This document describes the options for determining the transmission through a fragment separator and includes some description of these options

```
1. Introduction, definitions
2. Using Quadrupole and Dipole fast editing dialog
3. Concept of "Tuning" dipole
4. Definition of the cuts by the block
    (Angular acceptances, Apertures, Slits)
5. Slits and optical blocks
6. Slits and material blocks
7. Angular acceptance and Apertures
8. Using extended configurations with Monte Carlo
9. How to obtain an angular acceptance?
10. Benchmarks
```

Some definitions
will be used in
the presentation

1. Introduction : LISE $^{++}$
configguration types
$3>$ Classical or original (segmented) configuration: dispersive block contains quads, drifts, dipole and other optical components
> Extended (elemental) configuration:
like in the TRANSPORT code all elements are separated, and their matrices can be calculated by the LISE++ code

So, let's take the first dispersive block of A1900 as an example
segmented Only 1 block after stripper

srobesmer	
回 01 anatim	

Taken from TRANSPORT

Block matrix					
1. $X \longdiv { - 2 . 2 8 4 5 9 }$	0.009	0	0	0	29.2533
2. $T 1.06245$	-0.44189	0	0	0	-0.00283
3. $Y \bigcirc$	0	0.73853	0.0022	0	0
4. F 0	0	3.74271	1.36526	0	0
5. L 3.10738	-1.2927	0	0	1	5.7769
6. $\mathrm{D} \quad 0$	0	0	0	0	1

OT, 08-Jul-2014, East Lansing

A comparison of the two configuration types from LISE ${ }^{++}$

segmented

Boxes indicate the parameters generally changed by user

Block		Given Name	Start(m)	Length(m)	B0[kG]	Bri(Tm)corr//real	DriftM/*Angle	Rapp $(\mathrm{cm}) / \times \mathrm{R}(\mathrm{m})$	$L_{\text {_eff }}(\mathrm{m}) / \mathrm{K}^{\text {L }}$ _dip(m)	2 nd order	CalcMatr/ $/ 2-Q$	AngAcc Apps, Sli :
D)	Dipole	tuning	0.000	0.0001	+14.6853	* 4.4056	* 0.0	* 3.0000	* 0.0000	no	* 0-
S \square	Drift	2015	0.000	0.3960			standard					.. HV ..
Q [1]	Drift	Q017-1TA	0.396	0.7480	+15.4196	4.4056	quadrupole	13.3000	0.7480	yes	1	.. HV ..
S \square	Drift	2018	1.144	0.1756			standard					.. HV
Q [1]	Drift	Q019-1TB	1.320	0.7480	-14.3295	4.4056	quadrupole	13.3000	0.7480	yes	1	.. HV ..
S \square	Drift	2020	2.068	0.1720			standard					.- HV .-
Q Q []	Drift	Q021-1TC	2.240	0.4300	+10.3091	4.4056	quadrupole	15.0000	0.4300	yes	1	.- HV ..
S \square	Drift	2022	2.670	0.5260			standard		\leftarrow			.- HV ..
D	Dipole	D1	3.196	2.4300	+14.2396	* 4.4056	* 45.0	* 3.0939	-2.4299	yes	$\times 0$.- HV .-
S \square	Drift	2030	5.626	0.5640			standard					.. HV .-
Q []	Drift	Q031-2TA	6.190	0.4300	$+12.6140$	4.4056	quadrupole	15.0000	0.4300	yes	1	.. HV ..
S \square	Drift	2032	6.620	0.1358			standard					.- HV .-
Q []	Drift	Q033-2TB	6.755	0.8120	-15.5591	4.4056	quadrupole	15.0000	0.8120	yes	1	.. HV .-
S \square	Drift	2034	7.567	0.1358			standard					.. HV .-
Q [1]	Drift	Q035-2TC	7.703	0.4300	+13.6724	4.4056	quadrupole	15.0000	0.4300	yes	1	.. HV .-
S \square	Drift	2036	8.133	0.5860			standard					.. HV ..
S \square	Drift	Image1(037)	8.719	0.0000			SLITS				 HV

$3>$ Classical (segmented) configuration:

- Fast transmission calculations
- Optical matrices can be input by user or linked to COSY maps
- Simple and compact description of optical system
- Effective with analytical calculations for experiment planning
. $>$ Extended (elemental) configuration:
- Allows detailed analysis of transmission
- Optical matrices can be input by user, linked to COSY maps or calculated in the LISE ${ }^{++}$code, and used in segmented configurations
- Tools to obtain angular acceptances, (which can be entered into classical segmented configurations)
- Tools for displaying ion-beam optics

