

Pulse Generator
 Model 8020

INSTRUCTION MANUAL

We've moved:

INDEX

SECTION 1 : SPECIFICATIONS

SECTION 2 OPERATING INSTRUCTIONS

2.1 Introduction
2. 2 Function of Controls \& Connectors
2.3 Operational Checkpoints

SECTION 3 CIRCUIT DESCRIPTION

3.1	Block Diagram
3.2	$3 \mathrm{KHz}-125 \mathrm{MHz}$ Multivibrator
3.3	$0.5 \mathrm{~Hz}-10 \mathrm{~Hz}$ Multivibrator
3.4	External Trigger
3.5	External Gate
3.6	Delay Line Driver \& Trigger Out
3.7	Delay One-Shot
3.8	Double Pulse Circuitry
3.9	Width One-Shot
3.10	Output Pulse Shaper \& Output Circuitry
3.11	Other Circuit Considerations
3.12	Service

SECTION 4 PARTS LIST AND SCHEMATICS

SECTION 1

REPETITION RATE: a) $0.5 \mathrm{~Hz}-10 \mathrm{~Hz}$, continuously variable, $3 \mathrm{kHz}-125 \mathrm{MHz}$ continuously variable.
b) Ext Trigger, 0.125 MHz .
c) Single Cycle.

DELAY: 0 to $100 \mu \mathrm{sec}$, continuously variable.
WIDTH: 3 nsec to $100 \mu \mathrm{sec}$, continuously variable.
JITTER: Rep rate, delay or width less than 50 psec or 0.1\%, whichever is greater.

DOUBLE PULSE: 6 nsec min. separation. Puise spacing set by delay controls.
RESOLUTION OF FINE CONTROLS: Less than 0.4\%-
TEMPERATURE COEFFICIENT OF FREQUENCY, DELAY OR WIDTH: Less than $0.1 \% /{ }^{\circ} \mathrm{C}$.
DUTY FACTOR: Greater than 50%.
OUTPUT PULSES: Two parallel output connectors providing greater than -32 mA . When terminated in 50Ω, there are two -0.8 V pulses. (Standard NIM fast logic level.)
RISE TIME: 1 nsec.
FALL TIME: 1.3 nsec.
AMPLITUDE ADJUSTMENT: $10: 1$ range (from -32 mA to -3.2 mA), continuously variable.
OUTPUT PULSE ABERRATIONS: Baseline or pulse top, less than 5\%.
TRIGGER OUT: $-0.8 \mathrm{~V}, 50 \Omega, 1$ nsec rise time. (Two outputs on front and rear panel.)
EXTERNAL TRIGGER: $-0.6 \mathrm{~V}, 50 \Omega$. (Rear panel.)
EXT GATE: NIM logic. (-0.6 V to gate on, at rear panel.) Synchronous. Rear panel slide switch provides gated or ungated operation.
AMBIENT TEMPERATURE: $55^{\circ} \mathrm{C}$ max.
PROTECTION: Open and short circuit proof.
POWER REQUIREMENTS: $+24 \mathrm{~V}, 120 \mathrm{~mA},+12 \mathrm{~V}, 120$ $\mathrm{mA},-24 \mathrm{~V}, 135 \mathrm{~mA},-12 \mathrm{~V}, 135 \mathrm{~mA}$.
MECHANICAL: Single width AEC module, $1.35^{\prime \prime}$ wide $\times 8.70^{\prime \prime}$ high in accordance with TID-20893 (Rev. 2).
WEIGHT: $21 / 2$ lbs., net, 7 lbs. shipping.

2.1 INTRODUCTION

The Model 8020 pulse generator is a one nanosecond rise time, 125 MHz pulse generator specifically designed for use with high energy physics instrumentation. However, its broad range of functions is applicable in other areas. It provides two parallel outputs of -16 mA which convert to two -0.8 V pulses terminated into 50 ohms.*

The Model 8020 conforms to the mechanical and electrical specifications for NIM (nuclear instrument modules) set up by AEC report TID-20893, Rev. 3. In order to power this instrument it is necessary to provide +24 V and $\dagger 12 \mathrm{~V}$ from an external supply. Berkeley Nucleonics manufactures portable power supplies, the Model AP-1 and Model AP-2, which are designed to provide the necessary power.

2.2 FUNCTION OF CONTROLS AND CONNECTORS

FREQUENCY: A twelve-position switch and 25-turn trimming potentiometer provide the range desired. The internal repetition rate is adjustable from 3 kHz to 125 MHz . Below 3 kHz , a range of frequencies from 0.5 to 10 Hz is available by setting the FREQUENCY switch to 10 Hz . In addition a S. C. (single cycle) pushbutton and EXT (external trigger) operation is provided.

DELAY: A ten-position switch and a 25-turn trimming potentiometer provides a continuous delay between PULSE OUT and TRIG OUT from $0-100 \mu \mathrm{ec}$.

WIDTH: A ten-position switch and 25-turn trimming potentiometer provides a continuous pulse width from 3 nsec to $100 \mu \mathrm{sec}$.
S. P./D. P. (Single Pulse / Double Pulse): A front panel toggle provid?s either a single or double output pulse with each Trigger Out pulse. When this control is in the S.P. (single pulse) position, one output pulse appears with each Trigger Out pulse. When this toggle is in the D. P. (Double Pulse) position, two output pulses appear with each Trigger Out pulse. The first pulse is time coincident with the trigger out and second pulse is separated from the first by the setting of the delay controls.

[^0]AMPL. (Amplitude): A front panel mounted trimmer adjusts the output amplitudes over a 10:1 range. Normally it is set at the maximum to provide -16 mA output into each of two 50 ohms output terminations (or 0.8 V at each output when terminated in 50 ohms.)

