Spectrometer "MISP-144" @ LISE ${ }^{++}$:

High Order extended configuration

\square MSP-144 extended configurations in LISE ${ }^{++}$
I Introduction

- Configurations
\square Angular Acceptance
\square Momentum Acceptance
\square Envelopes
\square Turn of the spectrometer

Note: It's an extended configuration! For details on extended configuration approach please use the next link http://lise.nscl.msu.edu/9 8/LISE3/Extended\%20configurations\%20at\%20LISE++.pdf

2014: Two quadrupoles have to be inserted between the target box and the separator in order to increase angular acceptance

Nuclear Instruments and Methods in Physics Rescarch A 411 (1998) 343-350

MSP - 144 information:

A facility for the study of neutron-rich light nuclei

> A.V. Belozyorov ${ }^{\text {a }, ~ J . ~ V i n c o u r ~}{ }^{\text {b, }, ~}$, Š. Piskořib ${ }^{\text {b }}$, R. Kalpakchieva ${ }^{\text {a }}$ Yu.E. Penionzhkevich ${ }^{\text {a }}$, V.S. Salamatina ${ }^{\text {a }}$, V.E. Zhuchko

Table 1
Some parameters of MSP-144

Gap of Ist dipole region (mm)	47
Gap of 2nd dipole region (mm)	30
Max. magnetic rigidity, $B \rho(\mathrm{Tm})$	1.5
Focal line angle (deg)	41
Relation of energy, $E_{\text {mad }} / E_{\text {min }}$	5.2
Energy resolution. $\Delta E: E$	5×10^{-4}

- the MSP- 144 positioned at a reaction angle of 4
- the 8 mm width of the entrance slit of the MSP144,
- the diaphragm with a $170 \times 20 \mathrm{~mm}^{2}$ aperture placed beyond the entrance pole edges at a distance of 751 mm from the target.

This disposition of the MSP- 144 determines the entrance solid angle of 0.49 msr .

4. Detector performance

The focal plane detector [6] consists of a gas filled, gridded ionization chamber with a segmented anode and two single wire proportional counters. A schematic cross section of the focal plane detector is shown in Fig. 4.
We used an ionization chamber 500 mm deep, 240 mm wide and 65 mm high. The distance between the anode and the Frisch grid and between the Frisch grid and the cathode is 8 and 37 mm ,
nuclear instruments and methods i26 (i975) 413-416; © north-holiand publishing co.

A BROAD-RANGE STEPPED-POLE MAGNETIC SPECTROGRAPH
yu. g. basargin, n, I. boldin, l. E. korolev, V. G. levchenko and yu. p. Severgin
D. V. Efremov Scientific Research Insitute of Electrophysical Apparatus, Leningrad, USSR

YU. V. GOFMAN and V. Z. MAIDIKOV

In the described broad-range spectrograph the momenta of simultaneously recorded particles differ by a factor of 2.6 . The maximum radius of the central trajectory in the region I is $\rho_{\mathrm{Imax}}=125 \mathrm{~cm}$; the fieldstrength ratio in the two regions is $K=1.55$. The angle of deflection in the first region is 60°, in the second one is 51°. In the region I the entrance "edge" angle is $\varepsilon_{1}=+60^{\circ}$, the exit one $\varepsilon_{2}=-60^{\circ}$, and in the region II $\varepsilon_{1}=+60^{\circ}$ and $\varepsilon_{2}=-28.5^{\circ}$. The source-to-entrance boundary spacing is 62.5 cm . The smaller gap width (in the region II) is 30 mm , the bigger gap width is 47 mm . The focal line is 150 cm long and it differs from a straight line not more than $\pm 5 \mathrm{~mm}$; the focal-line slope with respect to the central trajectories is 40°.

Tha mombatad a denendences of the mannetioffield

There were three sources to build QQDD configuration

1. "MSP-144_X" COSY file. This file contains 70 mm aperture quads. Effective quad length used in the configuration corresponds to the "coef" $=0.9$, where $L _$eff $=L _$iron + HalfAperture * coef. Using this COSY file the LISE ${ }^{++}$file "eMSP144 cosyX.Ipp" has been created. Large X-magnification (2.48) and defocusing ($0.5 \mathrm{~mm} / \mathrm{mrad}$) values been obtained with both COSY and LISE ${ }^{++}$calculations.
2. "MSP-144_Y" COSY file. This file contains 110 mm aperture quads. Effective quad length used in the configuration corresponds to the "coef" $=0.9$, where L_eff $=$ Liron + HalfAperture * coef. Using this COSY file the LISE ${ }^{++}$file "eMSP144 cosyY.Ipp". Smaller X-magnification (0.15) and defocusing ($-0.29 \mathrm{~mm} / \mathrm{mrad}$) values been obtained with both COSY and LISE ${ }^{++}$calculations.

