 \leftarrow

 \leftarrow

Þ	Tuning Dipole	Brho 0.6197 Tm
S 🗌	Drift 1	standard 0.35 m
L	Solenoid 1	<mark>В</mark> 2.6844 Т
S 🗌	Drift 2	standard 1.21 m
B	RFbuncher 1	U 119 kV Ph 35 deg
B	RFbuncher 2	U 238 kV Ph 215 deg
B	RFbuncher 3	U 119 kV Pb 35 deg
S 🗌	Drift 3	standard 0.54 m
Q (I)	MQ1	quadrupole 0.38 m
S 🗌	Drift 4	standard 0.22 m
Q []	MQ2	quadrupole 0.41 m
S 🗌	Drift 5	standard 0.47 m
D)	Dipole	Brho 0.6197 Tm
S 🗌	Drift 6	standard 0.48 m
Q []	MQ3	quadrupole 0.41 m
S 🗌	Drift 7	standard 0.22 m
Q 🕕	MQ4	quadrupole 0.38 m
S 🗌	Drift 8	standard 0.74 m
S 🗆	slits 1	sits
-20	10 H +200 50 V +50	
L	Solenoid 2	<mark>В</mark> 2.2688 Т
S 🗌	slits2	sits
-20	10 H +200	

 Tuning dipole to define magnetic rigidity of the separator, Unitary matrix, no slits, zero length
 Initial drift+solenoid+drift configuration to define angular acceptance
 3 gap Rf-buncher was realized as 3 RF bunchers

QQDQQ spectrometer

+ Drfit1 & Drift 2 (before and after the solenoid : ellipse apertures +/- 50 mm)

A Element q+ Beam er I II II Z Brho Beta+ decay P		MeV/u MeV Tm	Em ?	ittance (si	Beam CARD gma, semi-a: half-width) 1D - shape kis, (Distribution) method)
Z Brho Beta+ decay P	C 0.6197 C 2.415	Tm	1.	× mm	0.01	Councien
Beta+ decay P	C 2.415	Callla			0.01	
		Gev/C	2.	T mrad	100	Rectangle uniform 🔄
l able of	C 9.61e+3	KV	3.	Ymm	0.01	Gaussian 💽
Nuclides -B	leam intensity		4.	P mrad	100	Rectangle uniform 🗨
	C 13	enA	5.	L mm	0	Gaussian 💌
	0 1		6.	D %	0.001	Rectangle uniform 🛛 💌
V Ok	C 6.25e+9	pps				
X Cancel	C 0.000125	КW			Energ targ	/Loss in the jet box [KW] 1.72e-10

MICHIGAN STATE

UNIVERSITY

We increase the construction in the construction in the construction of the	Monte Carlo calculation of fragment transmission					
	Monte Carlo calculation of fragment transmission What isotope transmission to calculate? © One fragment of interest. Chose manually here © Group of Isotopes already calculated by the Distribution method (Ncalc = 0) © List of Isotopes from file P - no file - Chose fragment of interest A Element Z Table of Nuclided Reaction mechanism Projectile Fragmentation @ MC transmission options Add in the previous MC plot window MC calculation to file X Quit Monte Carlo calculation 2D plot	X-coordinate After BLOCK Stripper X mm X'(T) mrad Y P mrad Angle [f(X'Y)] mrad C Angle [f(X'Y)] mrad C Energy MeV/u C TKE MeV C Momentum MeV/c B irbo T'm Velocity cm/ns C Energy Loss MeV C Range mm C Energy Loss MeV C Range mm C Energy MeV/mm Deposition /particle C Time of flight ns C Length m Nupper V <- St Material V <- St	Y-coordinate After BLOCK Stripper C X mm C X' (T) mrad C Y mm C Y' (P) mrad C dP/P % C Radial [f(X,Y) mm C Angle [f(X',Y')] mrad C Energy MeV/un D Velocity cm/ns C Energy Loss MeV C Binho T'm C Velocity cm/ns C Energy MeV/mm D Energy MeV/mm D Energy MeV/mm D Energy MeV/mm D position / particle C Time of flight ns C Length m att → Stripper → Material 1 →	Gate 1 Gate 1 Gate 2 Gate 2 Gate 2 Gate 3 Gate 3 Gate 4 Gate 3 Gate 4 Ga	tions C through 3rd order C through 3rd order C through 4th order C through 5th order Detector resolution Use energy and time resolution T ake into according transmission + uses the sitt limits Cut & Acceptance e for the checkbox s place at the middle of target s are correlated for fusion and fission reactions Make default V	for the Isotope group case only Sections independent calcualtions (all cross sections equal) o resolution will be taken into account he selected block is optical or wedge Drily energy resolution of first detector firer the selected block will be taken into account for TKE value unt thickness defect of materials unt losses due to reactions in materials state calculations smission ** for ENVELOPE mode Show trajectories of all fragments (including unselected by fragment-separator) OK X Cancel Y Help

