

This document describes the options for determining the transmission through a fragment separator and includes some description of these options

- 1. Introduction, definitions
- 2. Using Quadrupole and Dipole fast editing dialog
- 3. Concept of "Tuning" dipole
- 4. Definition of the cuts by the block (Angular acceptances, Apertures, Slits)
- 5. Slits and optical blocks
- 6. Slits and material blocks
- 7. Angular acceptance and Apertures
- 8. Using extended configurations with Monte Carlo
- 9. How to obtain an angular acceptance?
- 10. Benchmarks

- Classical or original (segmented) configuration: dispersive block contains quads, drifts, dipole and other optical components
 - Extended (elemental) configuration: like in the TRANSPORT code all elements are separated, and their matrices can be calculated by the LISE⁺⁺ code

So, let's take the first dispersive block of A1900 as an example

segmented	Only 1 block after stripper	гв	Block	matrix —					
Projectile ⁸² Se ³²⁺		1	. × [-2.28459	0.009	0	0	0	29.2533
140 MeV/u_35 pnA Fragment ⁵⁶ Ca ²⁰⁺		T elson (nom) 2	2. Т [1.06245	-0.44189	0	0	0	-0.00283
Torget Be 443.607 mg/cm2			3. Y [0	0	0.73853	0.0022	0	0
Stroper		TRANSPORT	4. F 🛛	0	0	3.74271	1.36526	0	0
D1 Brho 4.4042 Tm		5	5. L [3.10738	-1.2927	0	0	1	5.7769
	7	6	6. D	0	0	0	0	0	1
ovtondod	16 blocks after stripper	-6	Global	matrix					

Calculated by LISE⁺⁺ including 2nd order (see next page)

	Giobal matrix									
I	-2.30361	0.00906	0	0	0	28.88518	[mm]			
I	1.07573	-0.43836	0	0	0	-0.00018	[mrad]			
I	0	0	0.73839	0.00259	0	0	[mm]			
I	0	0	3.731	1.36722	0	0	[mrad]			
I	3.10724	-1.26623	0	0	1	-2.42226	[mm]			
I	0	0	0	0	0	1	[%]			
	/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]				

A comparison of the two configuration types from LISE⁺⁺

Calculations

calculations			
Optics Goodies		Þ	Tune spectrometer for setting fragment on beam axis Tune spectrometer for setting fragment at middle of slit
Calibratio Transmiss Optimum	ns sion and rate Target	Þ	Update matrices linked with COSY files Envelope plot
Optimum Brho scar	Target-Wedge and Wedge-Wedge configurations		First order matrix elements : PLOT First order matrix elements : View & Print
Monte Ca	Optimum charge state combination Monte Carlo calculation of transmission		Quad & Dipole settings : EDIT Ouad & Dipole settings : View & Print
Calculato	rs	Þ	Brho(Erho) Analyzer
			The First- and Second-Order Matrix Elements for an Ideal Magne

Boxes indicate the parameters generally changed by user

segmented

Block	Given Name	Start(m)	Length(m)	B0(kG)	Br(Tm)corr/*	ireal DriftM/*Angle	Rapp(cm)/*R(m)	L_eff(m)/*L_dip(m)	2 nd order	CalcMatr/*Z-Q	AngAcc,Apps,Slits
Dipole 💭	D1	0.000	8.7190	+14.2116	* 4.4056	* 45.0	* 3.1000	* 2.4347	no	×٥	HV HV
					Brho -			A 4			Slits,
							\rightarrow	<u> </u>			acceptanc