GATE - ON / OFF: A rear panel slide switch provides gated or ungated operation. When it is in the GATE-OFF position a continuous pulse train appears at the output. When it is in the GATE-ON position a pulse burst will appear at the output connector only during the time that a -0.6 V gate signal appears at the rear panel gate connector.

TRIG OUT (Trigger Out): A connector on both the front and rear panel provides synchronizing pulses in time relation to the output pulse as set by the Delay controls. The Trigger Out pulses are a square wave train whose period is the same as the Frequency clock. THE TRIGGER OUTPUT CABLE MUST BE TERMINATED INTO 50 OHMS FOR PROPER OPERATION. The unused output need not be terminated.

PULSE OUT: Two parallel connectors on the front panel provide identical output pulses. When the AMPL (Amplitude) trimmer is set at maximum, -32 mA is available. The -32 mA divides into two -16 mA outputs when each connector is terminated in 50 ohms. If only one connector is terminated, the output amplitude will be -1.6 V across the 50 ohms termination and the rise time will be slower than 1 nanosecond. IT IS NECESSARY TO TERMINATE BOTH OUTPUT CONNECTORS IN 50 OHMS TO OBTAIN 1 NS RISE TIME AND -0.8 V PULSES.

EXT TRIG (External Trigger): A rear panel connector is provided to accept external synchronizing pulses. The FREQUENCY switch must be in the EXT position for this mode of operation. The input impedance is 50 ohms, and a -0.6 V amplitude pulse with a rise time less than $0.2 \mu \mathrm{sec}$ is required.

GATE: A rear panel connector is provided to receive the external gate pulse. The input impedance is 50 ofrms and -0.6 V is required to gate on the pulses. See GATE-ON/OFF above.

2.3 OPERATIONAL CHECK POINTS

If there are any difficulties in obtaining desired operation from the Model 8020, the following check list will be useful.

NO OUTPUT PULSE:
Is the rear panel GATE-ON/OFF in the proper position? (Set at GATE-OFF for continuous pulse train).
Is the front panel FREQUENCY switch set correctly?

POOR OUTPUT PULSE SHAPE:
Are both output connectors terminated in 50 ohms (even if one is not used)?
Is the output cable 50 ohms characteristic impedance?

ERRATIC TRIGGERING OF OSCILLOSCOPE:
Is the Trigger Out cable terminated in 50 ohms?
Does the delay or width duty factor exceed 50% ?

ERRATIC EXTERNAL TRIGGER OPERATION:
Is the external trigger at least -0.6 V in amplitude when connected?
Is the front panel FREQUENCY switch set at EXT?

DIFFICULTY IN EXTERNAL TRIGGERING AT 125MHz REP RATE:

Is the Fine Frequency Control set at maximum counter-clockwise position?

DIFFICULTY IN OBTAINING 125 MHz REPRATE: Are the Delay and Width Controls set near minimum so that 50% duty factor is not exceeded?

EXCESSIVE JTTTER:
Check power supply regulation.
INSUFFICENT AMPLITUDE:
Check setting of AMPL. control.

This section of the manual describes the circuits used in the Model 8020. Section 3.1 describes the block diagram and reference is made to Fig. 1. Sections 3.2-3. 11 describe the detailed circaits and reference is made to the schematics 8020-1, 8020-2 and 8020-3 at the back of the manual. See Sect. 3.12 for service.

3.1 BLOCK DLAGRAM

A block diagram of the Model 8020 is shown in Fig. 1. The clock pulses are generated by either the $3 \mathrm{kHz}-125 \mathrm{MHz}$ Multivibrator or the $0.5 \mathrm{~Hz}-10 \mathrm{~Hz}$ Multivibrator. The output of the $3 \mathrm{kHz}-125 \mathrm{MHz}$ Multivibrator triggers the Delay One-Shot and also triggers the Trigger Out circuit. The output of $0.5 \mathrm{~Hz}-10 \mathrm{~Hz}$ Multivibrator triggers the External Trigger circuit which in turn triggers the Delay One-Shot and Trigger Out circuit. When either the $0.5 \mathrm{~Hz}-10 \mathrm{~Hz}$ or $3 \mathbf{k H z}-125 \mathrm{MHz}$ Multivibrator is operating the other is inhibited.

The External Gate is connected directly to the $3 \mathrm{kHz}-125 \mathrm{MHz}$ Multivibrator. When the rear panel gate switch is in the "ON" position, the multivibrator is inhibited until a gating signal appears at the External Gate connector. The multivibrator then generates clock pulses for a period of time equal to the gate pulse width.

The External Trigger circuitry accepts external synchronizing pulses and shapes them to provide a trigger for the Delay One-Shot and the Trigger Out circuit. The $0.5 \mathrm{~Hz}-10 \mathrm{~Hz}$ and $3 \mathrm{kHz}-125 \mathrm{MHz}$ Multivibrators are inhibited during External Trigger operation.

The Delay OnerShot generates a pulse whose width is adjustable by the front panel Delay controls. The output of this one-shot passes into the Single/Double Pulse circuitry. If this circuit is set in the Single Pulse mode a trigger pulse is generated coincident with the trailing edge of the delay pulse. If the circuit is set in the Double Pulse mode, an additional trigger pulse appears which is coincident with the leading edge of the delay pulse.

The output of the Single/Double circuitry triggers the Width One-Shot. This one-shot generates a pulse whose width is adjustable by front panel Width controls. The Output Pulse Shaper generates the proper pulse shape to drive the output circuitry. The output circuitry is a current switch which provides a current of -36 mA into the output terminating resistances.

