- 9.6.19 04/09/13 New A, Z, q, A/q, ... fields and filters in MC
- 9.6.20 04/10/13 MC gate optimization; creation of local checkpoints filters
- 9.6.21 04/11/13 Several locations for output MC file
- 9.6.23 04/16/13 Input ions rays from file emitted from target in MC mode
- Easy way to change the charge state option
- LISE for Excel - Mas OC version
- Recommendations for 9.6 beta version use @ NSCL
- LISE++ perspectives: current status

MC dialog

MC option dialog

Example: After target without beam

Isotope Group : Monte Carlo Yield Plot
${ }^{40} \mathrm{Ar}(140.0 \mathrm{MeV} / \mathrm{u})+\mathrm{Be}(500 \mu \mathrm{~m})$; Transmitted Fragment ${ }^{32} \mathrm{~S}$ (Fragmentn); Optics Order: 1 dp/p=100.00\%
Bounds: Off; "Stripper" - last block for MC calc; no gates; Config: A

Example: After target without beam with A-gate

Isotope Group : Monte Carlo Yield Plot
${ }^{40} \mathrm{Ar}(140.0 \mathrm{MeV} / \mathrm{u})+\mathrm{Be}(500 \mu \mathrm{~m})$; Transmitted Fragment ${ }^{32} \mathrm{~S}$ (Fragmentn); Optics Order: 1 dp/p=100.00\%

In previous versions the gate has been applied to filter then rays reached the last block for MC calculation.

So, even the gate was set after stripper, the code calculates all blocks.
In this version the gate is checked immediately after passing its associated block.

The main factors slowing down the speed of MC calculations:
\square Target

* Charge state calculations using the "Global" library
* Reactions
\square Fragment separator
* High order optics
* Extended configurations
* Non-equilibrium charge state calculations using the "Global" library

MC gate optimization; creation of local checkpoints filter (2)

Example:

- input ion rays from file emitted from target
- Extended configuration
- 5-th order optics

Ions rays after target : Monte Carlo Yield Plot
Input rays file: "Innut MC rays"; Number of rays: 433; Optics Order: 5
dp $/ p=100.00 \%$; Wedges: $0 ; B$ Brho(Tm): 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.00 Bounds: Off; "F_slits" - last block for MC calc; no gates; Config: DSSSSSSSDSSSSSSSSSSSSSSSDS

Ions rays after target : Monte Carlo Yield Plot
Continue
Input rays file: "Input MC rays"; Number of rays: 433; Optics Order: 5
$\mathrm{dp} / \mathrm{p}=100.00 \%$; Wedges: $0 ;$ Bho(Tm): 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, Bounds: Off, "F_slits" - last block for MC calc; Gate 1: "AND" (Z (atomic number)); Config: DSSSSSSSDSSSSSSSSSSSSS

	no gates	gate after stripper	gate after FP
SUM (events in spectrum)	$3.34 \mathrm{E}+05$	$3.20 \mathrm{E}+05$	$6.07 \mathrm{E}+04$
events Z=16 (contour)	$6.22 \mathrm{E}+04$	$3.20 \mathrm{E}+05$	$6.07 \mathrm{E}+04$
CPU speed (pps)	431	415	84
Eff	89%	16.60%	16.60%
Rate (pps)	0.89	0.166	0.166

CPU speed (pps) = events in the spectrum per second
Eff = the spectrum sum and produced nuclei ratio
Rate $(p p s)=$ real experimental rate based on CS, beam, intensity ...

