Tektronix
 COMMITTED TO EXCELLENCE

WARNING

THE FOLLOWING SERVICING INSTRUCTIONS ARE FOR USE BY QUALIFIED PERSONNEL ONLY. TO AVOID PERSONAL INJURY, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO. REFER TO OPERATORS SAFETY SUMMARY AND SERVICE SAFETY SUMMARY PRIOR TO PERFORMING ANY SERVICE.

> Tektronix
> National Marketing Center for Product Order Information, call

PLEASE CHECK FOR CHANGE INFORMATION AT THE REAR OF THIS MANUAL.

2235 OSCILLOSCOPE
SERVICE

Copyright © 1982 Tektronix, Inc. All rights reserved. Contents of this publication may not be reproduced in any form without the written permission of Tektronix, Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign patents and/or pending patents.

TEKTRONIX, TEK. SCOPE-MOBILE. and are registered trademarks of Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K. Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

INSTRUMENT SERIAL NUMBERS
Each instrument has a serial number on a panel insert, tag, or stamped on the chassis. The first number or letter designates the country of manufacture. The last five digits of the serial number are assigned sequentially and are unique to each instrument. Those manufactured in the United States have six unique digits. The country of manufacture is identified as follows:

BOO0000 Tektronix, Inc., Beaverton, Oregon, USA
100000 Tektronix Guernsey, Ltd., Channel Islands
200000 Tektronix United Kingdom, Ltd., London
300000 Sony/Tektronix, Japan
700000 Tektronix Holland, NV, Heerenveen, The Netherlands

TABLE OF CONTENTS

Page Page
LIST OF ILLUSTRATIONS iii
LIST OF TABLES iii
OPERATORS SAFETY SUMMARY iv
SERVICING SAFETY SUMMARY v
SECTION 1 SPECIFICATION
INTRODUCTION I-I
ACCESSORIES 1-1
PERFORMANCE CONDITIONS |-I
SECTION 2 OPERATING INSTRUCTIONS
PREPARATION FOR USE 2-1
SAFETY 2-1
LINE VOLTAGE 2-1
POWER CORD 2-1
LINE FUSE 2-1
INSTRUMENT COOLING 2-2
CONTROLS, CONNECTORS, AND INDICATORS 2-2
POWER, DISPLAY, AND PROBE ADJUST 2-2
VERTICAL 2-3
HORIZONTAL 2-4
TRIGGER 2-6
REAR PANEL 2-7
OPERATING CONSIDERATIONS 2-8
GRATICULE 2-8
GROUNDING 2-6
SIGNAL CONNECTIONS 2-8
INPUT COUPLING CAPACITOR
PRECHARGING 2-6
OPERATOR'S ADJUSTMENTS 2-9
INTRODUCTION 2-9
TRACE ROTATION 2-9
PROBE COMPENSATION 2-9
OSCILLOSCOPE DISPLAYS 2-10
INTRODUCTION 2-10
BASELINE TRACE 2-10
SIGNAL DISPLAY 2-11
MAGNIFIED-SWEEP DISPLAY 2-11
DELAYED-SWEEP DISPLAY 2-11
DELAYED-SWEEP
MEASUREMENTS 2-11
SINGLE-SWEEP DISPLAY 2-12
X-Y DISPLAY 2-12
TV SIGNAL DISPLAYS 2-12

TABLE OF CONTENTS (cont)