extended

Block	(Given Name	Start(m)	Length(m)	B0(kG)	Br(Tm)corr/*real	DriftM/*Angle	Rapp(cm)/*R(m)	L_eff(m)/*L_dip(m)	2 nd order	CalcMatr/*Z-Q	AngAcc,Apps,Sli	s
D,	Dipole	tuning	0.000	0.0001	+14.6853	* 4.4056	× 0.0	× 3.0000	× 0.0000	no	× 0		
<mark>S</mark> 🗌	Drift	z015	0.000	0.3960			standard					- HV	
o 🛙	Drift	Q017-1TA	0.396	0.7480	+15.4196	4.4056	quadrupole	13.3000	0.7480	yes	1	- HV	
S 🗌	Drift	z018	1.144	0.1756			standard					- HV	
o 🛙	Drift	Q019-1TB	1.320	0.7480	-14.3295	4.4056	quadrupole	13.3000	0.7480	yes	1	- HV	
S 🗌	Drift	z020	2.068	0.1720			standard					- HV	
o 🛙	Drift	Q021-1TC	2.240	0.4300	+10.3091	4.4056	quadrupole	15.0000	0.4300	yes	1	- HV	
S 🗌	Drift	z022	2.670	0.5260			standard					- HV	
D,	Dipole	D1	3.196	2.4300	+14.2396	× 4.4056	* 45.0	× 3.0939 🧳	2.4299	yes	× 0	- HV	
S 🗌	Drift	z030	5.626	0.5640			standard					- HV	
o 🛙	Drift	Q031-2TA	6.190	0.4300	+12.6140	4.4056	quadrupole	15.0000	0.4300	yes	1	- HV	
S 🗌	Drift	z032	6.620	0.1358			standard					- HV	
o 🛽	Drift	Q033-2TB	6.755	0.8120	-15.5591	4.4056	quadrupole	15.0000	0.8120	yes	1	- HV	
S 🗌	Drift	z034	7.567	0.1358			standard					- HV	
Q 🛽	Drift	Q035-2TC	7.703	0.4300	+13.6724	4.4056	quadrupole	15.0000	0.4300	yes	1	- HV	
S 🗌	Drift	z036	8.133	0.5860			standard					- HV	
<mark>S</mark> 🗌	Drift	Image1(037)	8.719	0.0000			SLITS					HV	

OT, 08-Jul-2014, East Lansing

Segmented) configuration:

- Fast transmission calculations
- Optical matrices can be input by user or linked to COSY maps
- Simple and compact description of optical system
- Effective with analytical calculations for experiment planning

Extended (elemental) configuration:

- Allows detailed analysis of transmission
- Optical matrices can be input by user, linked to COSY maps or <u>calculated</u> in the LISE⁺⁺ code, and used in segmented configurations
- Tools to obtain angular acceptances, (which can be entered into classical segmented configurations)
- Tools for displaying ion-beam optics

Very useful with Monte Carlo calculations including fragment separator design

- "Distribution" (analytical) method
 - Fast calculations
 - All internal optimization procedures in the code are based on this method
 - Mostly used with segmented configurations for experiment planning
 - Calculation of very small transmission values (for example charge states of primary beams)

LISE ver.1	"Distribution"	: D. Bazin, B. Sherrill, Phys. Rev. E 50 (1994) 4	1017
LISE ver.4	"Distribution2"	: 2000	
LISE++ ver.6	"Distribution4"	: 2002	

Monte Carlo method: (since 2007)

°C₽

- Used to benchmark the fast "Distribution" method
- Allows detailed analysis of transmission with extended configurations
- Allows using High Order Optics (up to fifth order)
- Allows observation of correlations between parameters in different blocks
- Includes gating on all correlations in parameters (four gates)
- Tools for displaying ion-beam optics
- Useful for fragment separator design

Some optical blocks (Solenoid, RF buncher) are calculated exactly only in MC mode

Useful dialog box for editing Quadrupole and Dipole settings "Calculations \rightarrow Optics \rightarrow Quad & Dipole settings : EDIT" shown all set slits, acceptances, Apertures

		×
]
(Tm)corr/*real DriftM/*Angle Rapp(cm)/*R(m) L_eff(m)/*L_dip(m) 2 nd order CalcMatr/*	gAcc.Apps,Slits COSY_lin	<u>k é</u> l
2.8965 * 0.0 * 3.0000 * 0.0000 no * 0		
standard	- HV	
standard	HV	Ξ
.8965 quadrupole 10.0000 0.4520 yes 1	HV	
standard	HV	
standard	HV	
.8965 quadrupole 10.0000 0.4610 yes 1	HV	
standard	HV	
standard	HV	
2.8965 *-45.0 *2.6000 *2.0420 yes *0	HV	
standard	HV	
standard	HV	
.8965 quadrupole 10.0000 0.3080 yes 1	HV	
standard	HV	
10.0000 0.3080 yes 1.	HV	
standard	HV	
standard	HV	
SLITS	HV	
standard	HV	
standard	HV	
standard	HV	
7265 quadrupole 10.0000 0.3080 yes 1	HV	
standard	HV	-
Angular acceptance (mrad)		ements
t Use min max Use min	se 🏠 Plot	
Horizontal ±	- 	
Vertical ±	- 66° View	
) ShapeShapeShapeShape]
Bectangle C © Ellipse Rectangle C © Ellipse Rectangle C	🖌 Quit 🦿	Help
standard standard standard 2.7265 quadrupole 10.0000 0.3080 yes 1 standard t Horizontal ± Use Horizontal ± Use Shape Rectangle C (Ellipse Lettical ± Ellipse Rectangle C (Ellipse)		eme H