Several locations for output MIC file (1)

$1 \leq$ Number of locations ≤ 10
 $1 \leq$ Number of fields ≤ 10

In previous version:
Number of locations =1
"last" block" (most downstream) is defined from gate locations, location for file, location for plot

Several locations for output IMC fille (2)

\qquad

\footnotetext{

 \footnotetext{ \footnotetext{

}
 k"FP_PIN", set
\#01 : Stripper
\#02 : I2_slits
\#03 : D3

 -

 -

 -
 Column name. "Location position (0,1,2..) - Field Name"

}

0

0

Input ions rays from file emitted from target in MCC mode (2)

Data line structure

4	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
1	! 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	! Z	N	q	X	$d(X)$	X'	$d\left(X^{\prime}\right)$	Y	$d(Y)$	\mathbf{Y}^{\prime}	d(Y')	E	d(E)	t	$d(t)$
3	!			mm	mm	mrad	mrad	mm	mm	mrad	mrad	MeV/u	$\mathrm{MeV} / \mathrm{u}$	ns	ns
4	18	20	18	-0.549	1	-0.409	4	-1.521	0.8	-4.046	5	95.20	1	-0.891	2
5	18	23	18	-0.509	1	6.557	4	0.120	0.8	7.029	5	102.66	1	-0.463	2
6	16	19	16	-1.603	1	-1.041	4	-1.435	0.8	8.051	5	97.17	1	0.869	2
7	15	19	15	-2.177	1	4.244	4	1.317	0.8	-0.575	5	104.09	1	0.683	2
8	15	19	15	0.209	1	-2.225	4	1.561	0.8	1.710	5	98.53	1	0.004	2
9	14	15	14	2.412	1	-4.756	4	-1.051	0.8	0.530	5	102.42	1	-0.095	2
10	14	17	14	2.288	1	0.295	4	0.992	0.8	4.415	5	95.77	1	-0.173	2
11	14	15	14	1.495	1	1.112	4	0.580	0.8	-0.943	5	102.13	1	0.455	2
12	17	20	17	1.533	1	4.954	4	0.863	0.8	6.794	5	98.28	1	-0.404	2
13	16	17	16	2.462	1	-5.620	4	1.109	0.8	-1.494	5	104.95	1	0.424	2
14	13	15	13	1.185	1	-4.911	4	1.873	0.8	-1.027	5	99.03	1	-0.504	2
15	18	22	18	1.373	1	7.311	4	0.105	0.8	-9.834	5	98.95	1	0.191	2
16	16	19	16	0.710	1	5.501	4	-0.534	0.8	-6.920	5	98.37	1	-0.057	2
17	15	19	15	1.785	1	5.563	4	1.699	0.8	8.535	5	104.78	1	-0.263	2
18	18	20	18	0.117	1	-2.653	4	0.445	0.8	9.797	5	98.79	1	0.593	2
19	17	19	17	0.203	1	1.481	4	0.955	0.8	-9.887	5	95.41	1	-0.557	2
20	17	18	17	-1.885	1	-7.375	4	-0.024	0.8	-7.897	5	99.34	1	0.995	2
21	15	16	15	-0.357	1	-0.539	4	0.392	0.8	-6.350	5	98.54	1	0.800	2
22	18	22	18	-1.197	1	7.231	4	-1.778	0.8	-2.706	5	99.27	1	-0.911	2
23	16	20	16	-2.477	1	1.283	4	-0.446	0.8	-5.652	5	96.69	1	-0.120	2
24	16	19	16	0.857	1	5.091	4	0.604	0.8	5.536	5	104.44	1	-0.002	2
25	15	17	15	0.849	1	2.037	4	-1.268	0.8	-8.649	5	98.56	1	0.614	2
26	17	22	17	2.320	1	2.574	4	1.015	0.8	-2.753	5	95.23	1	0.680	2
27	14	15	14	0.974	1	-6.327	4	-1.404	0.8	9.402	5	99.26	1	-0.119	2
28	18	20	18	-0.816	1	4.964	4	-0.116	0.8	5.200	5	97.26	1	0.200	2
29	16	17	16	-0.543	1	-6.363	4	1.384	0.8	-0.102	5	101.26	1	0.429	2
30	14	15	14	-1.535	1	-1.722	4	0.291	0.8	-0.900	5	97.06	1	0.120	2
31	15	19	15	-2.164	1	4.317	4	1.030	0.8	5.206	5	102.23	1	-0.493	2
32	16	19	16	0.135	1	5.462	4	1.926	0.8	9.343	5	100.70	1	-0.119	2
33	18	22	18	-1.250	1	6.402	4	1.069	0.8	-3.461	5	98.95	1	0.736	2
34	14	18	14	-1.402	1	2.364	4	1.405	0.8	-7.775	5	97.24	1	0.716	2
35	16	17	16	-0.948	1	-7.159	4	0.966	0.8	1.677	5	97.07	1	-0.595	2
36	15	17	15	-1.916	1	-1.048	4	-1.879	0.8	1.071	5	103.65	1	-0.446	2