		Page			Page
SECTION 3	THEORY OF OPERATION (cont)		SECTION 6	MAINTENANCE (cont)	
	POWER SUPPLY AND PROBE			INTRODUCTION	6-2
	ADJUST	3-17		$G E N E R A L C A R E$	6-2
	Power Input	3-17		INSPECTION AND CLEANING	6-2
	Prereguiator	3-17		LUBRICATION	6-4
	Inverter	3.18		SEMICONDUCTOR CHECKS	6-4
	Crt Supply	3-18		PERIODIC READJUSTMENT	6-4
	Focus Circuit	3-18		TR O U B LES H OOTING	6-5
	Low-Voltage Supplies	3-19		INTRODUCTION 6	5
	Probe Adjust	3-19		TROUBLESHOOTING AIDS	6-5
				TROUBLESHOOTING	
				EQUIPMENT	6-6
SECTION 4	PERFORMANCE CHECK			TROUBLESHOOTING	
	PROCEDURE			TECHNIQUES	6-6
	INTRODUCTION	4-1		CORRECTIVE MAINTENANCE	6-10
	PURPOSE	4-1		INTRODUCTION $6 \quad-1$	0
	STRUCTURE	4-1		MAINTENANCE PRECAUTIONS	6-10
	TEST EQUIPMENT	4-1		OBTAINING REPLACEMENT	
	LIMITS AND TOLERANCES	4-1		PARTS	6-10
	PREPARATION FOR CHECKS	4-2		MAINTENANCE AIDS 6 -	10
	INTRODUCTION TO			INTERCONNECTIONS	6-10
	PERFORMANCE CHECK STEPS	4-3		TRANSISTORS AND	
	VERTICAL	4-4		INTEGRATED CIRCUITS	6-11
	HORIZONTAL	4-8		SOLDERING TECHNIQUES	6-12
	TRIGGER	4-12		REMOVAL AND REPLACEMENT	
	EXTERNAL Z-AXIS AND PROBE			I N S T R U C T I O N S	6-13
	ADJUST	4-15		$C \quad a \quad b \quad i \quad n \quad e$	6-13
				Cathode-Ray Tube	6-13
SECTION 5	ADJUSTMENT PROCEDURE			Power-Supply Shield	6-14
	INTRODUCTION	5-1		Filter Circuit Board	6-14
	PURPOSE	5-1		Alt Sweep Circuit Board 6 -	15
	STRUCTURE	5-1		Attenuator Circuit Board	6-1 5
	TEST EQUIPMENT	5-1		Timing Circuit Board	6-1 6
	LIMITS AND TOLERANCES	5-1		Bottom Shield, Attenuator and	
	ADJUSTMENT INTERACTION	5-1		Timing Circuit-Board Module	6-17
	PREPARATION FOR			Front-Panel Circuit Board	6-17
	A D J U S T M E N T	5-1		Main Circuit Board	8-18
	INDEX TO ADJUSTMENT			REPACKAGING FOR SHIPMENT	T 6-20
	PROCEDURE STEPS	5-3		SELECTABLE COMPONENTS	6-20
	POWER SUPPLY AND CRT DISPLAY	5-4			
	VERTICAL	5-8	SECTION 7	OPTIONS	
	HORIZONTAL	5-14			
	TRIGGER	5-20	SECTION 6	REPLACEABLE ELECTRICAL PARTS	
	EXTERNAL Z-AXIS AND PROBE		SECTION 9	DIAGRAMS	
SECTION 6	MAINTENANCE		SECTION 10 REPLACEABLE MECHANICAL PARTS Accessories		
	STATIC-SENSITIVE COMPONENTS 8-1				
	PREVENTIVE MAINTENANCE	8-2		CHANGE INFORMATION	

LIST OF ILLUSTRATIONS

Figure
Page
The 2235 Oscilloscope. vi
1-1 Maximum input voltage vs. frequency derating curve for CH 1 ORX,CH 2 OR Y, and EXT INPUT connectors I-7
2-1 Voltage, power cord, and fuse data 2-1
2-2 Fuse holder and power cord connector 2-2
2-3 Power, display, and probe adjust controls connector and indicator , . 2-3
2-4 Vertical controls and connectors 2-4
2-5 Horizontalcontrols 2-5
2-6 Trigger controls, connector, and indicator 2-6

Figure
Page

2-7 Rear-panel connector 2-7
2-8 Graticule measurement markings 2-8
2-9 Probe compensation . 2-10
3-1 Block diagram of the Vertical Attenuators 3-4
3-2 Block diagram of the Channel Switching circuitry
3-3 Block diagram of the A Sweep Generator $\begin{aligned} & \text { 3-10 Logic Circuitry } \\ & \text { and }\end{aligned}$
3-4 Block diagram of the Horizontal Amplifier 3-14
3-5 Simplified diagram of the Dc Restorer circuitry
6-1 Multi-connector holder orientation 6-6

LIST OF TABLES

Table		Page
I-I	Electrical Characteristics	1-2
1-2	Environmental Characteristics	1.8
1-3	Physical Characteristics	I-9
4-1	Test Equipment Required	4-2
4-2	Deflection Accuracy Limits	4-4
4-3	Settings for Bandwidth Checks	4-6
4-4	Settings for Timing Accuracy Checks	4-9
4-5	Settings for Delay Time Accuracy Checks	4-10
4-6	Switch Combinations for A Triggering	
	Checks	4-12
5-1	Adjustmentinteractions	5-2
5-2	Power Supply Limits	5-4
53	Deflection Accuracy Limits	5-8