$3.23 \mathrm{kHz}-125 \mathrm{MHz} \mathrm{MULTIVIBRATOR}$

Refer to Schematic 8020-1. Transistors QllQ18 function as a free-running multivibrator from $3 \mathrm{kHz}-125 \mathrm{MHz}$. The feedback loop for
regeneration is from the collector of $Q 11$ through R36 and C18 to the base of Q12. The emitter of Q12 is capacitively coupled to the emitter of Qll. The value of the coupling capacitor C33-C4l sets the frequency range. The base of Qll is coupled to the collector Ql2 through C17 and R35, which completes the feedback loop.

Transistors Q14 and Q15 are constant current sources for the emitters of Qll and Ql2. Transistors Q16 inhibits the multivibrator when the Frequency switch is in the 10 Hz or External/ Single Cycle position. Transistor Q13 is connected as an emitter follower to provide +9.3 V to the collectors of Qll and Q12.

The fine frequency setting of the multivibrator is controlled by adjusting the clamping levels of the collector waveform via D12 and D13. This clamping level is set by the Fine trimmer R58 via Q17, D14, and Q18. The function of D14 and Q18 is to compensate for the temperature coefficient of Q17, D12, and D13.

The output of the multivibrator appears across R33 and R34 and is derived from the collectors of Q1l and Q12 through R45 and R46. These pulses are referred to as clock pulses and drive the bases of Q24 and Q25.

$3.3 \quad 0.5 \mathrm{~Hz}-10 \mathrm{~Hz}$ MULTIVIBRATOR

Refer to Schematic 8020-1. The low frequency multivibrator of $0.5 \mathrm{~Hz}-10 \mathrm{~Hz}$ is provided by transistors Q54-Q58. The feedback loop is from the emitter of Q54 through C28 to the emitter of Q55, and from the collector of Q55 to the base of Q54. The timing capacitor is C28 which receives its charging current from the collector of Q56. The amount of charging current is set by the Fine frequency trimmer, R58, which controls the current through $\mathbf{Q 5 7}$ and Q56. The output of the multivibrator at the collector of Q54 drives the base of Q58. The collector of $Q 58$ provides a trigger to the base of Q1, which is the input to the External Trigger circuit. The description of the operation of this circuit is given next in Section 3.4.

3.4 EXTERNAL TRIGGER

Refer to Schematic 8020-1. Transistors Ql-Q6 function to shape an external trigger to provide a clock pulse in place of the free-runningmultivibrators. Transistors Ql and Q2 are in a Schmitt Trigger configuration. Transistor Q1 is normally conducting and $Q 2$ is normally nonconducting. This state is reversed when an External Trigger pulse is connected to the base of Q1. Transistor Q3 sets the bias on the base of Q2. Transistors Q4 and Q5 function as a
current s witch to increase the gain of the Schmitt Trigger. The current output of $Q 4$ and Q5 appears across R33 and R34 to produce pulses to trigger the bases of Q24 and Q25. Transistor Q6 functions as an inhibit gate for the External Trigger circuit when the Frequencyswitch is in any position except External or 10 Hz . Transistor Q53 inhibits the external trigger circuit when the gating circuit is operating.

3.5 EXTERNAL GATE

Refer to Schematic 8020-1. Transistors Q7-Q10 function to gate off the $3 \mathrm{kHz}-125 \mathrm{MHz}$ multivibrator during a period of time an external gate signal is present. Transistors Q7 and Q8 function as a Schmitt Trigger. During the gated mode of operation, $Q 7$ is normally conducting and $Q 8$ is non-conducting. A negative gate at the base of $Q 7$ reverses this state. Transistor Q9 operates as an emitter-follower to provide the bias for the base of Q8. The circuit functions in the following manner:

When the GATE/ON-OFF switch is in the OFF position, the voltage at the base of $Q 9 \mathrm{is}+1.4 \mathrm{~V}$. The voltage at the base of $Q 8$ is +0.85 V . The collector of $\mathrm{Q8}$ is +2.6 V and the emitter of Q10 is +2.0 V . Diode D7 is back-biased and the multivibrator is unaffected by a gate signal.

When the GATE/ON-OFF switch is in the ON position, the voltage at the base of $Q 9$ is +0.2 V which produces a voltage of -0.4 V at the base of Q8. The collector of Q8 is at +6.4 V and the emitter of Q10 is at +5.8 V . This voltage, through diode D7, clamps the collector of Q14 and the multivibrator is inhibited. When a negative gate pulse appears at the base of Q7, these conditions are reversed and the emitter of Ql0 shifts to $\mathbf{+ 2 . 0} \mathrm{V}$. Diode D7 is backbiased and the multivibrator functions for a period of time equal to the gate pulse width.

3.6 DELAY LINE DRIVER \& TRIGGER OUT

Refer to Schematic 8020-2. The clock pulses from the frequency multivibrators or external trigger circuit provide complementary signals which drive the bases of Q24 and Q25. Transistors Q24 and Q25 are in a current- switch configuration and their purpose is to both shape the pulses for the Trig Out (Trigger Out) circuits and to drive the Delay One-Shot.

The pulses at the collector of Q24 are delayed for 8 ns through DL-l and then trigger the bases of Q19 and Q21. Transistors Q19, Q20, Q21, and Q22 function as current switches to provide Trigger Out pulses on both of the front and rear panels. Transistor Q23 is an emitter-follower to provide -2.7 V to the bases of Q19 and Q21.

The bases of $Q 20$ and $Q 22$ are at -2.5 V which is provided by the voltage drop across D 19 . The output pulses at the collectors of Q20 and Q22 appear at the two TRIG OUT connectors. Diodes D17 and D18 at the collector of Q20 (and diodes D 20 and D21 at the collector of Q22) provide a return path to ground if the TRIG OUT connector is not terminated.