The Isotope list file is in ASCII format.
Comment string begin with '!!" or ":"
The Columns can be separated by a Space, a Comma or
a Tabulation. User can put comments also at the end of
data line
At least 13 columns should be in the specified order.
Three first columns: 'Z", "N", "q", where Z is atomic
number, N is number of neutrons, q is ionic charge

> "d" means StDev. Set 0 if you do not want to use it. X, Y in $m m, X^{\prime}, Y^{\prime \prime}$ in mrad, E in $\mathrm{MeV} / \mathrm{u}$
> Two addional columns can be used for time (t. dt) in n s

Example of Input ion rays file is located in LISE++ package:

\Fileslexamples\Input MC rays.inrays

This Excel example with random generator values is located at

Input ions rays from file emitted from target in MCC mode (4)

Options:

Input ions rays from file emitted from target in MCC mode (5)

Ions rays after target : MC Yield Plot - Envelope (only passeffantinue Input rays file: "Input MC rays"; Number of rays: 433; Optic s Order. 1 dp/p=5.07\% ; Wedges: 0; Brho(Tm): 3.0000, 3.0000, 3.0000, 3.0000, 3.0000
Bounds: Off; "Image4(105)" - last block for MC calc; no gates; Config: DSSSSSSSDSSSSSSSSSSSSSSSDS.
Recycle : no
180 Contour
Sum $2.6 \mathrm{e}+04$
Max 59 Max 59
$<x>17.8$
$<y>0.65$ $<Y>-0.695$
$d X 10.2$
$d y$

XY- $6.5 \mathrm{e}+00$
SUM
S.

CPU speed | $\begin{array}{l}\text { 5.900e } \\ \text { CPU sped } \\ 0 \text { pps }\end{array}$ |
| :--- | Eff. 0.00183 (

Rate (pps) | Rate (pps) |
| :---: |
| $1.827 \mathrm{e}-05$ |

500
321
206
133
86
23
15
10
4
2
1

Ions rays after target : MC Yield Plot - Envelope (only passedfitior Input rays file: "Input MC rays"; Number of rays: 433; Optics Order: 1
Bounds: Off; "Image4(105)" - last block for MC calc; no gates; Config: DSSSSSSSDSSSSSSSSSSSSSSSDS

Contour

Easy way to change the charge state option

Use this CheckButton to change the change state option

LISE for Excel - Mas OC version

Daniel has transported some LISE++ libraries to Mac OS, and modified the LISE-Excell shell and its macros to operate under MaC OS. It is a beta-version. Please, submit your remarks to Daniel (bazin@nscl.msu.edu)

http://lise.nscl.msu.edu/download/other/LISE for Excel Mac OS/

Links to download the installer of "LISE_for_Excel" version for Mac OS from the LISE++ site