For analytical solution or MC method without bounds it is necessary to set this value (or 47 mrad from geometry without fields) to the Solenoid block acceptance

MICHIGAN STATE

Link to this file

http://lise.nscl.msu.edu/9 4/buncher/RESOL UT 3gap angular%20acceptance.lpp

MICHIGAN STATE

Μ	IC	CH	11(37	١N	S	T,	41	Ē
U	Ν	Т	۷	E	R	s	I	Т	γ
I	6	I		S	J	Đ,		÷-	Þ

Abeam= 25			c_speed= 3.00E+08	m/sec
Mbeam= 24.990428			beta= 1.03E-01	
Zbeam= 13			tof= 7.62E-08	sec
Ebeam= 5	MeV/u		dedt= 3.28E+09	
			turns= 7	
LISE++ Brho= 0.619938	Tm			
	Hz		RFF= 119.623	kV
Freq= 9.70E+07	1/sec	Voltag	;e_in_LISE++= 0.478	MV
omega= 6.09E+08			4 x V for one ga	р
length= 2.36	m			
		Ma	XGain (V*Q)= 6.22	MeV
TKE= 124.95	MeV	N	1axGain/TKE= 5.0%	
Brho (FCU COSY source) = 0.6204303	Tm		phase= 217.9	degrees
they use TKE in source				

		COSY	LISE++ calc	
	coef	value,T	value,T	
S1	4.364	2.7054	2.68	make a small spot at the RF-buncher
S2	3.933	2.4382	2.29	make a small spot at the detector
Q1	-0.48933	-0.3034		
Q2	0.21589	0.1338		
Q3	0.21192	0.1314		
Q4	-0.48933	-0.3034		
S1			2.2	make parralel after the solenoid

1-st Solenoid	tuning
----------------------	--------

Dipole	Brho 0.6197 Tm
S 🔲 Drift 1	standard 0.35 m
L Solenoid 1	<mark>В</mark> 2.6844 Т
S 🗌 Drift 2	standard 1.21 m
B RFbuncher 1	U 119 kV Pb 35 deg
B RFbuncher 2	U 238 kV Ph 215 deg
B RFbuncher 3	U 119 kV
S Drift 3	standard 0.54 m
MQ1	quadrupole
S Drift 4	standard 0.22 m
Q [] MQ2	quadrupole
S Drift 5	standard 0.47 m
Dipole	Brho
S 🔲 Drift 6	standard
Q 🕕 MQ3	quadrupole
S Drift 7	standard
Q []] MQ4	quadrupole
S Drift 8	standard
S slits 1	sits
-200 H +200	
Solenoid 2	В 2 2688 Т
S 🗌 slits2	sits
-200 H +200	

←

Initial drift+solenoid+drift configuration to define angular acceptance

10st solenoid values from the previous slide:

FSU COSY:	2.71 T
LISE++ small object at the RF buncher :	2.68 T
LISE++ makes parallel after solenoid :	1.83 T