The pulses at the collector of Q25 function to trigger the Delay One-Shot. At the collector of Q25 is a shorted delay line DL-2, with a double transit time of 4 nsec . This provides a clipped pulse of approximately 3 ns width at half-height. This pulse is passed through emitter-follower Q26 and then triggers the Delay One-Shot, Q27Q31.

3.7 DELAY ONE-SHOT

Refer to Schematic 8020-2. Transistors Q27, Q28 and Q29 form the regenerative loop for the Delay One-Shot. Before a trigger pulse arrives, the base of Q27 is at. 31 Vand the base of Q28 is at +.65V. Transistor Q27 is nonconducting and $Q 28$ is in conduction. $A+0.6 \mathrm{~V}$ trigger pulse at the base of Q27 starts to reverse this state and the collector of Q27 goes negative. This excursion passes through emitter-follower Q29, through timing capacitors C64-C72, and then to the base of Q28. This pulse cuts off Q28 which causes Q27 to go into full conduction. A quasi-stable state now exists until the timing capacitor charges up through R 87 and R82. When the base of Q28 nearly reaches $0 \mathrm{~V}, Q 28$ starts to conduct and $Q 27$ starts to cut off. The transistors, by regenerative action, then switch back to their inital states. Transistor Q29 is a low impedance source to rapidlydischarge the timing capacitor to its initial state.

The coarse timing period of the quasi-stable state is provided by front panel selection of one of the timing capacitors, C64-C72. The fine timing is obtained by controlling the amplitude of the voltage s wing at the collector of Q27 via D25. Diode D25 obtains its clamping level via emitter-follower Q30, emitter-follower Q31, and trimmer R95. Transistor Q31 compensates for the temperature coefficient of Q30 and D25.

The bias of +.65 V at the base of 028 is obtained from D22 and R82. The bias of +.31 V at the base of Q27 is obtained from D38, R174, and R175.

The +4.5 V collector supply voltage for $Q 27$ and Q28 is obtained from emitter-follower $\mathbf{Q 5 1}$ (on Schematic 8020-3).

The outputs of the Delay One-Shot are two complementary pulses -- one at the collector of $\mathbf{Q 2 7}$ and the other at the collector of Q28.

3.8 DOUBLE PULSE CIRCUITRY

The two output pulses from the Delay One-Shot drive current-switch Q32 and Q33. At the collectors of Q32 and Q33 are shorted clipping lines which provide bipolar, complementary pulses of about 4 ng width. The positive 4 ns pulses at the collectors of Q32 and Q33 occur at the beginning and end of the Delay One-Shot pulse, respectively. These pulses then pass to a gating circuit which permits either one or both pulses to pass.

If the SINGLE/DOUBLE PULSE toggle is in the SINGLE PULSE position the base of Q34 goes positive through R106. Transistor $Q 34$ conducts and the collector of Q32 is held at nearly 0 V . This shorts out the pulse at the collector of Q32. However, the pulse at the collector of Q33 passes through diode D 29, emitter-follower Q36 and then on to trigger the base of Q39. The function of D29 is to bias on Q36 slightly. The negative excursion of the bipolar trigger pulse is below the conduction threshold and does not appear at the emitter of Q36.

If the SINGLE/DOUBLE PULSE toggle is in the Double Pulse position, the base of Q34 is at 0 V and the transistor does not conduct. The trigger pulse at the collector of Q32 then appears at the emitter of Q35 in a similar route as described in the preceding paragraphs. The two trigger pulses then appear at the base of Q39 with a time delay set by the Delay controls to provide a double pulse operation.

3.9 WIDTH ONE-SHOT

The Width One-Shot, Q38-Q42, functions in an identical manner to the Delay One-Shot described above in Section 3.7. The output of the Width One-Shot is at the collector of Q38. This pulse is delayed from the TRIG OUT pulse as set by front panel Delay controls and has a width set by front panel Width controls. It is next shaped by the Output Pulse shaper for the output circuitry.

3.10 OUTPUT PULSE SHAPER \& OUTPUT CIRCUITRY

Transistor Q43 and Q44 are a current-switch which receives the Width One-Shot pulse. The base of Q44 is biaaed at +3.9 V by aivider R170, R159. The positive pulse at the base of Q43 causes a reversal of state and a negative pulse appears at the collector of Q43. This
pulse, in turn, switches the output currentswitch, Q46 and Q47. A negative pulse appears at the collector of $Q 47$ which passes to the Output connectors. Transistor Q45 is an emitterfollower to provide -2.7 V collector supply voltage for Q43 and Q44.

Transistor Q48 is a constant current supply for the output current-switch Q46 and Q47. The output amplitude is controlled by adjusting the AMPLITUDE trimmer at the base of Q48. This trimmer controls the amount of current being switched into the output load resistance.

Transistor Q49 is an emitter-follower to provide the bias level for the base of Q47. This bias level may be adjusted internally by varying R152, the Output Drive trimmer. This adjustment is adjusted to achieve the best compromise between output rise time and pulse top aberrations.

3.11 OTHER CIRCUIT \& CONSIDERATIONS

Emitter-follower, Q51 (Schematic 8020-3) provides the +4.5 V supply for the instrument. Note that 20 mA of current for the +4.5 V bus comes from the +24 V supply via R151. Another approximately 20 mA comes from $\mathbf{Q 5 1}$ whose main function is to regulate this bus.

Resistors R141, R156, and R157 (Schematic 8020-3) are provided to nearly equalize the current from all power supply buses for optimum utilization of the NIM power supply.

3.12 SERVICE

If service is required on the Model 8020 refer to the schematics for the proper waveforms and voltages. A. 50 MHz oscillos cope and a 350 ps sampling oscilloscope is required to properly trouble shoot this instrument.

