

v.2 from 11/21/14

- Introduction
 - ✓ SLAC
 - ✓ M5789 (FLNR/JINR)
 - ✓ NSCL#1
 - ✓ NSCL#2
 - ✓ NSCL#3
 - ✓ SHELS (FLNR/JINR)
- Quadrupole effective lengths in LISE++
 - \checkmark Effective values in the Optic Setup dialog
- Supplementary: Quad B(1) calibration

	7k30-1500	11k-30.600	2ML-5-2		Limit,A	kG/A
	U400M	U400		L1	7	0.303
lalf-Aperture(cm)	3.5	5.5	6.93	L2	7	0.303
Gradient(G/cm)	1500	600	262.3456342	L0(L2)	2	0.303
imit(A)	20	17	6	L3	17	0.196
imit from Ap. (kG)	5.25	3.3	1.8	L4	17	0.196
Slope(kG/A)	0.263	0.194		L5	17	0.309
imit1(A)	17		2	L6	17	0.309
Slope(kG/A)	0.309			L7	17	0.309
B(Melnikov)	308.627	196.637	303.037	L8	17	0.309
	1.000	1.001	1.000	L9	17	0.309
				L10	17	0.309
				L11	17	0.309
Gradient(G[I]/cm)	88.176	35.707	43.724	L12	17	0.309
Slope(kG/l) Mel'nikov	0.309	0.196	0.303	L13	17	0.309
imit(kG)	6.2	3.3	1.8	L14	17	0.309
				L15	17	0.309
ength(m)	0.3	0.3	0.3	L16	17	0.309
engthEff(m)	0.3315	0.3495	0.3624	L17	17	0.309
engthEff(m)	Length	+ 0.9 * HalfA	perture	L18	17	0.309
				L19	17	0.309
imit(A)	17			L20	17	0.309
imit from Ap. (kG)	25.5			L21	17	0.309
				L22	17	0.309
		Melnikov				
	2ML-5-2	1.833 kG	7.12A			
			6.66A			
		kG/A	А			
		0.266	6.89			

Coef=0.9

Courtesy by Mauricio

Based on drawings Reference: A. F. Zeller et. al., Adv. Cryo. Eng., Y. 1998, vol. 43, A, pages 245-252. A<										(
Type Type Type Lyoke[m] R[m] type Qt. [m] [m] [m] [m] [m] [m]			245-252.	13, A, pages	. 1998, vol. 4	C <mark>ryo.</mark> Eng., Y	et. al., Adv. (A. F. Zeller	Reference:	Based on drawings				
Type Type Type Type R[m] type Qt. [m] [m] [m] [m] [m] [m]		, 												
Type Type Type Type R[m] type Qt. [m] [m] [m] [m] [m]	Leff=			Warm	_									
Type Type Type Lyoke[m] R[m] type Qt. [m] [m] [m] [m] [m]	L+			bore	Pole tip	Effective								
Type Lyoke[m] R[m] type Qt. [m] [m] [m] [m]	coef * R		Multipoles	radius	radius	length	Iron length					-		
	coef			[m]	[m]	[m]	[m]	Qt.	type	R[m]	Lyoke[m]	ref.	Туре	
A 1 0.6500 0.132999 QA 4 0.65 0.723 0.133 0.100 no	0.55		no	0.100	0.133	0.723	0.65	4	QA	0.132999	0.6500	1	Α	
B 2 0.3250 0.149987 QB 12 0.325 0.400 0.150 0.100 yes	0.50		yes	0.100	0.150	0.400	0.325	12	QB	0.149987	0.3250	2	В	
C 3 0.7151 0.149987 QC 4 0.715 0.790 0.150 0.100 yes	0.50		yes	0.100	0.150	0.790	0.715	4	QC	0.149987	0.7151	3	С	
D 4 0.3810 0.210033 QD 2 0.381 0.486 0.210 0.170 no	0.50		no	0.170	0.210	0.486	0.381	2	QD	0.210033	0.3810	4	D	
E 5 0.6250 0.149987 QE 2 0.625 0.700 0.150 0.116 no	0.50		no	0.116	0.150	0.700	0.625	2	QE	0.149987	0.6250	5	Е	