8
Very useful with Monte Carlo calculations
including fragment separator design
－Fast calculations
－All internal optimization procedures in the code are based on this method
－Mostly used with segmented configurations for experiment planning
－Calculation of very small transmission values（for example charge states of primary beams）

```
LISE ver.1 "Distribution" : D. Bazin, B. Sherrill, Phys. Rev. E 50 (1994) 4017
LISE ver.4 "Distribution2" : 2000
LISE++ ver.6 "Distribution4" : 2002
```

＞Monte Carlo method：（since 2007）
－Used to benchmark the fast＂Distribution＂method
－Allows detailed analysis of transmission with extended configurations
－Allows using High Order Optics（up to fifth order）
－Allows observation of correlations between parameters in different blocks
－Includes gating on all correlations in parameters（four gates）
－Tools for displaying ion－beam optics
\square Useful for fragment separator design

13Some optical blocks（Solenoid，RF buncher） are calculated exactly only in MC mode
2. Using Quadrupole and Dipole fost editing dialog

Useful dialog box for editing Quadrupole and Dipole settings "Calculations \rightarrow Optics \rightarrow Quad \& Dipole settings : EDIT" shown all set slits, acceptances, Apertures

Block	Given Name	Start(m)	Length(m)	B0(kG)	$\mathrm{Br}($ Tm) corr/xeal	DrittM/*Angle	Rapp(cm)/*R(m)	L_{-}eff(m)/* L_{-}dip(m)	2 nd order	CalcMatr/*Z.Q	AngAcc,Apps,Slif
D) Dipole	tuning	0.000	0.0001	+14.6853	* 4.4056	${ }^{\times} 0.0$	* 3.0000	* 0.0000	no	* 0	-

- A tuning dipole defines magnetic rigidity for entire segment, particularly for quadrupole fields.
- A "tuning" dipole with zero length indicates an extended configuration
- It is especially important for the first segment just after target (stripper)
- Parameters for tuning dipole : 0-length, 0-angle, unitary matrix, no slits, no bounds

Block angular acceptance < Entrance acceptance

Note: the code does not distinguish segmented and extended
configurations, it's up to the user.

* - Apertures are used only in Monte Carlo calculations

1. It is recommended to include a "slit" block instead using the slits in the Dispersive blocks themselves.
Only include the minimum number of slit blocks because it slows down the calculation and causes an unphysical decrease in transmission in analytical calculations

Configuration type	Angular Acceptance	Aperture	Slits after block
Classical ("segment")	Yes	No	Yes
Extended ("element")	No	Yes*	please use only for "slits" element

2. In the analytical solution mode avoid using slits at positions without a focus. In MC mode Apertures are used in addition to slits.
3. Long optical blocks should be split to obtain a better calculation of the effects of Apertures.

It is not recommended to use slits in any material, especially if they are located at dispersive planes.

The slit should be a separate optical block!

1. In extended configurations the user has several options for

 transmission calculations.Recommendation do not use a fixed angular acceptance in MC mode for extended configurations if the Bound mode is turned on. Apertures defines angular acceptances.
-Angular Acceptance \& Bounds
V Use fixed angular acceptances

- Use physical limits (aperture) inside blocks to calculate fragment transmission
For block apertures LISE++ uses the slit limits accessible from the Block Cut \& Acceptance dialog. (Pay attention there for the checkbox

2. Apertures are not used in "Distribution" analytical case. Angular acceptances should be entered by hand in each segment for both configuration type.

* - Apertures are used only in Monte Carlo calculations

Note: the code does not distinguish segmented and extended configurations, it's up to the user.

MC transmission options dialog

- Show trajectories of all fragments (including unselected by fragment-separator)
no angular acceptances, no bounds, no trajectories show (example LISE3 separator)

8. Using extended configurations with Monte Carlo

Extended Configuration Settings

1. No target
2. No wedges and materials
3. Setting fragment = Primary beam
4. Beam Emittance $s x=s y=s p=0, s x$ ' and $s y^{\prime}$ should be large

5. Open momentum slits
6. Enable only the segment that you want to calculate the angular acceptance in the Set-up dialog using enable-disable commands with a Faraday cup after the segment
7. The Bound mode should turned on in the MC dialog
-Angular Acceptance \& Bounds
\lceil Use fixed angular acceptances
V Use physical limits (aperture) inside blocks
For block apertures LISE ++ uses the slit limits accessible from the Block Cut \& Acceptance dialog. (Pay attention there for the checkbox
only for the ENVELOPE modeShow trajectories of all fragments (including unselected by fragment-separator)
8. Set the gate and MC block parameters as indicated in figure

Monte Carlo settings

Example with "No gates"

9. How to obtain an angular acceptance? (3)

$1^{\text {st }}$ segment (D3P1) of LISE3 separator File: http://lise.nscl.msu.edu/9 8/LISE3/lise3 AngAcc D1.Ipp