53

Page

Table

Page
5-4 Attenuator Compensation Adjustments 5-9
5-5 Settings for Bandwidth Checks 5-12
5-6 Settings for Timing Accuracy Checks 5-17
5-7 Settings for Delay Time Accuracy Checks \quad 5-18
5-8 Switch Combinations for A Triggering Checks5-21

6-I Relative Susceptibility to Static-Discharge Damage6-1

6-2

External Inspection Checklist 6-3

6-3 Internal Inspection Checklist 6-3
6-4 Power Supply Limits and Ripple 6-8
6-5 M a i n t e n a n c e A id s 6-11
6-6 Trigger Bandwidth Alteration 6-20

OPERATORS SAFETY SUMMARY

The general safety information in this part of the summary is for both operating and servicing personnel. Specific warnings and cautions will be found throughout the manual where they apply and do not appear in this summary.

Terms in This Manual

CAUTION statements identify conditions or practices that could result in damage to the equipment or other property.

WARNING statements identify conditions or practices that could result in personal injury or loss of life.

Terms as Marked on Equipment

CAUTION indicates a personal injury hazard not immediately accessible as one reads the markings, or a hazard to property, including the equipment itself.

DANGER indicates a personal injury hazard immediately accessible as one reads the marking.

Symbols in This Manual

This symbol indicates where applicable

4cautionary or other information is to be found For maximum input voltage see Table l-1.

Symbols as Marked on Equipment

DANGER - High voltage.

Protective ground (earth) terminal.

A ATTENTION - Refer to manual.

Power Source

This product is intended to operate from a power source that does not apply more than $\mathbf{2 5 0}$ volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

Grounding the Product

This product is grounded through the grounding conductor of the power cord. To avoid electrical shock, plug the power cord into a properly wired receptable before connecting to the product input or output terminals. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

Danger Arising From Loss of Ground

Upon loss of the protective-ground connection, all accessible conductive parts (including knobs and controls that may appear to be insulating) can render an electric shock.

Use the Proper Power Cord

Use only the power cord and connector specified for your product.

Use only a power cord that is in good condition.
For detailed information on power cords and connectors see Figure 2-1.

Use the Proper Fuse

To avoid fire hazard, use only a fuse of the correct type, voltage rating and current rating as specified in the parts list for your product.

Do Not Operate in Explosive Atmospheres

To avoid explosion, do not operate this product in an explosive atmosphere unless it has been specifically certified for such operation.

Do Not Remove Covers or Panels

To avoid personal injury, do not remove the product covers or panels. Do not operate the product without the covers and panels properly installed.

SERVICING SAFETY SUMMARY FOR QUALIFIED SERVICE PERSONNEL ONLY

Refer also to the preceding Operators Safety Summary.

Do Not Service Alone

Do not perform internal service or adjustment of this product unless another person capable of rendering first aid and resuscitation is present.

Use Care When Servicing With Power On

Dangerous voltages exist at several points in this product. To avoid personal injury, do not touch exposed connections or components while power is on.

Disconnect power before removing protective panels, soldaring, or replacing components.

Power Source

This product is intended to operate from a power source that does not apply more than 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding connector in the power cord is essential for safe operation.

SPECIFICATION

INTRODUCTION

The TEKTRONIX 2235 oscilloscope is a rugged, lightweight, dual-channel, $100-\mathrm{MHz}$ instrument that features a bright, sharply defined trace on an 80 -by $100-\mathrm{mm}$ cathoderay tube (crt). Its vertical system provides calibrated deflection factors from 2 mV per division to 5 V per division. Trigger circuits enable stable triggering over the full bandwidth of the vertical system. The horizontal system provides calibrated sweep speeds from 0.5 s per division to 50 ns per division along with delayed-sweep features for accurate relative-time measurements. A X10 magnifier extends the maximum sweep speed to 5 ns per division.

ACCESSORIES

The instrument is shipped with the following standard accessories:

1 Operators Manual
2 Probe packages
1 Service Manual
For part numbers and further information about both standard and optional accessories, refer to the "Options and Accessories" section (Section 5) of this manual. Your Tektronix representative, local Tektronix Field Office, or Tektronix product catalog can also provide accessories information.

PERFORMANCE CONDITIONS

The following electrical characteristics (Table I-I) are valid for the 2235 when it has been adjusted at an ambient temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$, has had a warmup period of at least 20 minutes, and is operating at an ambient temperature between $0^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}$ (unless otherwise noted).