1-st Solenoid tuning : parallel after solenoid

MICHIGAN STATE

UNIVER

SITY

E ++

1-st Solenoid tuning : small spot @ RF-buncher (focus)

OT, 30-Jan-2013, East Lansing

1-st Solenoid	tuning
----------------------	--------

Dipole	Brho 0.6197 Tm
S Drift 1	standard 0.35 m
L Solenoid 1	<mark>В</mark> 2.6844 Т
S 🗌 Drift 2	standard 1.21 m
B RFbuncher 1	U 119 kV Ph 35 ceg
B RFbuncher 2	U 238 kV Ph 215 deg
B RFbuncher 3	U 119 kV Ph 35 deg
S 🗌 Drift 3	standard 0.54 m
🗖 🕕 MQ1	quadrupole 0.38 m
S 🗌 Drift 4	standard 0.22 m
Q 👔 MQ2	quadrupole 0.41 m
S 🗌 Drift 5	standard 0.47 m
Dipole	Brho 0.6197 Tm
S 🗌 Drift 6	standard 0.48 m
Q 👔 MQ3	quadrupole 0.41 m
S 🗌 Drift 7	standard 0.22 m
Q 🕕 MQ4	quadrupole 0.38 m
S 🗌 Drift 8	standard 0.74 m
S 🔲 slits 1	sits
-200 H +200 -50 V +50	
L Solenoid 2	<mark>В</mark> 2.2688 Т
S 🗌 slits2	slits
-200 H +200	

←

Initial drift+solenoid+drift configuration to define angular acceptance

1-st solenoid values from the previous slide:

FSU COSY:	2.71 T
LISE++ small object at the RF buncher :	2.68 T
LISE++ makes parallel after solenoid :	2.2 T

RLRES RES RRES RRES	GAPIII1 0.019 0.05 0.01 0.01 0.35 0.198 0.1 0.1 -0.088 0.088 -1.; THREEGAP -0.2 0.2 RFF 9.7E7*2.*PIPHI*DEGRAD 0.019; RI= 0.019
RE + RLDT1 + RLDT2 + ZDT2 +	RO= 0.05 RE= 0.01 RD= 0.01 RLRES= 0.35 RRES= 0.198 RLDT1= 0.1 RLDT2= 0.1 ZDT1= -0.088 ZDT2= 0.088 RD= 1 odd
GAPIIII RI RO RE RD RLRES RRES RLDTI RLDT2 ZDT1 ZDT2 PAR ; (generates structure file) THREEGAP SS1 SS2 SCL W PHI RIEST; (calculates map) Cavity voltage, V = SCL*cos(W*t+ PHI)	SS1= 0.2 SS2= 0.2
SCL = max voltage (kV) W = angular frequency (rad/s) PHI = relative cavity phase (rad) RIEST = RI (set the same or smaller) ZDT1 = center position of tube 1 relative to s = 0. ZDT2 = center position of tube 2 relative to s = 0. PAR = +1 for even, -1 for odd voltage symmetry between tubes	o1 0.037 RLRES/2 - RLDT1 - o4 o2 0.05 RLDT1/2 o3 0.05 RLDT1/2 o4 0.038 ZDT1 - o3 o5 0.025 SS1 - RLRES/2
Figure B3. Diagram illustrating the parameters of subroutine THREEGAP.	d1a 0.025 d5 0.025 gap1 0.037 d1 0.062 d1b 0.05 d2 0.112
reduced one gap geometry od2a 0.162 ssl - gep2/2 ogap2 0.076 gap2 od2b 0.162 od2b	d2a 0.05 c3 0.162 gap2 0.076 2*o4 0.238 d2b 0.05 c3 0.288 0.288 d3a 0.05 d1b 0.338 gap3 0.037 gap1 0.375 d3b 0.025 d1a 0.400

