

Decay channel analysis

Evaporation calculator													_ 🗆 🗙
Initial nucleus Excitation energy window Initial nucleus Lower = MeV C gaussian 48Ca Upper = MeV rectangle Initial nucleus production cross-section = mb C Excited nucleus evaporation						ition	2D-plots Image: A strain of the str						
make calculations down to Z = 8 Z CALCULATE Evaporation settings								1					
Final nucleus Average values A Element Z Average values 24 0 8 Initial production CS of Final fragment production CS of Final fragment (for fragmentation) 0e+0 mb Minimum separation energy (SE) 3.61 MeV <ex> = 107.28 stable Initial production CS of Final fragment (for fragmentation) 0e+0 mb Minimum sum of (SE + deduced effective Coulomb barrier) 3.61 MeV <t> = 5.49 Table of Nuclidee Nuclidee Nuclidee Fission barrier at L=0 28.93 MeV <ex_fis> = 129.05</ex_fis></t></ex>									alues 7.28 49 9.05				
	PARENT	1.06e+0	2.1	.15e-1		1.72e-1	1.09e-1	1.46e-1	1.9e-2			1.72e+0	250
	Decay modes	1n		1p		alpha	d	t	3He	Fission		sum	max
Excitation	DAUGHTER	1.65e+0	1	.9e-2		6.1e-3	1.58e-2	2.45e-2	5.37e-4	1.66e-3		1.72e+0	230
N` of all 294	Sum	3.34e+3	2.	.8e+2		1.01e+2	6.68e+1	5.06e+1	6.86e+0	Initial 1.17e+3	Residues 1.18e+3	Fission 4.3e-1	Break-up
Output cross-section file	04820_009	04.lcs						Brov	vse 🛛	Show	1		
Ouput file of parent - 🔲 04820_00904.lpd								Browse Star Show			P		
Table of Nuclides Cross section from EPAX 2.15 1.12e-4 mb Image: Construction of Nuclides Image: Construction of Constructing Construction of Construction of Constructing Constr							Brov	Browse BE Show					

⁴⁸Ca+Ni - \rightarrow Z=8 (left) and Z=16 (right)

Excitation energy (method 3): Ex =const(dA) sig(Ex)=const(dA)

⁴⁸Ca+Ni - \rightarrow Z=8 (left) and Z=12 (right)

Ex=10MeV/dA, sig(Ex) =10MeV/dA

11/18/05 --- Separator meeting

Excitation energy

Widths versus mean values of excitation energy distributions obtained by matching EPAX values with the AA model.

Ex and sig(Ex) should be the function of dA in AA

What do we know from experiments?

- Decreasing the projectile velocity increase of production cross-section of neutron-rich isotopes
- Target with large Z increase of production cross-section of neutron-rich isotopes
- Low Exponential tail is due to dissipative processes

Why?

- Time of dissipation is increasing
- Touching Area + Time of dissipation is increasing due to target size

Touching area is ~ to square (Chord_min) Time of dissipation ~ to Chord_max & beam velocity But Chords are functions of dA !

Dissipation process contribution defines a way to produce nucleus

	²⁹ AI	³⁰ AI	³¹ AI	³² AI	³³ AI	³⁴ AI	³⁵ AI	³⁶ AI	³⁷ AI	³⁸ AI		
_	²⁸ Mg	²⁹ Mg	³⁰ Mg	³¹ Mg	³² Mg	³³ Mg	³⁴ Mg	³⁵ Mg	³⁶ Mg	³⁷ Mg		
3	27 _{Na}	28Na	29 _{Na}	³⁰ Na	31 _{Na}	³² Na	³³ Na	³⁴ Na	³⁵ Na	³⁶ Na		
•	²⁶ Ne	27 _{Ne}	²⁸ Ne	²⁹ Ne	³⁰ Ne	³¹ Ne	³² Ne	³³ Ne	³⁴ Ne	³⁵ Ne		
	25 _F	26F	27F	²⁸ F	29F	³⁰ F	31 _F	32F				
	²⁴ 0	²⁵ 0	²⁶ 0	270	²⁸ 0	²⁹ 0						
	23ы					Ev 8	eig(Ex)	•	Inha		_	
		To produce ²⁴ O					4 & 9.6	A ().89	0.	0.05	
	11/	18/05 Sep	arator meeti	ng	1(0 & 10	().26	0.	0.59		

Excitation energy distribution changes due to dissipation. What is shape??

Is there a correlation between the final fragment momentum distribution and prefragment excitation energy?

Or Is there a correlation between the final fragment momentum distribution and the chain of decays?

Momentum distributions

^{11/18/05 ---} Separator meeting

It will be nice to measure Fragment Energy vs N(n) [and N(alpha)??] On different targets with the beam of different energies

2D "Cross section" plot -> file

LISE++

Break-up channel

³⁶S for ²⁴O?