1		2	3	4	9	5	6	10			(Leff-L)/2			
	COSy	Block name	Kind of	Start	Rapp(cm)	Length	DriftMode	L_eff(m)	Quad					
r			Block	(m)	R(m)*	(m)	Angle(~)*	Len(m)*	label	Real L	dL_q/2	dL_drift	dL/2_sum	
-														
1		tuning	Dipole	0	3.00*	0	+0.0 *	0.00*						
							1.3-1/4		Mauricio	0.23122	0.445011			
25		D2	Dipole	11.812	3.09*	2.43	-45.0 *	2.43*						
							D2-T4		Mauricio	0.36529	0.594934			
						0.5424			Scheme	0.229644				
26	S2L5	z052	Drift	14.242		0.5525	standard			0.6050				
27		Q053-4TA	Drift	14.795	15	0.43	multipole	0.43	В	0.3250	0.0525			
28	S2L6	z054	Drift	15.225		0.1699	standard			0.2818		0.1119	0.1060	0.005
29		Q055-4TB	Drift	15.394	15	0.732	multipole	0.73	E	0.6250	0.0535			
30	S2L7	z056	Drift	16.126		0.1759	standard			0.3083		0.1324	0.1260	0.006
31		Q057-4TC	Drift	16.302	21	0.526	multipole	0.53	D	0.3810	0.0725			
32	S2L8	z058	Drift	16.828		0.6578	standard			0.7303				
						0.6527			Scheme	0.259512	0.725162			
							T4-F2		Mauricio	0.46565				
33		Image2(059)	Drift	17.486		0	SLITS							

Based on drawings			Reference:	A. F. Zeller	et. al., Adv. (Cryo. Eng., Y	. 1998, vol. 4	3, A, pages	245-252.			
											\frown	
									Warm		A1900	Leff=
							Effective	Pole tip	bore		TRANSPORT	L+
						Iron length	length	radius	radius	Multipoles	file	coef * R
Туре	Type ref.	Lyoke[m]	R[m]	type	Qt.	[m]	[m]	[m]	[m]		L_eff [m]	Coef [1/m]
А	1	0.6500	0.132999	QA	4	0.65	0.723	0.133	0.100	no	0.748	0.74
В	2	0.3250	0.149987	QB	12	0.325	0.400	0.150	0.100	yes	0.43	0.70
С	3	0.7151	0.149987	QC	4	0.715	0.790	0.150	0.100	yes	0.812	0.65
D	4	0.3810	0.210033	QD	2	0.381	0.486	0.210	0.170	no	0.526	0.69
Е	5	0.6250	0.149987	QE	2	0.625	0.700	0.150	0.116	no	0.732	0.71
											\square	
											average	0.70
											median	0.70
												\smile

MICHIGAN STATE

L I S E ++

Courtesy by Daniel

3

It looks like the Effective lengths at 1 T were used in the TRANSPORT file

0.732

0.625

Е

Introduction : SHELS (FLNR-JINR)

Courtesy by A.Popeko

Used in simulations:

LQ = 310; {Length of quadrupole iron in mm} LQeff = 380; {Effective length of quadrupole in mm}

6 identical quads

Q1 (pole 4) effective length on R rel.=0

I.	B, kG	Leff,mm
202	1.08	382.55
303	1.615	381.7
505	2.68368	380.45
707	3.7504	381.3
909	4.8124	382.25
	average	381.65

Introduction : SHELS (FLNR-JINR)

