

Requests by M.Alcorta (ANL), O.Kirsebom (TRIUMF)

v.9.6.46 from 06/24/13

> Update V.9.6.54

From 06/30/13

UserDiffCS = User Differential Cross Sections

- 1. Some definitions and links on files used in this document
- 2. How to load the "UserDiffCS" utility
- 3. UserDiffCS dialog
- 4. UserDiffCS plots (cross sections and kinematics)
- 5. UserDiffCS in the MC 2d-kinematics
- 6. New parameters the MC transmission dialog
- 7. Modifications in the MC transmission dialog for two-body reactions
- 8. UserDiffCS in LISE++ files (save and restore) (version 9.6.54)
- 9. Use UserDiffCS in MC transmission for two-body reactions (version 9.6.54)
- **10.Next steps in UserDiffCS development**

1. Some definitions and links on files used in this document

MC Transmission

What isotope transmission to calculate?	-X-coordinate		Y-coordinate		- Gate 1
One fragment of interest. Chose manually here	After BLOCK		After BLOCK		
Course (Lashered also do allo data d	D1	- Ÿ	D1	ĽX	
by the Distribution method (Ncalc = 0)	l ⊙ x m	m	CX	mm	no gate
 List of isotones from file 	CX'(T) m	rad	C X' (T)	mrad	
to produce inside target	CY m	m	€Y	mm	
C Input ions rays from file me - no file -	CY'(P) m	rad	C Y' (P)	mrad	
emitted from target	CdP/P %		C dP/P	%	Gate 2
O	C Radial [f(X,Y) m	m	C Radial [f(X,Y)	mm	
Chose tragment of interest	C Angle [f(X ',Y')] m	rad	C Angle [f(X ',Y')]	mrad	
A Element Z / Table of	C Ensure M	alle	C France	MeXU	no gate
32 S 16 Nuclides	C TKE M	ev/u eV/	CIKE	MeV/u MeV	
	C Momentum M	eV/c	C Momentum	MeV/c	
Stable 🦛 N 🔿	C Brho T	°m	C Brho	T*m	
			-		Gate 3
Linarge states	C Energy Loss M	eV	C Energy Loss	MeV	
	C Range m	m	C Hange	mm	no gate
- Reaction mechanism	C Envelope M	(Jane)	C Envelope	m	
Projectile Fragmentation	C Deposition /pa	article	C Deposition	/particle	
	C Time of flight inst	,	C Time of flight	ns	
1 MC transmission ontions	C Length m		C Length	m	Gate 4
00 32 HIS BUILDER OF COLOR	Stringer	< Sta	t -> Stringer	~	
	12 weeders	⊐] I ∠u Sta	10 upper		no gate
	II2_wedge] <- 30	I II2_wedge		
Add in the 14 "Distribution" calculation					
plot window	Velocity		Velocity		
MC calculation to file	C Velocity_Z [cm/ns]	-	C Velocity [cm/n	5] 🔻	
	- Ion parameters M Z g	1	- Ion parameters (M 3	20.1	

MC Kinematics

Tw0 B0DY reaction	Excitations	Acceptances (in case of C_final fragment p	lot)
Projectile 404r (140.0 MeV/u) Target 38e	 take from systematics set manually in Kinematics calculator 	Angular Acceptance Angular acceptance shape Ellipse C @ Rectangle	Is is assumed an isotropic distribution in CM system "A" - angle, "V" - velocity, "E" - energy "CM" - center of mass, "LAB" - laboratory "2" corresponds to the beam direction
Fragment (C *) 40Ar 0 Residual (D *) 98e 0 Q-value (MeV) 0.00 MeV	TKE plot	Value Valiance Horizontal ± 10000 0.5 mrad Vertical ± 10000 0.5 mrad	Energy acceptance Setting energy 140 MeV/u Acceptance ± 1000 %
Expected final fragments C_final 40Ar <dn> 0 D_final 98e <dn> 0 TKE(CM) from systematics </dn></dn>	Fragment to plot Excited (C *) Expected final (C_final)	Take into account a target thickness No (fast) C Yes	Initial emittance Horizontal Angular ± 1 mrad Vertical Angular ± 1 mrad Energy ¹⁰ ± 0 MeV/u
Plots Lab	CM C V28.Vy	"Warning: it trakes a lot of computing time if this value is more than 0	Broadening due to particle emission Angular ± 0 mrad Energy ± 0 MeV/u
CV2&Vxx CV2&Ax © E&Ax CAx&Ay CV2&Ay CE&Ay	C A & phi C Ax&Ay	V Ok X Cancel	Angular Distribution (CM)