RESOLUT_3gap.lpp

COSY 3 gaps	5 I		
Gap	Gap Size	Bias	
1	D	+V	
2	2D	-2V	
3	D	+V	
LISE++ 3 bur	ichers:		
Buncher	Gap Size	Bias	Phase
1	D	V	а
2	2D	2V	a+180
•	D	14	-

First buncher

File: RESOLUT_3gap.lpp

Three gaps RF-buncher in $COSY \rightarrow Three RF$ -bunchers in LISE++

OLDEV
0.144
0.111
0.0474
0.017

Three gaps RF-buncher in COSY \rightarrow Three RF-bunchers in LISE++

Three RF-bunchers in LISE++

Advantages:

- It Can be use for all velocities
- Realistic simulation

Disadvantages:

- Difficult to find a phase
- It is necessary manually to set this phase for all bunchers
- It is impossible to make simultaneously optimization for all three bunchers.

Solutions:

- Creation the ThreeGap block
- Creation configurations with one RF-buncher* which can be reproduced main properties current configurations and used for optimization
- * it has been realized. See RESOLUT_1gap.lpp slides

Ŋ		Tuning Dipole	0.6197 Tm
s		Drift 1	standard 0.35 m
Ŀ	Đ	Solenoid 1	<mark>В</mark> 2.6844 Т
s		Drift 2	standard 1.21 m
B	0	RFbuncher 1	U 119 kV Ph 35 deg
B	0	RFbuncher 2	U 238 kV Ph 215 deg
B	0	RFbuncher 3	U 119 kV Ph 35 deg
s		Drift 3	standard 0.54 m
Q	Φ	MQ1	quadrupole 0.38 m
s		Drift 4	standard 0.22 m
Q	۵	MQ2	quadrupole 0.41 m
s		Drift 5	standard 0.47 m
Ð		Dipole	Brho 0.6197 Tm
s		Drift 6	standard 0.48 m
Q	Φ	MQ3	quadrupole 0.41 m
s		Drift 7	standard 0.22 m
Q	۵	MQ4	quadrupole 0.38 m
s		Drift 8	standard 0.74 m
s		slits 1	sits
	-20	10 H +200 50 V +50	
L	Đ	Solenoid 2	<mark>В</mark> 2.2688 Т
s		slits2	sits
	-20	10 H +200	

2nd solenoid values from the previous slide:

FSU COSY :	2.44 T
LISE++ small object	
at the solenoid :	2.29 T

2nd - solenoid

2-nd Solenoid tuning

File: RESOLUT_3gap_reaction.lpp

E rojectile ²⁴ Mg ¹²⁺ 6.2 MeV/u 1 pnA F ragment ²⁵ Al ¹³⁺		
T 🕘 Target	Be 1 mg/cm2	
Two body reaction		
Dipole	Brho 0.6197 Tm	

Primary beam is taken into account, but Think about other reactions.

EPAX cross section have been used for Two-body reactions

After the 1st solenoid without angular acceptance

After the 1st solenoid with angular acceptance

After the 3 gap buncher without angular acceptance

After the 3 gap buncher with angular acceptance

+/- 47 mrad acceptance, Transmission 1.6%

After the 3 gap buncher without angular acceptance, But taken bounds into account

Transmission 4.0%

After the MQ4 without angular acceptance,

After the MQ4 without angular acceptance,

+/- 47 mrad acceptance, Transmission 1.6%

After the slits1 without angular acceptance, But taken bounds into account

Transmission 1.6%

RESOLUT : transmission, separation

S NSCL

Three RF-bunchers in LISE++ : ²⁵Al envelopes

MICHIGAN STATE

RESOLUT : One gap RF-buncher solution in LISE++

Dep Tuning Dipole	Brho 0.6197 Tm
L- Solenoid 1	<mark>В</mark> 2.1165 Т
S Drift 1	standard 1.21 m
	488 kV
P RFbuncher Ph	216 deg
S Drift 2	216 deg standard 0.54 m

Main advantage of this configuration is possibility to use the LISE++ built-in optimization procedures Should be used factor 4 relatively nominal voltage