Items listed in the 'Performance Requirements" column are verifiable qualitative or quantitative limits, while items listed in the "Supplemental Information" column are either explanatory notes, calibration setup descriptions, performance characteristics for which no absolute limits are specified, or characteristics that are impractical to check.

Environmental characteristics are given in Table l-2. The 2235 meets the requirements of MIL-T-28800C, paragraphs 4.5.5.1.3. 4.5.5.1.4, and 4.5.5.1.2.2 for Type III, Class 5 equipment, except where otherwise noted.

Physical characteristics of the instrument are listed in Table l-3.

Table I-I
Electrical Characteristics

${ }^{\text {PPerformanceRequirementnotcheckedinServiceManuel. }}$

Table I-I (cont)

Characteristics	Performance Requirements	Supplemental Information
VERTICAL DEFLECTION SYSTEM		
Bandwidth Limiter	Upper limits (-3 dB) bandpass at $20 \mathrm{MHz} \pm 10 \%$.	
Chop Mode Switching Rate	$500 \mathrm{kHz} \pm 30 \%$. ${ }^{\text {a }}$	
Input Characteristics Resistance	$1 \mathrm{M} \Omega \pm 2 \%{ }^{\text {a }}$	
Capacitance	$20 \mathrm{pF} \pm 2 \mathrm{pF} \mathrm{m}^{\text {a }}$	
Maximum Safe Input Voltage \square DC Coupled	See Figure I-I for derating curve. 400 V (dc + peak ac) or 800 V ac p-p to 10 kHz or less. 8	
AC Coupled	400 V (dc + peak ac) or 800 V ac p-p to 10 kHz or less. ${ }^{\text {a }}$	
Common-Mode Rejection Ratio (CMRR)	At least 20 to 1 at 50 MHz .	Checked at 10 mV per division for common-mode signals of 6 divisions or less with VOLTS/DIV Variable control adjusted for best CMRR at 50 kHz .
Input Current	1.0 nA or less (0.5 division trace shift at 2 mV per division). ${ }^{\text {a }}$	
Trace Shift with Attenuator Rotation	0.75 division or less. ${ }^{\text {a }}$	VOLTS/DIV Variable control in CAL detent.
Trace Shift as VOLTS/DIV Variable Control is Rotated	1.0 division or less. ${ }^{\text {a }}$	
Trace Shift with Invert	1.5 division or less. ${ }^{\text {a }}$	
Channel Isolation	Greater than 100 to 1 at 50 MHz .	
POSITION Control Range	At least ± 11 division from graticule center.	

*PerformanceRequirement not checked in Service Manual.

Table I-I (cont)

Characteristics	Performance Requirements			Supplemental Information
TRIGGERSYSTEM				
A TRIGGER Sensitivity P-P AUTO and NORM/TV LINE Modes				External trigger signal from a 50Ω source driving a 50Ω coaxial cable terminated in 50Ω at the input connector
	10 MHz	60 MHz	100 MHz	
Internal	0.3 div	1.0 div	1.5 div	
External	35 mV	120 mV	200 mV	
Lowest Useable Frequency in P-P AUTO Mode	20 Hz with 1.0 division internal or 100 mV external. 8			
TV FIELD Mode	1.0 division of composite sync. 8			
B TRIGGER Sensitivity (Internal Only)	10 MHz	60 MHz	100 MHz	
	0.3 div	1.0 div	1.5 div	
EXT INPUT				
Maximum Input Voltage A	400 V (dc + peak ac) or 600 V ac $\mathrm{p}-\mathrm{p}$ at 10 kHz or less (see Figure 1-1). ${ }^{\mathbf{a}}$			
Input Resistance	$1 \mathrm{M} \Omega \pm 2 \%{ }^{\text {a }}$			
Input Capacitance	$20 \mathrm{pF} \pm 2.5 \mathrm{pF} .{ }^{\text {a }}$			
AC Coupled	10 Hz or less at lower -3 dB point. ${ }^{\text {a }}$			
LEVEL Control Range				
A TRIGGER (NORM)				
INT	Can be set to any point of the trace that can be displayed. ${ }^{\text {a }}$			
EXT, DC	At least $\pm 1.6 \mathrm{~V}, 3.2 \mathrm{~V}$ p-p.			
EXT, DC $\div 10$	At least $\pm 16 \mathrm{~V}, 32 \mathrm{~V}$ p-p. ${ }^{\text {a }}$			
B TRIGGER Internal	Can be set to any point of the trace that can be displayed.*			
VARHOLDOFF Control	Increases A Sweep holdoff time by at least a factor of $10 .{ }^{\text {a }}$			
Trigger View System Deflection Factor Internal	Same as	ical.		
External $A C$ and $D C$	100 mV p	ivision.		
$D C \div 10$	1 V per division.			
Accuracy	$\pm 20 \%$.			
Delay Difference Between EXT INPUT and Either Vertical Channel	Less than $2.0 \mathrm{ns}.{ }^{\text {a }}$			