LISE++ files:	
d + ¹⁸ O -> p + ¹⁹ O	http://lise.nscl.msu.edu/9_6/DifCS/d_18O.lpp
³ He + d -> p + a	http://lise.nscl.msu.edu/9_6/DifCS/d_3He.lpp
DiffCS Files:	
Ground State :	http://lise.nscl.msu.edu/9_6/DifCS/19O_gs.txt
At 0.96 MeV :	http://lise.nscl.msu.edu/9_6/DifCS/19O_L0.96.txt
Isotropical distribution:	http://lise.nscl.msu.edu/9_6/DifCS/19O_isotropic.txt

 Kinematics calculator (relativistic) 	
Reactions IVU0 80DY B (A, C) D SCATTERING B (A, C=A) D=B BREAKUP (RSSION) (RSSION) x (A, CD) x (gamma emission) x (A, CD) x	ME Excitation E(DA) = 101815 MeV A Beam 40Ar 355.04 0 Beam energy = [140.0 MeV/u 8 Target S8e 11.35 0 Intervity = [1 poA C* Fragment 40Ar 355.04 0 Target Networks = [1 poA C* Fragment 40Ar 355.04 0 Target Networks = [1 poA 0 * Reschult S8e 11.35 0 Q value = 0.00 MeV
$\begin{array}{c} & & \\$	Reaction takes place at the MIDDLE of the target ENT of the target Setup fragment (C) residual (D) Setup fragment (C) residual (D) 0 hom (0 degrees and up) w = 1 100
For Kinematics Plots use energy values arr time reaction arr entrance of detectors	Itom 183 degrees and down h = 2 om 2 Angle (deg) = 8.433 52.865 50 . 130 Inagreent (C) residual (D) fragment (C) residual (D) fragment (C) residual (D) fragment (C) Calculations L4B CM CM CM
Kinematics plots	Double prime 55 Selectil 25 lestil ppt Differential Gostomin - 3 Signedigi 163 100 100 mb/mr Energy after reaction - 1 24:55 68:51 4.664 91:41 Mer/v/r Energy after reaction - 1 24:55 68:55 Mer/v/r mergrame after reaction - 1 24:55 68:55 Molecular - 1 24:55 68:55 Mer/v/r mergrame after reaction - 1 24:55 68:55 Molecular - 1 24:55 68:55 Mer/v/r mergrame after reaction - 1 24:55 68:55
Cut ? Help	Solid Angle = 0.2 0.2 7.17 0.325 mm delta Theta = 0.57 0.57 3.9 1.1 deg

2. Kinematics calculator

1. "Utilities" menu

User Diff Cs file is $d\sigma / d\Omega$ (mb/sr) in CMS

ifferential cross section file	
2H (6.0 MeV/u) + 180> 1H (+190)	Note
Data File Load from file View data Image: Clear data	The Differential Cross Section file is in ASCII format. Comment string begin with "!" or ";"
190_gs.txt	the 2nd is Diff.CS in System of Center mass [mb/sr]
Number of rows Data Comments Total 23 2 25	The columns can be separated by a Space, a Comma or a Tabulation. User can put comments also at the end of data line
Excitation energies of products (MeV) E* of 1H = 0 E* of 190 = 0	Utilities Kinematics Plots 2D Kinematics (MC)
ntegrated Cross Section (mb)	X Quit ? Help
\mathbf{X}	\bigvee
LISE++ automatically integrates the UserDiffCS (dSigma/ dTheta)	These buttons become enable after the UserE

OT, 30-Jun-2013, East Lansing

4. The UserDiffCS dialog plots : cross sections (file "190_gs.txt", E*=0)

S NSCL

The UserDiffCS dialog plots : cross sections (file "19O_L0.96.txt", E*=0.96)