-Global matrix						
2.4796	0.05233	0	0	0	1.51463	[cm]
74.323	1.97187	0	0	0	-0.12864	[mrad]
0	0	8.58226	-0.30827	0	0	[cm]
0	0	51.48136	-1.73265	0	0	[mrad]
11.28911	0.29934	0	0	1	-1.20456	[cm]
0	0	0	0	0	1	[\%]

-Global matrix

0.15006	-0.02898	0	0	0	1.51749	[cm]
31.51222	0.57701	0	0	0	-0.12867	[mrad]
0	0	5.78907	-0.34061	0	0	[cm]
0	0	36.35833	-1.96651	0	0	[mrad]
4.78397	0.08719	0	0	1	-1.20457	[cm]
0	0	0	0	0	1	[\%]
[cm]	/[mrad]	[cm]	/[mrad]	/[cm]	[\%]	

3. The third source was a MSP144 sketch with drift distances. The "eMSP144.lpp" LISE ${ }^{++}$ file has been created on this sketch and some parameters taken from "MSP-144_Y" COSY file. For effective quad lengths the "coef" has been used equal to 0.7 which was obtain in measurement in Dubna (SHELS) and MSU (A1900).
a. Q2-field "0.54 T" provides zero X-magnification : "eMSP144 a.lpp"
b. Q2-field "0.603 T" provides X-focus at the end of spectrometer : "eMSP144 b.Ipp"

-Global matrix						
0.03933	-0.03302	0	0	0	1.51749	[cm]
29.63297	0.55087	0	0	0	-0.12864	[mrad]
0	0	3.4684	-0.29538	0	0	[cm]
0	0	24.32144	-1.783	0	0	[mrad]
4.49728	0.08317	0	0	1	-1.20456	[cm]
0	0	0	0	0	1	[\%]
/1cml	Imradl	/fcml	/mmadl	/ 1 cml	1\%1	
-Global matrix						
0.5166	-0.00016	0	0	0	1.51749	[cm]
49.51072	1.92071	0	0	0	-0.12865	[mrad]
0	0	3.51039	-0.31344	0	0	[cm]
0	0	24.68305	-1.91904	0	0	[mrad]
7.51983	0.29146	0	0	1	-1.20456	[cm]
0	0	0	0	0	1	[\%]

Important: in the COSY files half-apertures of 5 cm were used for both dipoles. In reality the values of 2.3 cm and 1.5 cm should be set. These values defines vertical acceptance and important for matrix calculations. The final file "eMSP144.lpp" used these last values.

OT, 12/26/14, East Lansing

Lengths mm						
	effective	iron	delta	fileds	Quad-eff coef	HalfApp
drift	100	115				
quad1	330	300	15	-0.55	0.857	35
drift	220	250				
quad2	330	300	15	0.45	0.857	35
drift	825	840				
D1	$\mathrm{g} / 2$	5	cm			
D2	$\mathrm{g} / 2$	5	cm			
drift	1470					

61
$.24763 \mathrm{E}+61$ $.74245 \mathrm{E}+62$ 105050E+65 $-00000 \mathrm{E}+05$
$.00900 \mathrm{E}+65$ $.60005 \mathrm{E}+60$
$.11277 \mathrm{E}+62$. $69505 \mathrm{E}+56$
.52193E-01 $.19687 \mathrm{E}+01$ $.06505 \mathrm{E}+59$ - $00950 \mathrm{E}+60$ $-29886 \mathrm{E}+65$ - 50505 E + 50
$.09590 \mathrm{E}+50$ $.85781 \mathrm{E}+61$ 51456E 82 $-51456 \mathrm{E}+62$
$-.0960 \mathrm{E}+60$ - $50500 \mathrm{E}+50$

COSY

${ }^{2} \mathrm{Ne}(23.7 \mathrm{MeV} / \mathrm{u})$; Settings on ${ }^{20} \mathrm{Ne}$; Config: SSSSSDDSSMMMMMMM $\mathrm{dp} / \mathrm{p}=66.02 \%$; Brho(Tm): 1.4084, 1.4084

Length [m]

2.4796	0.05233	0	0	0	1.51463
74.323	1.97187	0	0	0	-0.12864
0	0	8.58226	-0.30827	0	0
0	0	51.48136	-1.73265	0	0
11.28911	0.29934	0	0	1	-1.20456
0	0	0	0	0	1

LISE ${ }^{++}$

Configurations: "eMSP-144_cosyY" file
$\frac{\text { MICHIGAN STATE }}{\text { UNIVERSITTY }}$ LIS E

COSY

61

$-.29079 \mathrm{E}-81$ $.57299 \mathrm{E}+06$ $.00909 E+00$ $-47755 \mathrm{E}+61$ $.00000 \mathrm{E}+50$
. $09090 \mathrm{E}+09$.86577E- 01 . 0000 0E+ 06

. $00000 \mathrm{E}+06$ 00808E +08 $-.12864 \mathrm{E}+69$. $00000 \mathrm{E}+00$. $00000 \mathrm{E}+00$. $00009 \mathrm{E}+05$ $.10095 \mathrm{E}+61$ $.00009 \mathrm{E}+05$