When circuit tracing it is particularlynecessary to observe the $3-4 \mathrm{~ns}$ wide trigger pulse has a minimum amplitude of 0.6 V at the inputs of the Delay and Width One-shots (bases of Q27 and Q28).

There is one adjustment trimmer in the Model 8020, R 152 which is at the rear of the P.C. board next to the power connector. This trimmer adjusts the bias level on the output current switch. While the output pulse is observed on a sampling oscilloscope adjust the trimmer for the best compromise between the fastest output rise time and minimum pulse top aberrations. The correct setting will provide 1 ns output pulse rise time and pulse top aberrations of less than 5\%.

Abbreviations

cer	ceramic	$\mu \mathbf{H}$	microhenry
comp	composition carbon	$\mu \mathrm{F}$	microfarad
EMC	electrolytic, metal case	$\mathbf{p F}$	picofarad
mic	mica	pos	positions
myl	mylar	tan	tantalum
\mathbf{k}	kilohm	V	working volts DC
meg	megohm	var	variable
m	milli	W	watts
MF	metal film		

The last number after each part description is the BERKELEY NUCLEONICS part number for reordering.

Capacitors

C1	. $05 \mu \mathrm{~F}$	cer	100 V		110-017	C37	. $0068 \mu \mathrm{~F}$	myl	600 V	10\%	114-009
C2	. $05 \mu \mathrm{~F}$	cer	100 V		110-017	C38	. $022 \mu \mathrm{~F}$.	myl	100 V	10\%	114-014
C3	10 pF	cer	1 kV		110-002	C39	. $068 \mu \mathrm{~F}$	myl	100 V	10\%	114-019
C4	180 pF	cer	1 kV		110-007	C40	. $22 \mu \mathrm{~F}$	\tan	35 V	10\%	122-007
C5	180 pF	cer	1 kV		110-007	C41	. $68 \mu \mathrm{~F}$	\tan	$35 . \mathrm{V}$	10\%	122-009
C6	180 pF	cer	1 kV		110-007	C43	. $05 \mu \mathrm{~F}$	cer	100 V		110-017
C7	180 pF	cer	1 kV		110-007	C44	10 pF	cer	1 kV		110-002
C8	5 pF	cer	1 kV		110-001	C45	180 pF	cer	1 kV		110-007
C9	180 pF	cer	1 kV		110-007	C46	180 pF	cer	1 kV		110-007
C10	5 pF	cer	1 kV		110-001	C47	180 pF	cer	1 kV		110-007
C11	. $05 \mu \mathrm{~F}$	cer	100 V		110-017	C48	180 pF	cer	1 kV		110-007
C12	180 pF	cer	1 kV		110-007	C49	180 pF	cer	1 kV		110-007
C13	180 pF	cer	1 kV		110-007	C50	10 pF	cer	1 kV		110-002
C14	180 pF	cer	1 kV		110-007	C51	180 pF	cer	1 kV		110-007
C15	5 pF	cer	1 kV		110-001	C52	180 pF	cer	1 kV		110-007
C16	180 pF	cer	1 kV		110-007	C53	5 pF	cer	1 kV		110-001
C17	100 pF	cer	1 kV		110-006	C54	180 pF	cer	1 kV		110-007
C18	100 pF	cer	1 kV		110-006	C55	180 pF	cer	1 kV		110-007
C18	2.5-10 pF	var			130-004	C56	180 pF	cer	1 kV		110-007
C20	180 pF	cer	1 kV		110-0.07	C57	180 pF	cer	1 kV		110-007
C21	180 pF	cer	1 kV		110-007	C58	180 pF	cer	1 kV		110-007
C22	180 pF	cer	1 kV		110-007	C59	180 pF	cer	1 kV		110-007
C23	180 pF	cer	1 kV		110-007	C60	180 pF	cer	1 kV		110-007
C24	180 pF	cer	1 kV		110-007	C61	25 pF	cer	1 kV		110-003
C25	180 pF	cer	1 kV		110-007	C62	10 pF	mic	500 V	5\%	112-016
C26	180 pF	cer	1 kV		110-007	C63	180 pF	cer	1 kV		110-007
C27	180 pF	cer	1 kV		110-007	C64	. $33 \mu \mathrm{~F}$	\tan	35 V	10\%	122-008
C28	$25 \mu \mathrm{~F}$	elec	25 V		120-005	C65	$.1 \mu \mathrm{~F}$	myl	100 V	10\%	114-020
C29	180 pF	cer	1 kV		110-007	C66	$.033 \mu \mathrm{~F}$	myl	100 V	10\%	114-024
C30	180 pF	cer	1 kV		110-007	C67	$.01 \mu \mathrm{~F}$	myl	400 V	10\%	114-011
C31	180 pF	cer	1 kV		110-007	C68	. $0033 \mu \mathrm{~F}$	myl	600 V	10\%	114-005
C33	22 pF	mic	500 V	5\%	112-001	C69	$.001 \mu \mathrm{~F}$	myl	600 V	10\%	114-001
C34	100 pF	mic	500 V	5\%	112-004	C70	270 pF	mic	500 V	5\%	112-009
C35	430 pF	.mic	100 V	5\%	112-012	C71	68 pF	mic	500 V	5\%	112-018
C36	. $002 \mu \mathrm{~F}$	myl	600 V	10\%	114-002	C72	18 pF	mic	500 V	5\%	112-017

CAPACITORS (continued)