MICHIGAN STATE

Quadrupole effective lengths in LISE⁺⁺

Quadrupole effective lengths in LISE⁺⁺

The char "c" denotes calculated value

-	Quadrupo	les and dipoles fast	editting	н	HH		H -							 ×	<u> </u>
B	ock	Given Name	Start(m)	Length(m)	BO(kG)	Br(Tm)corr/*	r DriftM/*An	Rapp(cm)/*R	L_eff(m)/*L_dip(m	2 nd order	CalcMatr/*Z-Q	AngAcc.Apps,Slits	COSY_link	SE -	
D	🔪 Dipole	tuning	0.000	0.0001	-2.4926	× 0.7478	* 0.0	× 3.0000	* 0.0001	no	* 84		-	S	1
S	🔲 Drift	DTS1	0.000	0.3500			standard					HV		е	Ľ
S	🔲 Drift	slits 1	0.350	0.0000			SLITS					HV		е	
S	🔲 Drift	DS1Q1	0.350	0.0700			standard		c_0.0350			HV	-	е	
Q	🕕 Drift	Quad 1	0.420	0.3100	+4.5138	0.7478	QUAD	9.0000	c_0.3800	yes	1	HV		е	
S	🔲 Drift	dqiqk	0.730	0.2700			standard		c_0.2000			HV		е	L
Q	🕕 Drift	Quad 2	1.000	0.3100	-4.1172	0.7478	QUAD	9.0000	c_0.3800	no	1	HV	-	е	L
S	🔲 Drift	dqiqk	1.310	0.2700			standard		c_0.2000			HV		e P	E.
Q	🕕 Drift	Quad 3	1.580	0.3100	+2.0125	0.7478	QUAD	9.0000	c_0.3800	yes	1	HV		е	
S	🔲 Drift	dq3c1	1.890	0.5515			standard		c_0.5165			HV	-	е	Ľ
E	💻 ElecDij	o C1	2.442	0.6592							* 84	- HV HV	-	E	Ľ
S	🔲 Drift	dc1d1	3.101	0.4229			standard					HV	-	е	Ľ
D	Dipole	D22_1	3.524	0.6230	+4.6256	* 0.7478	* 22.1	* 1.6166	* 0.6230	yes	* 84			E	Ľ
S	🔲 Drift	dd1sv	4.147	0.3054			standard					HV		е	Ľ
S	Drift	slits SV	4.452	0.0000			SLITS					H-		e	
S	🔲 Drift	dsvd2	4.452	0.3054			standard					HV		е	
D	Dipole	D22_2	4.757	0.6230	-4.6256	* 0.7478	* -22.1	* 1.6166	* 0.6230	yes	* 84		-	Е	
S	🔲 Drift	dd2c2	5.380	0.4229			standard					HV		е	
E	💻 ElecDij) C2	5.803	0.6592							* 84	- HV HV		Е	
S	🔲 Drift	dc2q4	6,463	0.5515			standard		c_0.5165			HV	-	е	
Q	🕕 Drift	Quad 4	7.014	0.3100	+0.6284	0.7478	QUAD	9.0000	c_0.3800	yes	1	HV		е	
S	🔲 Drift	dqiqk	7.324	0.2700			standard		c_0.2000			HV		е,	-
•								m						•	
-9	elected bl	ock					-Angular acceptar	nce (mrad) — – Ir	nside Aperture (mm)—	s	lits (mm) after this	BLOCK 1-st	order Matrix E	lements	-1
ľ	Dis	persive (Dipole)	 Block Length 		Selected Blog	k Edit		Use	min max	x Use	min	max Use 🐘	Plot		
				(iii) •8•	March 1.1	- 10	Horizontal ±	— 🗆 🛛 🛪	-50 50	_	=	— <u>**</u>	, , , , , , , , , , , , , , , , , , , ,		11
	Let call aut	omatically 🔲	1 0.000		Mutipole I		Vertical ±	- D Y	-50 50	Y	=	<u>6</u>	View		
E	Block name	= tuning	Length a this block	fter 👥 ([m]	Cuts (Accepta	ances)	- Shape		Shape		Shape				
0	Charge Stat	e (Z-Q) = 84	0.0001	66	Optical Ma	atrix.	Rectangle 🔿 🤅	Ellipse	Rectangle 🔿 💿 E	llipse	Rectangle 📀 🤇	🗅 Ellipse 🛛 🗸	Quit 💡	Help	
			,												

Supplementary: Quad B(I) calibration

x