Block	Given Name	Start(m)	Length(m)	BO(kG)	Br(Tm)corr/*real	DriftM/*Angle	Rapp(cm)/*R(m)	L_eff(m)/*L_dip(m)	2 nd order	CalcMatr/*Z-Q	AngAcc,Apps,Slits
Dipole	tuning	0.000	0.0001	+14.6853	× 4.4056	* 0.0	* 3.0000	× 0.0000	no	* 0	

- - A tuning dipole defines magnetic rigidity for entire segment, particularly for quadrupole fields.
 - A "tuning" dipole with zero length indicates an extended configuration
 - It is especially important for the first segment just after target (stripper)
 - Parameters for tuning dipole : 0-length, 0-angle, unitary matrix, no slits, no bounds

Dispersive block	- Optical block properties and data-	
Св 0.96552 + т	Setting Charge state for the Block (Z-Q)	Calculate the Values using the Setting fragment from
	●	Terget
David Carbon	ග්ර <u>O</u> ptical matrix	D3P1
Radius = 3 m	General setting of block	Tweak 0.1 %
Angle = 0 deg Length = 0.0000 m	Calibration file	Calculate other optic blocks

ANGULAR ACCEPTANCE	"Turing" block : Apertures (three Left Imit (aperture) -50 mm L slit +20	horizontal Right limit horizontal Right limit state in the second seco	? Help
mrad ⇔ deg Horizontal ± 1000 mrad Vertical ± 1000 mrad Solid angle [2898.37 mst Horizontal plane Use in calculations dispersion	APERTURES Shape (see ") C Rectangle C Ellipse	Stills shape (see ") Reclange C C Elipse Hotionnal Sit Set C conjointly C Use in Cabulations C separately C Show in schematics	vertical Top limit (aperture) 50 mm T sit: 20 - - - - - - - -
(mrad/%) / x'-momentum(%) 100 (accept./disp.)	☐ Horizontal ☐ Vertical	Set conjointly conjointly separately Show in schematics	
dispersion [mrad/%] 0 y '-momerkum[%] 100 [accept/disp.] 100	Only the Monte Carlo mode uses "Ellipse" Shapes and Aperture settings. The Distribution method uses only "Rectangle" shape silts.	Hotizortal plane dispersion (mm/%) momentum(%) (all/dispersion) total 100 Vertical plane dispersion (mm/%) momentum(%) (all/dispersion) total 100 Vertical plane	B sit: -20 Bottom limit (aperture) -50 mm

dlock	matrix					
1 1	1		0			0
2 T	- -					
3. Y [0		1			
4. F	0		0	1		0
5. L	0		0	0	1	0
6. D 🗍	0	0	0	0	0	1
	/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]

4. Definition of the cuts by the block

Block angular acceptance < Entrance acceptance

5. Slits and optical blocks

1. It is recommended to include a "slit" block instead using the slits in the Dispersive blocks themselves.

Only include the minimum number of slit blocks because it slows down the calculation and causes an unphysical decrease in transmission in analytical calculations

Configuration type	Angular Acceptance	Aperture	Slits after block
Classical ("segment")	Yes	No	Yes
Extended ("element")	No	Yes*	please use only for "slits" element

- 2. In the analytical solution mode avoid using slits at positions without a focus. In MC mode Apertures are used in addition to slits.
- 3. Long optical blocks should be split to obtain a better calculation of the effects of Apertures.

It is not recommended to use slits in any material, especially if they are located at dispersive planes.

The slit should be a separate optical block!

1. In extended configurations the user has several options for transmission calculations.

Recommendation do not use a fixed angular acceptance in MC mode for extended configurations if the Bound mode is turned on. Apertures defines angular acceptances. Angular Acceptance & Bounds:

- ✓ Use fixed angular acceptances
- Use physical limits (aperture) inside blocks to calculate fragment transmission

For block apertures LISE++ uses the slit limits accessible from the Block Cut & Acceptance dialog. (Pay attention there for the checkbox

2. Apertures are not used in "Distribution" analytical case. Angular acceptances should be entered by hand in each segment for both configuration type.