C75	180 pF	cer	1 kV		110-007	D1		1N4154			411-003
C76	180 pF	cer	1 kV		110-007	D2		1N4154			411-003
C77	10 pF	cer	1 kV		110-002	D3		1N4154			411-003
C78	180 pF	cer	1 kV		110-007	D4		1N4154			411-003
C79	180 pF	cer	1 kV		110-007	D5		1N4154			411-003
C80	180 pF	cer	1 kV		110-007	D6		1N4154			411-003
C81	180 pF	cer	1 kV		110-007	D7		FH1.100			415-001
C82	10 pF	cer	1 kV		110-002	D8		1N4154			411-003
C83	180 pF	cer	1 kV		110-007	D10		1N4154			411-003
C84	180 pF	cer	1 kV		110-007	D10		1N4154			411-003
						D11		1N4154			411-003
C85	10 pF	mic	500 V	5\%	112-016	D12		FH1100			415-001
C88	$.33 \mu \mathrm{~F}$	tan	$35 . \mathrm{V}$	10\%	122-008	D13		FH1100			415-001
C87	. $1 \mu \mathrm{~F}$	myl	100 V	10\%	114-020	D14		1N4154			411-003
C88	$.033 \mu \mathrm{~F}$	myl	100 V	10\%	114-024	D15		1N4154			411-003
C89	. $01 \mu \mathrm{~F}$	myl	400 V	10\%	114-011						
						D16		1N4154			411-003
C00	$.0033 \mu \mathrm{~F}$	myl	600 V	10\%	114-005	D17		$1 N 4154$ 1N4154			$411-003$ $411-003$
C91	$.001 \mu \mathrm{~F}$	myl	600 V	10\%	114-001	D19		IN4154			411-003
C92	270 pF	mic	500 V	5\%	112-009	D20		IN4154			411-003
C93	68 pF	mic	500 V	5\%	112-018	D20		1N4154			411-003
C94	10 pF	mic	500 V	5\%	112-016	D21		1N4154			411-003
						D22		FH1100			415-001
C96	180 pF	cer	1 kV		110-007	D23		1N4154			411-003
C99	180 pF	cer	1 kV		110-007	D24		1N4154			411-003
C100	180 pF	cer	1 kV		110-007	D25		FH1100			415-001
C101	180 pF	cer	1 kV		110-007						
C102	180 pF	cer	1 kV		110-007	D26		1N4154			411-003
						D28		1N4154			411-003
C103	5 pF	cer	1 kV		110-001	D29		$1 N 4154$			411-003
C104	. $05 \mu \mathrm{~F}$	cer	100 V		$110-017$	D30		FH1100			415-001
C105	180 pF	cer	1 kV		110-007	D31		1N4154			411-003
C106	180 pF	cer	1 kV		110-007	D32		1N4154			411-003
C107	. $05 \mu \mathrm{~F}$	cer	100 V		110-017	D33		FH1100			415-001
						D34		1N4154			411-003
						D35		1N4154			411-003
C108	20 pF 100 $\mu \mathrm{~F}$	cer	15 V		$110-018$ $120-007$	D37		1N4154			411-003
C110	180 pF	cer	1 kV		110-007	D40		1N5231			412-009
C111	180 pF	cer	1 kV		110-007	D41		FH1100			415-001
C112	$50 \mu F$	elec	25 V		120-006	D42		FH1100			415-001
C113	$50 \mu \mathrm{~F}$	elec	25 V		120-006	Indu	ctors				
C114	$50 \mu \mathrm{~F}$	elec	25 V		120-006						
C115	$50 \mu \mathrm{~F}$	elec	25 V		120-006	L1		. $33 \mu \mathrm{H}$			310-011
C116	180 pF	cer	1 kV		110-007	L2		$.22 \mu \mathrm{H}$			310-013
C117	180 pF	cer	1 kV		110-007	L3		. $22 \mu \mathrm{H}$			310-013
C118	180 pF	cer	1 kV		110-007	Resi	tors				
C119	180 pF	cer	1 kV		110-007						
C120	10 pF	cer	1 kV		110-002	R1	470 k	1/4 W	comp	5\%	213-474
C121	. $05 \mu \mathrm{~F}$	cer	100 V		110-017	R2	270 k	1/4 W	comp	5%	213-274
C122	. $05 \mu \mathrm{~F}$	cer	100 V		110-017	R3	10	1/4 W	comp	5\%	213-100
						R4	1 k	1/4 W	comp	5%	213-102
						R5	51	1/4 W	comp	5\%	213-510
C123	. $05 \mu \mathrm{~F}$	cer	100 V		110-017						
C124	180 pF	cer	1 kV		110-007	R6	51	1/4 W	comp	5%	213-510
C125	. $05 \mu \mathrm{~F}$	cer	100 V		110-017	R7	51	$1 / 4 \mathrm{~W}$	comp	5%	213-510
C126	. $05 \mu \mathrm{~F}$	cer	100 V		110-017	R8	1 k	1/4 W	comp	5%	213-102
C127	180 pF	cer	1 kV		110-007	R9	8.2 k	1/4 W	comp	5%	213-822
						R10	56	1/4 W	comp	5\%	213-560
C128	. $05 \mu \mathrm{~F}$	cer	100 V		110-017	R11	56	1/4 W	comp	5\%	213-560
C129	180 pF	cer	1 kV		110-007	Rt	${ }^{270}$	1/4 W	comp	5%	213-271
C130	10 pF	cer	1 kV		110-002	Ris	10 k	1/4 W	comp	5	213-103
C131	10 pF	cer	1 kV		110-002	R14	240	$1 / 4 \mathrm{~W}$	comp	5\%	213-241
C132	180 pF	cer	1 kV		110-007	R15	51	1/4 W	comp	5\%	213-510

RESISTORS (continued)