RESOLUT_1gap.lpp

tively nominal voltage	Click this button to set the phase corresponded to smallest d-value
RFbuncher	
RF buncher settingsSelect method C Electric field E Electric field E Voltage U = 488 $+$ KV M	Optical block properties and data Setting Charge state for the Block (Z-Q) 0 Cut(Slits) & Acceptances Image: Solenoid 1 Image: General setting of block Tweak 0.1 Calculations for the setting fragment Before the buncher gap <e>-dE <e> <e> +dE Energy [MeV/u] 4.88 5.00 5.12 Values corresponding to Energy in middle of the gap Time of flight [ns] 77.2 76.3 75.4 Phase [deg] 32.6 0.2 327.8 After the RF buncher Energy [MeV/u] 5.00 5.00 Image: Calculation of flight [ns] 77.2 76.3 75.4 Phase [deg] 32.6 0.2 327.8 After the RF buncher Energy [MeV/u] 5.00 5.00 5.00 5.00 5.00 Image: Cancel Im</e></e></e>
	See the next slide

Pay attention for the factor in this configuration

RESOLUT : RF buncher plots

- <E>- 0E/2/ - - <E>+dE/2

<E>-Œ

7.566e-0

5.4721e+0

<E>+dE/2

≪E≻-Œ

0.07

0.05

0.05

Gap Z-Position [m]

0.06

0.06

LISE++ [C:\user\c\lise_pp_94\files\examples**Rhase\shift=gegu** [_1gap.lpp]

RESOLUT : One gap RF-buncher solution in LISE++

2D mode

²⁵Al : Monte Carlo Transmission Plot ²⁵Al (5.0 MeV/u) + Be (1e-4 µm); Transmitted Fragment ²⁵Al (beam); Optics Order: 1 dp/p=17.35% ; Brho(Tm); 0.6197, 0.6197

25Al : Monte Carlo Transmission Plot

RESOLUT (One gap RF-buncher) : fragment transmission

After the Slits1 with angular acceptance, Bounds OFF

OT, 30-Jan-2013, East Lansing

Transmission values are identical in RESOLUT_1gap & RESOLUT 3_gap

- The RESOLUT separator configurations can be used in Monte Carlo mode to simulate experiments, fragment transmission and separation
- Analytical solutions for optimization of RF-buncher in RESOLUT separator configuration (1 gap solution) can be used to tune Three-gap RF buncher (Bias, Phase)
- It is recommended in the case of fragment velocity beta~0.1 to use the Separator configuration with 1-gap solution in order to have optimization tools working properly
- 1 gap RF-buncher "Distribution" solution will be done soon (now it is acting as a drift block for transmission calculations)
- □ MC solution for the RF-buncher should be checked for large angles
- Consider creation of blocks "2gap RF-buncher" and "3gap RF-buncher" by analogy with COSY
- **Consider implementation of V=V0*f(R,Z) in MC calculations**
- □ Apertures, acceptances should be checked

Finally... version 9.4.87

FSU's request (Prof.I.Wiedenhoever)

Information from Prof.I.Wiedenhoever and discussions with Dr.M.Portillo and Prof.G.Rogachev are very appreciated.

configurations: config/other/RESOLUT_1gap.lcn config/other/RESOLUT_3gap.lcn

example files: examples/RESOLUT/RESOLUT_1gap.lpp examples/RESOLUT/RESOLUT_1gap_reaction.lpp examples/RESOLUT/RESOLUT_3gap.lpp examples/RESOLUT/RESOLUT_3gap_reaction.lpp

This file http://lise.nscl.msu.edu/9_4/buncher/9_4_87_buncher.pdf

configurations revision

Do not use angular acceptance for a Solenoid block! Angular acceptances +/-47 mrad moved to the "tuning dipole" block

• RF-buncher transmission analytical calculations

Graph_goodies (ellipse plot)

Pseudo Monte Carlo plot is under construction

develop the Timing component for the Distribution4 class