Configuration type	Angular Acceptance	Aperture	Slits after block	
Classical ("segment")	Yes	No	Yes	
Extended ("element")	No	Yes*	please use only for "slits" element	

* - Apertures are used only in Monte Carlo calculations

<u>Note:</u> the code does not distinguish segmented and extended configurations, it's up to the user.

S NSCL

8. Using extended configurations with Monte Carlo

8. Using extended configurations with Monte Carlo

S NSCL

8. Using extended configurations with Monte Carlo

Extended Configuration Settings

- 1. No target
- 2. No wedges and materials
- **3.** Setting fragment = Primary beam
- 4. Beam Emittance sx=sy=sp=0, sx' and sy' should be large

- 5. Open momentum slits
- 6. Enable only the segment that you want to calculate the angular acceptance in the Set-up dialog using enable-disable commands with a Faraday cup after the segment

Monte Carlo settings

2. Set the gate and MC block parameters as indicated in figure

Monte Carlo calculation of fragment transmission	
What isotope transmission to calculate? Due fragment of interest. Chose manually here Group of Isotopes already calculated (Ncalc: List of isotopes from file proput construct anys from file construction target construction file cons	Atter BLOCK Atter BLOCK Stripper ▼ 0 ⊂ × • ×' (T) made • ∨' (P) made • ∨' (P) made
Characterization of interest	Gate for Monte Carlo calclulation transmission
A Element Z 48 Ca 20 50000 Charge states 20+ Tuning v Set Reaction mechanism Projectile Fragmentation v	Status (Condition) After BLOCK C absent Ist Status (Status of the segment of
Previous MC plot window MC MC calculation to file MC MC Calculation to file	✓ OK C Energy Loss MeV Ion parameters (M.Z.q) ✓ C Range mm C Envelope m ✓ Cancel C Envelope m ✓ Mass (amu) ✓ Cancel Deposition /particle
Quit CV 2D-plot	

1. The Bound mode should turned on in the MC dialog

Angular Acceptance & Bounds

- Use fixed angular acceptances
- Use physical limits (aperture) inside blocks to calculate fragment transmission

For block apertures LISE++ uses the slit limits accessible from the Block Cut & Acceptance dialog. (Pay attention there for the checkbox

only for the ENVELOPE mode.

Show trajectories of all fragments (including unselected by fragment-separator)

Example with "No gates"

9. How to obtain an angular acceptance? (3)

17

9. How to obtain an angular acceptance? (4)

)14 15:52:55 + [G:\2014_04_03_Omar_GANIL\ise3_AngAcc_D2.lpp]

after "Stripper": X'(Theta) [mrad]: window projection

OT, 08-JUI-2014, East Lansing

8. How to obtain an angular acceptance? (5)

16:07:56 3:\2014 04 03 Omar GANIL\lise3 AngAcc D3.lpp]

File: http://lise.nscl.msu.edu/9 8/LISE3/LISE3 cito extended v2.lpp An example the LISE3 separator

1. "Distribution" method = 2.3%

With Angular Acceptances

statistics: 445		
44S Beta-	- decay	(Z=16, N=28)
Q1 (Tuning)		16
Q2 (D3P1)		16
Q3 (D3P)		16
Q4(DA1)		16
Q5 (DA2)		16
Q6(Wien 1)		16
Q7(CompDip)		16
Reaction		ProiFrag
Ion Production Rate	(pps)	9.41e+1
Total ion transmission	(%)	2.297
Total: All reactions	(pps)	9.41e+1
X-Section in target	(mb)	1.06e-3
Target	(%)	98.78
Unreacted in material	(%)	98.78
Unstopped in material	(%)	100
Tuning	(원)	37.25
X angular transmission	(%)	62.4
Y angular transmission	(%)	59.69

File: http://lise.nscl.msu.edu/9_8/LISE3/LISE3_cito_extended_v2_NoAngAcc.lpp

Conclusion: all three runs (Distribution, MC+bounds-AngAccept, MCbounds+AngAccept) give almost the same transmission about 2 % (90 pps)

Thank to Dr. Omar Kamalou for providing the LISE3 extended configuration.

Remarks and Comments of Prof. Dave Morrissey are very appreciated.