R16	22 k	1/4 W	comp	5\%	213-223	R76	510	1/4 W	comp	5\%	213-510
R17	15 k	1/4 W	comp	5\%	213-153	R77	150	$1 / 4 \mathrm{~W}$	comp	5\%	213-151
R18	33	1/4 W	comp	5%	213-330	R79	51	$1 / 4 \mathrm{~W}$	comp	5%	213-510
R19	51	1/4 W	comp	5\%	213-510	R80	560	$1 / 2 \mathrm{~W}$	comp	5\%	212-561
R20	51	1/4 W	comp	5\%	213-510	R81	56	1/4 W	comp	5\%	213-560
R21	51	1/4 W	comp	5\%	213-510	R82	2.7 k	$1 / 4 \mathrm{~W}$	comp	5\%	213-272
R22	1.2 k	1/4 W	comp	5\%	213-122	R83	4.7 k	1/4 W	comp	5\%	213-472
R23	8.2 k	1/4 W	comp	5\%	213-822	R84	5.6 k	1/4 W	comp	5\%	213-562
R24	27	1/4 W	comp	5\%	213-270	R85	10 k	1/4 W	comp	5%	213-103
R25	360	1/4 W	comp	5\%	213-361	R86	560	1/4.W	comp	5\%	213-561
R26	560	1/4 W	comp	5\%	213-561	R87	1.2 k	1/2 W	comp	5\%	212-122
R27	8.2 k	1/4 W	comp	5%	213-822	R88	1 k	$1 / 4 \mathrm{~W}$	comp	5\%	213-102
R28	1.8 k	1/4 W	comp	5\%	213-182	R89	390	$1 / 4 \mathrm{~W}$	comp	5%	213-381
R29	270	1/4 W	comp	5%	213-271	R90	91	$1 / 4 \mathrm{~W}$	comp	5%	213-910
R30	110	1/4 W	comp	5\%	213-111	R91	51	1/4 W	comp	5\%	213-510
R31	1.5 k	1/2 W	comp	5\%	212-152	R92	4.7 k	$1 / 4 \mathrm{~W}$	comp	5\%	213-472
R32	6.8 k	1/4 W	comp	5\%	213-682	R93	2.2 k	1/4 W	comp	5\%	213-222
R33	150	1/4 W	comp	5%	213-151	R94	5.6 k	1/4 W	comp	5\%	213-562
R34	150	1/4 W	comp	5%	213-151	R95	1 k	1 W	trimmer		244-017
R35	750	1/4 W	comp	5\%	213-751	R96	1 k	1/4 W	comp	5\%	213-102
R36	750	1/4 W	comp	5\%	213-751	R98	470	1/4 W	comp	5\%	213-471
R37	39	1/4 W	comp	5%	213-390	R102	470	1/4 W	comp	5\%	213-471
R38	39	1/4 W	comp	5%	213-390	R103	51	1/4 W	comp	5\%	213-510
R39	470	1/4 W	comp	5\%	213-471	R104	91	$1 / 4 \mathrm{~W}$	comp	5\%	213-910
$\mathbf{R 4 0}$	6.8 k	$1 / 4 \mathrm{~W}$	comp	5\%	213-682	R105	100	1/4 W	comp	5\%	213-101
R41	220	1/4 W	comp	5\%	213-221	R106	10 k	1/4 W	comp	5\%	213-103
R42	10 k	1/4 W	comp	5\%	213-103	R107	4.7 k	1/4 W	comp	5%	213-472
R43	1 k	1/4 W	comp	5\%	213-102	R108	4.7 k	1/4 W	comp	5%	213-472
R44	4.7 k	1/4 W	comp	5\%	213-472	R109	51	$1 / 4 \mathrm{~W}$	comp	5\%	213-510
R45	22	1/4. W	comp	5\%	213-220	R110	56	1/4 W	comp	5\%	213-560
R46	22	1/4 W	comp	5\%	213-220	R111	100	1/4 W	comp	5\%	213-101
R47	390	1/4 W	comp	5%	213-391	R112	33	1/4 W	comp	5\%	213-330
R48	470	1/4 W	comp	5\%	213-471	R113	560	1/2 W	comp	5%	212-561
R49	10 k	1/4 W	comp	5%	213-103	R114	56	1/4 W	comp	5\%	213-560
R50	15 k	1/4 W	comp	5\%	213-153	R115	2.7 k	1/4 W	comp	5\%	213-272
R51	4.7 k	1/4 W	comp	5\%	213-472	R116	15 k	1/4 W	comp	5\%	213-153
R52	4.7 k	1/4 W	comp	5\%	213-472	R117	10 k	1/4 W	comp	5%	213-103
R53	1 k	1/4 W	comp	5\%	213-102	R118	560	1/4 W	comp	5\%	213-561
R54	1.2 k	1/4 W	comp	5%	213-122	R119	5.6 k	1/4 W	comp	5%	213-562
R55	39 k	1/4 W	comp	5%	213-393	R120	51	1/4 W	comp	5\%	213-510
R56	2.2 k	$1 / 4 \mathrm{~W}$	comp	5\%	213-222	R121	1.2 k	1/2 W	comp	5\%	212-122
R57	1.2 k	1/4 W	comp	5\%	213-122	R122	4.7 k	1/4 W	comp	5%	213-472
R58	1 k	1 W	trimmer		244-017	R123	2.2 k	1/4 W	comp	5%	213-222
R59	820	1/4 W	comp	5\%	213-821	R124	22 k	1/4 W	comp	5%	213-223
R60	1.6 k	1/4 W	comp	5\%	213-162	R125	1 k	1/4 W	comp	5\%	213-102
R61	10 k	1/4 W	comp	5\%	213-103	R126	1 k	1 W	trimmer		244-017
R62	910	1/2 W	comp	5%	212-911	R127	5.6 k	1/4 W	comp	5\%	213-562
R63	51	1/4 W	comp	5\%	213-510	R132	3.3 k	1/4 W	comp	5%	213-332
R64	51	1/4 W	comp	5\%	213-510	R133	7.5 k	1/4 W	comp	5\%	213-752
R65	51	1/4 W	comp	5\%	213-510	R134	100	1/4 W	comp	5\%	213-101
R66	510	1/4 W	comp	5\%	213-511	R136	33	1/4 W	comp	5%	213-330
R67	100	1/4 W	comp	5%	213-101	R137	51	1/4 W	comp	5%	213-510
R68	4.7 k	1/4 W	comp	5\%	213-472	R138	51	1/4 W	comp	5%	213-510
R69	1 k	$1 / 4 \mathrm{~W}$	comp	5\%	213-102	R139	330	1/2 W	comp	5%	212-331
R70	470	1/4 W	comp	5\%	213-471	R141	180	2 W	comp	5\%	210-181
R71	15 k	1/4 W	comp	5\%	213-153	R142	680	1/4 W	comp	5\%	213-681
R72	6.8 k	$1 / 4 \mathrm{~W}$	comp	5\%	213-682	R143	1 k	1 W	trimmer		244-017
R73	51	1/4 W	comp	5\%	213-510	R144	130	1/4 W	comp	5\%	213-131
R74	51	1/4 W	comp	5\%	213-510	R145	3.3 k	1/4 W	comp	5%	213-332
R75	51	1/4 W	comp	5%	213-510	R146	2.4 k	1/4 W	comp	5\%	213-242