MICHIGAN STATE

UNIV

Inverse for test

Differential cross section file	×	
180 (6.0 MeV/u) + 2H> 190 (+1H)		
Data File	Note The Differential Cross Section file is in ASCII format.	
	Two columms, where the 1st is Angle in [degrees], the 2nd is Diff.CS in System of Center mass [mb/sr]	
Number of rows Data Comments Total 22 2 24	The columns can be separated by a Space, a Comma or a Tabulation. User can put comments also at the end of data line	
Excitation energies of products (MeV) E* of 190 = 0.96 E* of 1H = 0		
Integrated Cross Section (mb) 2.286 Kinematics Plots	🗸 OK 🗶 Cancel 🍞 Help	

Inverse for test

Reaction's Kinematics

Inverse for test

Differential Cross Section

The UserDiffCS dialog plots : cross sections (file "190_L0.96.txt", E*=0.96)

Inverse for test

S NSCL

Differential Cross Section

Isotropic

F Kinematics calculator (relativistic)	
Reactions	Participants ME Excitation E(CM) = 10.79 MeV
reaction B[A,C]D	A Beam 2H 13.14 0 Beam energy = 6.0 MeV/u
C SCATTERING B (A, C=A)D=B	B Target 180 -0.78 0 Intensity = 1 pnA
BREAKUP	C * Fragment 1H 7.29 0 Target thickness = 1e-1 micron
C (FISSION) × (A, CD) × (gamma-emission)	D * Residual 190 3.33 0 Q-value = 1.73 MeV
	Reaction takes place at the
P. h	C ENTRANCE of the target C EXIT of the target C EXIT of the target
$\xrightarrow{\text{beam}} \begin{array}{c} R_{b} \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Setup tragment [C] residual (D) © from 0 degrees and up from 180 degrees and down w = 1 cm 1 from 180 degrees and down h = 2 cm 2
For Kinematics Plots use energy values	Angle (deg) = Image: Figure 1 (C) Image: Figure 1 (C)
C at entrance of detectors	Calculations LAB CM
Kinematics plots	Counting in monitor = 6.56e-2 5.12e-1 pps
Diff.CS converter	Differential Cross Section = 110 833 100 100 mb/sr
1. 2D fragment plot	Energy after reaction = 12.94 0.0361 11.793 0.03 MeV/u ^{xe}
(Monte Carlo)	of detectors = 12.94 0.0343 MeV/u (** for gamma [MeV])
X Ort 2 No	Maximum Angle = 180.00 47.99 deg
	Solid Angle = 0.2 0.2 0.22 1.72 msr
3-body kinematics	deta l heta = j u.57 j U.57 j U.5 j 4.8 deg

2D fragment plot (Monte Carlo) TW0 80DY reaction Projectile 2H (6.0 MeV/u) Target 180 Fragmenk (C *) 1H 0 Residual (D *) 190 0 Q-value (MeV) 1.73 MeV Expected final fragments C_final 1H <dn> 0 D_final 190 <dn> 0 TKE(CM) from systematics TKE(CM) from calculations Plots</dn></dn>	Excitations take from systematics set manually in Knematics coloutator IM TKE plot Fregment to plot C Excited (C ?) C Expected final C final)	Acceptances (in case of C_final fragment p) Angular Acceptance Angular Acceptance Blipse	Is is assumed an isotropic distribution in CM system "A" angle, V" velocity, "E" energy "CM" center of mass, "LAB" - laboratory "z " corresponds to the beam direction Energy acceptance Setting energy 5958 MeV/u Acceptance ± 1000 % Initial emittance Horizontal Angular ± 1 mrad Energy" ± 0 MeV/u Broadening due to particle emission Angular ± 0 mrad
Plots Lab Vz & Vx Vz & phi Vz & Vx Vz & phi Vz & Vx Vz & byi C Vz & Vx C Ax & Ay C Vz & Ax	CM C V2&Vx C A & phi C Ax&Ay	[™] Warning it takes a lot of computing time if this value is more than 0 ✓ Ok X Cancel ✓ Ok X Cancel	Angular ± 0 mrad Energy ± 0 MeV/u Angular Distribution (CM)