48Ca : Monte Carlo Transmission Plot
after "Stripper": $Y^{\prime}\left(\right.$ Phi) [mrad]: window projection $\cdots{ }^{48} \mathrm{Ca}(61.1 \mathrm{MeV} / \mathrm{Lu})+\mathrm{Be}(1.06 e-4 \mathrm{um})$; Transmitted Fragment ${ }^{48 \mathrm{C}} \mathrm{Ca}^{20+}{ }^{20+2+}$ (beam); Opt for MC calc; Gate 1 1) : 2.7433, 2.7433

[^0]| |
| :---: | :---: | :---: | :---: | :---: |

An example the

 $2^{\text {nd }}$ segment (D3P) of LISE3 separator File: http://lise.nscl.msu.edu/9 8/LISE3/lise3 AngAcc D2.Ipp48Ca: Monte Carlo Transmission Plot
"Stripper": $Y^{\prime}\left(\right.$ Phi) [mrad]: window projection .-.. ${ }^{48} \mathrm{Ca}(61.1 \mathrm{MeV} / \mathrm{u})+\mathrm{Be}(1.06 \mathrm{e}-4 \mu \mathrm{~m})$; Transmitted Fragment ${ }^{48} \mathrm{Ca} \mathrm{a}^{20+.20+}$ (beam); Opt $\mathrm{dp} / \mathrm{p}=1.34 \%$; Wedges: 0 : Brho((Tm)) 2.7433, 2.7433
Bounds: ON: "Slits 43 "- last block for MC calc: Gate 1, "AND" (XIm). Conig: DSWSSSssssDsssssssssss

Bounds: ON; "Slits 43" - last block for MC calc; Gate 1: "AND" (X [mm]); Config: DSWSSSSSSSDSSSSSS
With last optic block gate

48Ca: Monte Carlo Transmission Plot
"Stripper": $X^{\prime}\left(\right.$ Theta) [mrad]: window projection --- ${ }^{48} \mathrm{Ca}(61.1 \mathrm{MeV} / \mathrm{u})+\mathrm{Be}(1.06 \mathrm{e}-4 \mu \mathrm{~m})$; Transmitted Fragment ${ }^{48} \mathrm{C} \mathrm{Ca}^{20+20+}$ (beam); D \quad dp/p=1.34\%; Wedges: 0 ; Brho(Tm): 2.7433, 2.7433

8. How to obtain an angular acceptance? (5)

Another example the $3^{\text {rd }}$ segment (D3P) of LISE3 separator
File: http://lise.nscl.msu.edu/9 8/LISE3/lise3 AngAcc D3.Ipp

${ }^{44} \mathrm{~S}$: Monte Carlo Transmission Plot
Continue
${ }^{48} \mathrm{Ca}(61.1 \mathrm{MeV} / \mathrm{u})+\mathrm{Be}(561.89 \mu \mathrm{~m})$; Transmitted Fragment ${ }^{44} \mathrm{~S}$ (ProjFrag); Optics Order: $\mathrm{dp} / \mathrm{p}=0.50 \%$; Wedges: Be (531 $\mu \mathrm{m})$; Brho(Tm): $2.8965,2.8965,2.7265,2.7265,2.7265$
Bounds: Off; "Drift 84" - last block for MC calc; no gates; Config: DSSSSSSSSDSSSSSSSSWSSSSS:
2. Monte Carlo method $=\mathbf{2 . 1 \%}$

With Angular Acceptances
No bounds

File: http://lise.nscl.msu.edu/9 8/LISE3/LISE3 cito extended v2 NoAngAcc.Ipp
${ }^{44} \mathrm{~S}$: Monte Carlo Transmission Plot
3. Monte Carlo method = 1.9\% ${ }^{48} \mathrm{Ca}(61.1 \mathrm{MeV} / \mathrm{u})+\mathrm{Be}(561.89 \mu \mathrm{~m})$; Transmitted Fragment ${ }^{44} \mathrm{~S}$ (ProjFrag); Optics Order: 1 $\mathrm{dp} / \mathrm{p}=0.50 \%$; Wedges: $\operatorname{Be}(531 \mu \mathrm{~m})$; Brho(Tm): 2.8965, 2.8965, 2.7265, 2.7265, 2.7265

No Angular Acceptances With bounds

Conclusion: all three runs (Distribution, MC+bounds-AngAccept, MCbounds+AngAccept) give almost the same transmission about 2 \% (90 pps)

Thank to Dr. Omar Kamalou for providing the
LISE3 extended configuration.

Remarks and Comments of
Prof. Dave Morrissey are very appreciated.

[^0]: OT, 08-Jul-2014, East Lansing