RESIS	ORS (ntinued)				$\begin{aligned} & \text { Q16 } \\ & \text { Q17 } \end{aligned}$	$\begin{aligned} & \text { MPS2924 } \\ & \text { MPS6531 } \end{aligned}$	$\begin{aligned} & 430-009 \\ & 430-017 \end{aligned}$
R147	470	1 W	comp	5\%	211-471	Q18	MPS3638	430-010
R148	39	1/4 W	comp	5%	213-390	Q19	2N5179	430-025
R149	91	$1 / 4$ W	comp	5%	213-910	Q20	2N5179	430-025
R150	91	$1 / 4 \mathrm{~W}$	comp	5\%	213-910			
R151	750	1 W	comp	5\%	211-751	Q21	2N5179	430-025
R152	10 k	1 W	trimmer		244-013	Q22	2N5179	430-025
R153	15 k	$1 / 4$ W	comp	5%	213-153	Q23	MPS6534	430-018
R154	470	$1 / 4 \mathrm{~W}$	comp	5%	213-471	Q24	2N4258	$430-030$ $430-030$
R155	1.8 k	1/4W	comp	5%	213-182	Q25	2N4258	430-030
R156	180	2 W	comp	5\%	210-181			
						Q26	2N5179	430-025
R157	180	2 W	comp	5\%	210-181	Q27	2N5178	430-025
R158	33	1/4 W	comp	5\%	213-330	Q28	2N5179	430-025
$R 159$	4.7 k	1/4 W	comp	5\%	213-472	Q29	2N5179	430-025
R160	33	1/4W	comp	5%	213-330	Q30	MPS6531	430-017
R161	1.8 k	1/4 W	comp	5\%	213-182			
R162	10 k	1/4 W	comp	5%	213-103	Q31	MPS3638	430-010
R168	51	$1 / 4 \mathrm{~W}$	comp	5\%	213-510	032	2N4358	430-030
R169	51	1/4 W	comp	5\%	213-510	Q34	2N4208	$430-030$ $430-025$
R170	10	1/4W	comp	5\%	213-100	Q35	2N5179	430-025
R171	51	1/4 W	comp	5\%	213-510	Q35	2N5178	430-025
R172	10	1/4 W	comp	5\%	213-100	036	2N5179	430-025
R173	2.7 k	$1 / 4$ W	comp	5%	213-272	Q37	2N5179	430-025
R174	33	$1 / 4 W$	comp	5%	213-330	038	2N5178	430-025
R175	3.9 k	1/4.W	comp	5%	213-382	Q39	MPS6534	430-018
R176	3.9 k	$1 / 4$ W	comp	5%	213-392	Q40	2N5179	430-025
R177	3.9 k	$1 / 4 \mathrm{~W}$	comp	5\%	213-392			
R178	120	1/4 W	comp	5\%	213-121	041	MPS6531	430-017
						Q42	MPS3638	430-010
Tran	istors					Q43	2N4959	430-022
Trans	istors					Q44	2N4959	430-022
Q1		2N517			430-025	Q45	MPS6534	430-018
Q2		2N51			430-025			
Q3		2N517			430-025	Q46	2N5109	430-024
Q4		2N51			430-025	Q47	2N5109	430-024
Q5		2N51			430-025	Q48	2N2219	430-006
						Q49	MPS6531	430-017
Q6		MPS2			430-009	Q50	MPS6531	430-017
Q1		2N51			430-025		MP0651	430-017
08		2N51			430-025	Q51	MP86531	430-017
Q8		2N517			430-025	Q52	MPS6534	430-018
Q10		2N51			480-025	Q53	2N5179	430-025
						Q54	MPS6518	430-016
Q11		2N517			430-025	Q55	MPS6518	430-016
Q12		2N517			430-025			-30-016
Q13		MPS6			430-017	Q56	MPS6518	430-016
Q14		2N51			430-025	Q57	MPS6518	430-016
Q15		2N51'			430-025	Q58	MPS2924	430-009

NOTES: SEE DRAWING 8ORO-3

[^0]: *This logic level has been adopted by the U. S. AEC committee on nuclear instrument modules. See Standard Nuclear Instrument Modules, Report TID-20893 Rev. 3, available from the U.S. Government Printing Office, Washington, D. C. 20402 for 40 cents.