- (2) lise.nscl.msu.edu/lise.html

v. 9.6.23

The program LISE ++ has been developed to calculate the transmission fragments produced and collected in a spectrometer. This code allows to experiment, beginning from the parameters of the reaction mechanism and fini registration of products selected by a spectrometer. The program allows to quick parameters of the spectrometer before or during the experiment. It also makes estimate and work in conditions of maximum output of studied reaction prod unambiguous identification. Wedge and Wien filter selections are also inc program.
LSE ++ is the new generation of the LISE code, which allows the creation of a through the use of different "blocks". The number of blocks used to create a ss LISE++ is limited by operating memory of your PC and your imagination. built-in Energy loss, Time-of-Flight, Position, Angular, Charge, Cross-Section dis and $\mathrm{dE}-\mathrm{E}, \mathrm{dE}-\mathrm{TOF}, \mathrm{Z}-\mathrm{AVQ}$ and $\mathrm{dE}-\mathrm{X}$ two-dimensional plots allow to visualize the program calculations. An application of transport integral lies in the basis of fas of the program for the estimation of temporary evolution of distributions of phase The LISE code may be applied at medium-energy and high-energy facilities (recoil-separators with electrostatic and/or magnetic selections). A number of th like A1900 and S800 at NSCL, LISE3, SISSI/LISE3 and SPEG at GANIL, FRS anc GSI, RIPS and BigRIPS at RIKEN, based on the separation of projectile-lik fragments, fusion residues are included or might be easily added to the e configuration files.
The Projectile Fragmentation, Fusion-Evaporation, Fusion-Fission, Coulomb Abrasion-Fission assumed in this program as the production reaction mechan simulate experiments at beam energies above the Coulomb barrier

Built-in powerful tools

IISE for Excel(MS Windows) u LISE for Excel (Mac OS), (download) « «Piysicalcarculator,
(2) lise.nscl.msu.edu/changes.html
$\nabla \mathrm{C}$

SIMULATION OF FRAGMENT SEPARATORS

Index of /download/other/LISE_for_Excel_Mac OS

Name Last modified Size Description
Parent Directory

LISE_forExcel_MacOS installaltor will be in this directory soon

Most PC computers at the NSCL are set for automatic software update.
This update for some computers includes LISE++ installation.
Nowadays the official version is 9.5.3.
It means, that if you install another version in the "Program Files/LISE" directory, then later this update restore LISE++ official version back.

Therefore, if you would like to work, for example, with the new beta-version 9.6.23, then you need to install this version in another directory and create new Start menu folder. Example is shown below. So

Directory : Program Files (x86) LISE96
Start Menu Folder: LISE96
Note: remember, that LISE ${ }^{++}$files are associated to the LISE ${ }^{++}$version, which was installed last

LISE++ development

Subject	Priority	Status	new	Order	Time
LongTerm					
HSE for Mac EXCEL	high	done	X	1	1.5 weeks
Evapor ation cascade: improvement, create Monte Carlo version	high				1 month
Abrasion-Ablation: improvement, create Monte Carlo version	high				2 weeks
Abrasion-Fission: create Monte Carlo version	high				2 weeks
Time in the distribution4 class (RF-buncher, RF-kicke)	medium		X	8	1-2 weeks
Custom shape degrader optimization in MC mode for highorder optics	medium				< 2 weeks
ShortTerm					
Heplinks from dialogs on the LSE++ site	high	done	X	2	2 days
Twoor morelocations for the MC output file	high	done	x	3.2	2 days
Input source of ions@ MC (A, Z, q, E, E^{*}, , dt,, , $\left.x^{\prime}, y, y^{\prime}\right)$	high	done	x	3.3	2 days
Two-body reactions : user angular distribution	high	in process	x	5.1	4 days
Two-body reactions : manuaily set excitation energy of fragment	high	in process	X	5.2	3 days
Develop a subroutine to calculate a reduced dispersion for largevalues of dP/P	high			6.1	< 3 days
Improvement of existent blocks: Electr ic dipole	high		X	6.2	< 3 days
Improvement of existent blocks: Compensating dipole	high		X	7	< 3 days
MCGaes : $A Z, Q, A / 9$	medium	done		3.1	< 2 days
MG gates procedur eoptimization for speed	medium	done	x	3.4	1 day
Gates for analytical solutions (like done for MC)	medium		X	4	< 2 days
Cross section for stripper	medium				<2 days
Create possibility to Insert a material before the target	medium		X		2 days