${ }^{2}$ PerformanceRequirementnot checked In Service Manual.

Table I-I (cont)

Characteristics	Performance Requirements		Supplemental Information
HORIZONTAL DEFLECTION SYSTEM			
Sweep Rate Calibrated Range A Sweep	0.5 s per division to $0.05 \mu \mathrm{~s}$ per division in a l-2-5 sequence. XI 0 magnifier extends maximum sweep speed to 5 ns per division.		
B sweep	50 ms par divis division in a l-2 magnifier exten speed to 5 ns p	$0.05 \mu \mathrm{~s}$ per quence. X10 aximum sweep ision.	
Accuracy	Unmagnified	Magnified	Sweep accuracy applies over the canter 8 divisions. Exclude the first 25 ns of the sweep for magnified sweep speeds and anything beyond the 100th magnified division.
$+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	$\pm 2 \%$	$\pm 3 \%$	
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	$\pm 3 \%{ }^{\text {a }}$	$\pm 4 \%{ }^{\text {a }}$	
POSITION Control Range	Start of sweep to 10th division will position past the center vertical graticule line in XI or 100th division in x 10 .		
SweepLinearity	$\pm 5 \%$.		Linearity measured over any 2 of the center 8 divisions. With magnifier in X10, exclude the first 25 ns and anything past the 100th division.
Variable Control Range	Continuously variable between calibrated settings. Extends the A and B sweep speeds by at least a factor of 2.5.		
Sweep Length	Greater than 10 division.		
A/B SWP SEP Range	± 3.5 divisions or greater.		
Delay Time	Applies to $0.5 \mu \mathrm{~s}$ per division and slower.		Delay time is functional but not calibrated at sweep settings above $0.5 \mu \mathrm{~s}$ per division.
Dial Control Range	$<0.5+300 \mathrm{~ns}$ to >10 divisions.		
Jitter	One part or less in 20,000 (0.005%) of the maximum available delay time.		
Differential Time Measurement Accuracy $+15^{\circ} \mathrm{C} \text { to }+35^{\circ} \mathrm{C}$	$\pm 1 \%+0.015$ major dial division		Exclude delayed operation when A and B SEC/DIV knobs are locked together et any sweep speed or when A SEC/DIV switch is at $0.5 \mu \mathrm{~s}$ per division or faster. Accuracy applies over the B DELAY TIME POSITION controlrange.
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	$\pm 2 \%+0.015$ major dial division.*		

[^0]Table 1-1 (cont)

Characteristics	Performance Requirements	Supplemental Information
X-Y OPERATION (XI MAGNIFICATIC		
Deflection Factors	Same as Vertical Deflection System (with VOLTS/DIV Variable controls in CAL detent).	
Accuracy $\begin{aligned} & \text { X-Axis } \\ & \quad+15^{\circ} \mathrm{C} \text { to }+35^{\circ} \mathrm{C} \end{aligned}$	$\pm 3 \%$.	Measured with a dc-coupled, 5 -division reference signal.
$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \\ & \text { Y-Axis } \end{aligned}$	$\pm 4 \% .^{\mathrm{a}}$ Same as Vertical Deflection System.*	
Bandwidth (-3 dB) X-Axis	Dc to at least 3 MHz .	Measured with a5-division reference signal.
Y-Axis	Same as Vertical Deflection System.a	
Phase Difference Between X- and Y-Axis Amplifiers	$\pm 3^{\circ}$ from dc to $150 \mathrm{kHz} .^{\text {a }}$	With do-coupled inputs.