UserDiffCS

UserDiffCS in the MC 2d-kinematics : file "190_gs.txt", E*=0

UserDiffCS in the MC 2d-kinematics : file "190_gs.txt", E*=0

OT, 30-Jun-2013, East Lansing

MICHIGAN STATE

UserDiffCS in the MC 2d-kinematics : file "190_L0.96.txt", E*=0.96

UserDiffCS in the MC 2d-kinematics : file "190_L0.96.txt", E*=0.96

OT, 30-Jun-2013, East Lansing

MICHIGAN STATE

VER

MC kinematics for LISE++ file "d_3He.lpp", Isotropic

MICHIGAN STATE

E ++

Velocity [cm/ns] Velocity_Z [cm/ns] Velocity_X [cm/ns] Velocity_Y [cm/ns] Velocity_XY [cm/ns]

S NSCI 7. MC kinematics and transmission for LISE++ file "d_3He.lpp", Isotropic

MC Kinematics

Very thin target, two-body reaction

MC Transmission

MICHIGAN STATE

57. MC kinematics and transmission for LISE++ file "d_3He.lpp", **Isotropic**

MC Kinematics

4.65 mg/cm² target, two-body reaction

MC Transmission

MICHIGAN STATE

8. Loading UserDiffCS in LISE⁺⁺

User CSs are saved to LISE** files and retrieved at reading of LISE** files

LISE⁺⁺ file

[cs_file] ; Number of User Diff CS saved in this file UserDiffCS = 3 AppendUverwrite = 1 AttachedInside = 1 180 0.2 [DiffCS0002] CorrelatedTo=3 Filename=190 L0.96.txt Comment= J.Wiza et al., PhysRev 143 (1966) 676 -- Level 0.96 180(p,d)190" $E \times 12 = 0.000 0.960$ NofPoints = 24 0.0857232 0 5.2971 0.0913 13.246 0.1935 21.196 0.2818 29.156 0.2849 37.123 0.2183 45.09 0.1611 52.299 0.1007 59.875 0.1487 68.598 0.11 75.418 0.1364 83.374 0.1735 90.946 0.2525 95.871 0.2742

Initial conditions

9. UserDiffCS in MC Transmission

Continue

S NSCL

9. UserDiffCS in MC Transmission

MICHIGAN STATE

UNIVERSITY LISE++

1H: Monte Carlo Transmission Plot ¹H : Monte Carlo Transmission Plot 1H: Monte Carlo Transmission Plot after "Stripper": Velocity_Z [cm/ns]: window projection --- 3He (1.0 MeV/u) + H2C (1e-3 mg/cm2); Transmitted Fragment 1H (TwoBody); Op after "Stripper": X'(Theta) [mrad]: window projection --- 3He (1.0 MeV/u) + H2C (1e-3 mg/cm²); Transmitted Fragment 1H (TwoBody); Opti ³He (1.0 MeV/u) + H2C (1e-3 mg/cm²); Transmitted Fragment ¹H (TwoBody); Optics Order: 1 dp/p=100.00% dp/p=100.00% dp/p=100.00% Bounds: Off; "Stripper" - last block for MC calc; no gates; Config: SM Bounds: Off; "Stripper" - last block for MC calc; no gates; Config: SM es; Config: SM LISE++ File d_3He.lpp 3000 12000 isotropic 2000 10000 [mrad] 10000 1000 X'(Theta) 8000 8000 6000 6000 "Strippe -1000 after 4000 4000 X-projection Y-projection 2000 -3000 0 2 2000 -2 4 8 -2 2 4 3000 30-06-2013 12:58:13 LISE++ [G:Dif csid 3He DifCS.lpp] 30-06-2013 12:51:58 after "Stripper": Velocity_Z [cm/ns]: window projection after "Stripper": Velocity_Z [cm/ns] LISE ++ [G:\Dif cs\d 3He DifCS.lpp]

- Input UserDiffCS files in LISE++ for future transmission calculations (done version 9.6.54)
- Keep UserDiffCS in LISE++ files (save and restore) (done version 9.6.54)
- Use UserDiffCS in MC transmission calculations for two-body reactions (done version 9.6.54)
- Improve analytical transmission calculations for two-body reactions
- Use UserDiffCS in Analytical transmission calculations for two-body reactions