LISE++

-Giobal matrix						
0.15006	-0.02898	0	0	0	1.51749	[cm]
31.51222	0.57701	0	0	0	-0.12867	[miad]
0	0	5.78907	-0.34061	0	0	[cm]
0	0	36.35833	-1.96651	0	0	[miad]
4.78397	0.08719	0	0	1	-1.20457	[cm]
0	0	0	0	0	1	\%]
/[cm]	/[mrad]	/[cm]	/[miad]	/[cm]	/\%]	

${ }^{20} \mathrm{Ne}$ (23.7 MeV/u); Settings on ${ }^{20} \mathrm{Ne}$; Config: SSSSSDDSSMMMMMMM
$\mathrm{dp} / \mathrm{p}=65.90 \%$; Brho(Tm): 1.4084, 1.4084

Configurations: "eMISP144_a.Jpp" file

${ }^{20} \mathrm{Ne}(23.7 \mathrm{MeV} / \mathrm{u})$; Settings on ${ }^{20} \mathrm{Ne}$; Config: SSSSSSDDSSMMMMMMM $\mathrm{dp} / \mathrm{p}=15.82 \%$; Brho(Tm): 1.4084, 1.4084

Length [m]

	effective	iron	delta	fileds	Quad-eff coef	Changed according to the original MSP144 information
drift	312.75	332				
quad1	338.5	300	19.25	-0.56	0.700	
drift	211.5	250				
quad2	338.5	300	19.25	0.603	0.700	
drift	858.75	878				
D1	$\mathrm{g} / 2$	2.35	cm			
D2	$\mathrm{g} / 2$	1.5	cm			
drift	1470					
Here is zero X -focus						

LISE ${ }^{++}$

-Global matix						
0.5166	-0.00016	0	0	0	1.51749	[cm]
49.51072	1.92071	0	0	0	-0.12865	[mrad]
0	0	3.51039	-0.31344	0	0	[cm]
0	0	24.68305	-1.91904	0	0	[mrad]
7.51983	0.29146	0	0	1	-1.20456	[cm]
0	0	0	0	0	1	[\%]

Settings for Angular Acceptance study

Global Transmission	100.04
Target	100.04
Quad1	82.044
dr2	82.044
Inside of bounds	84.104
Inside of bounds	100.04
dr3	65.974
dr3a	65.974
Dipole 1	
Inside of bounds	100.04
Dipole 2	
dr5	
Slits	

20Ne : Monte Carlo Transmission Plot
after "Stripper": X'(Theta) [mrad): window projection -.. ${ }^{20} \mathrm{Ne}(23.7 \mathrm{MeV} / \mathbf{u})+$; Transmitted Fragment ${ }^{20} \mathrm{Ne}$ (beam); Optics Order: AngAccect: Oft Bounds: ON: "trame" - last block for MC calc: Gete 1: "AND" (X
after "Stripper": $\Upsilon\left(\right.$ Phi) [mrad]: window projection --. ${ }^{20} \mathrm{Ne}(23.7 \mathrm{MeV} / 4)+$; Transmtted Fragment ${ }^{20} \mathrm{Ne}$ (beamx Optics Order: 1 $\mathrm{dp} / \mathrm{p}=15.82 \%$; Bhh $\mathrm{Tm}^{2} \times 1.4084,1.4084$

 r

 ver ,

 1
 = ment

Angular Acceptance: $2^{\text {nd }}$ order

Momentum \& Angular Acceptance

${ }^{20}$ Ne : Monte Carlo Transmission Plot

after "Stripper": X(Theta) [mrad)

Envelopes: emittance X \& Y ($2^{\text {nd }}$ order $)$

"eMSP144_a.Ipp"

[^0]Envelopes: emittance X^{\prime} \& $Y^{\prime}\left(2^{\text {nd }}\right.$ order)

"eMSP144_a.lpp"

"eMSP144_a.Ipp"
 (2)

Envelopes: emittance dP (2 $2^{\text {nd }}$ order)

$\frac{\text { IICHIGAN STATE }}{\text { NIVERS ITY }}$

Beam

Emittance $?$ Beam CARD (sigma semi-axis, half-width...) 1D-shape (Distrutution method)			
$1 . \times \mathrm{mm}$	0	Rectangle uniform	\checkmark
2 T mrad	0	Rectangle uniform	\checkmark
$3 . Y$ mm	0	Rectangle unilom	\checkmark
4. P mard	0	Rectangle unitom	\checkmark
5. L mm	0	Gaussian	\checkmark
6. D \%	10	Rectangle uritom	\checkmark

20 - shape (Monte Carlo method)	Conelated with		mm \cdot	$\bigcirc \mathrm{cm}$
		beam respect to spectrometer		
		dx	0	mm
		dT	0	mrad
		dY	0	mm
		$d P$	0	mrad
			T 0	degrees
		dP	0	degrees

號

[^0]: OT, 12/26/14, East Lansing