PROBE ADJUST

Output Voltage of PROBE ADJUST Jack	$0.5 \mathrm{v} \pm 5 \%$.	
Repetition Rate	$1 \mathrm{kHz} \pm 20 \% .^{\mathrm{a}}$	
Z-AXIS INPUT		
Sensitivity	5 V causes noticeable modulation. Positive-going input decreases intensity.	Useable frequency range is dc to 20 MHz.
Maximum Safe Input Voltage	30 V (dc + peak ac) or $30 \mathrm{VC} \mathrm{p-p} \mathrm{ec} \mathrm{at}$ 1 kHz or less.a	
Input Resistance	$10 \mathrm{~kg} \pm 10 \% .{ }^{\mathrm{a}}$	

POWER SOURCE

Line Voltage Ranges	90 v to $250 \mathrm{~V} . \mathrm{a}$	
Line Frequency	48 Hz to $440 \mathrm{~Hz} \mathrm{a}^{\mathrm{a}}$	
Maximum Power Consumption	$40 \mathrm{~W}(70 \mathrm{VA}) \mathrm{a}^{\mathrm{a}}$	
Line Fuse	1.0 A .250 V. slow-blow.	
	CATHODE-RAY TUBE	
Display Area	80 by $100 \mathrm{~mm} . \mathrm{a}^{\mathrm{a}}$	
Standard Phosphor	I P31.'	
Nominal Accelerating Voltage	$14 \mathrm{kV} . \mathrm{a}^{\mathrm{a}}$	

*Performance Requirement not checked in Service Manual.

Figure 1-1. Maximum input voltage vs. frequency derating curve for $\mathrm{CH} 1 \mathrm{ORX} \mathrm{X}, \mathrm{CH} 2 \mathrm{OR} \mathrm{Y}$, end EXT INPUT connectors.

Table l-2
Environmental Characteristics

Characteristics	Description
	NOTE The instrument meets the requirements of MIL-T-28800C, paragraphs 4.5.5.1.3, 4.5.5.1.4, and 4.5.5.1.2.2 for Type III, Class 5 equipment, exceptwhere otherwise noted.
Temperature Operating	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$.
Nonoperating	$-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right.$ to $\left.+167^{\circ} \mathrm{F}\right)$. Tested to MIL-T-28800C paragraphs 4.5.5.1.3 and 4.5 .5 .1 .4 . except in 4.5 .5 .1 .3 steps 4 and $5\left(0^{\circ} \mathrm{C}\right.$ operating test) are performed ahead of step $2\left(-55^{\circ} \mathrm{C}\right.$ nonoperating test). Equipment shall remain off upon return to room ambient during step 6 . Excessive condensation shall be removed before operating during step 7 .
Altitude	
Operating	To $4,500 \mathrm{~m}(15,000 \mathrm{ft})$. Maximum operating temperature decreased $1^{\circ} \mathrm{C}$ per $1,000 \mathrm{ft}$ above $5,000 \mathrm{ft}$.
Nonoperating	To 15,000 m ($50,000 \mathrm{ft}$).
Humidity (Operating and Nonoperating)	5 cycles (120 hours) referenced lo MIL-T-28800C paragraph 4.5.5.1.2.2 for Type III, Class 5 instruments. Operating and non-operating at $95 \%+0 \%$ to -5% relative humidity. Operating at $+50^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$. Non-operating at $+30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Vibration (Operating)	15 minutes along each of 3 major axes at a total displacementof 0.015 inch $\mathrm{p}-\mathrm{p}$ (2.4 g 's at 55 Hz) with frequency varied from 10 Hz to 55 Hz to 10 Hz in I-minute sweeps. Hold for 10 minutes at 55 Hz in each of the 3 major axes. All major resonances must be above 55 Hz .
Shock (Operating and Nonoperating)	30 g 's, half-sine, 11 -ms duration, 3 shocks per axis each direction. for a total of 18 shocks.
EMI	Meets radiated and conducted emission requirements per VDE 0871 Class B.

Table 1-3
Physical Characteristics

Characteristlcr	Description
Weight With Power Cord	
With Cover, Probes. and Pouch	7.1 kg (15.7 lb).
Without Cover, Probes, and Pouch	$6.1 \mathrm{~kg}(13.5 \mathrm{lb})$.
Domestic Shipping Weight	6.2 kg (13.0 lb).
Height	
With Feet and Handles	$137 \mathrm{~mm}(5.4 \mathrm{in})$.
Width	
With Handle	360 mm (14.2 in).
Without Handle	327 mm (12.9 in).
Depth	
With Front Cover	445 mm (17.5 in).
Without Front Cover	440 mm (17.3 in).
With Handle Extended	511 mm (20.1 in).

[^0]: *PerformanceRequirementnotcheckedinServiceManual.

