TENNELEC

INSTRUCTION MANUAL

TC 307

INSTRUCTION MANUAL

TC 307 LINEAR GATE

TAELE $\frac{\text { TC } 307}{\text { OF CONTENTS }}$
SECTION PAGE
1.0 INTRODUCTION 1
2.0 SPECIFICATIONS 1
2.1 OTHER INFORNATION 4
3.0 CONTROLS. 4
3.1 FRONT-PANELCONTROLS
3.2 CIRCUIT BOARD CONTROLS 5
3.3 REAR PANEL CONTROLS 5
4.0 CONNECTORS 5
4.1 FRONT PANEL CONNECTORS 5
4.2 REAR PANEL CONNECTORS 5
5.0 FIRST TIME OPERATION 6
5.1 INSTRUMENTS REQUIRED 6
5.2 CONTROL SETTINGS 7
5.3 WAVEFORM OBSERVATIONS, LOW-LEVEL SIGNALS 8
5.4 WAVEFORM OBSERVATION, HIGH-LEVEL SIGNALS 9
5.5 WAVEFORM OBSERVATIONS, SNITCHING SPIKES 10
6.0 ADJUSTMENTS 11
6.1 PEDESTAL CONTROL 11
6.1.1 PEDESTAL ADJUSTMENT WITH SIGNAL-SOURCE OFFSET CONTROL 11
6.1.2 PEDESTAL ADJUSTMENT, SIGNAL-SOURCE OFFSET NOT ADJUSTABLE. 12
6.2' INTERNAL ADJUSTMENTS 12
7.0 CIRCUIT OPERATION 15
7.1 INPUT STAGE 15
7.2 GATE SWITCH 16

The TENNELEC TC 307 Linear Gate is a single-width NIM designed to block OK pass a linear signal at the command of an externally-applied gating pulse. The gain is unity, noninverting.

The TC 307 is dc-coupled, allowing it to operate from de to high count rates without baseline shift. In the normally open (N.O.) mode, it will pass 0-10v signals of either polarity (dc, unipolar, bipolar, sinewave, etc.) unless inhibited by an external gate pulse ($2+1.3 \mathrm{~V}$). In the normally closed (N.C.) mode, it will block signals of either polarity unless enabled by the external gate pulse ($2+1.3 \mathrm{~V}$). Gating time is <15 ns. The gate trigger circuit remains in its switched state for the duration of the externally-applied gate signal and recovers within 15 ns after removal of that signal, By applying a train of gate pulses, a linear de signal may be chopped synchronously with the gate pulses.
An LED indicates the presence of output signals (pulse or dc, either polarity) larger than 0.25 V .

Front-panel connectors are duplicated on the rear,

TABLE OF CONTENTS

SECTION PAGE
7.3 OUTPUT STAGE 16
7.4 COUNTING MONITOR 16
8.0 OPERATINGNOTES 17
8.1 GATE CONTROL 17
8.2 OUTPUT IMPEDANCE 17
8.3 <l OHM OPERATION 17
8.450 OHM OPERATION 18
8.5 PLACEMENT IN A SYSTEM 18
8.6 AC VS DC COUPLING 19
8.7 INCREASING THE RAINGE OF THE PEDESTAL CONTROL 20
9.0 SHIPPING DAMAGE 20
10.0 SERVICING 20
11.0 WARRANTY 20
LIST OF FIGURES
SECTIONPAGE
5-1 Setup for observing operation of the TC 307 7
5-2 TC 307 and gate-pulse waveforms, low-level signal 8
5-3 TC 307 and gate-pulse waveforms, high-level signal10
5-5 TC 307 switchinc apikez 10
6-2 Test setup for adjustment of TC 307 internal controls 13
6-3 Waveforms for TC 307 setup 14
6-4 THERM BAL trimmer adjustment 15

```
GAIN
    0.99\pm0.02
INPUT
    Coupling
    Polarity
    Range
        Linear
        Maximum
            DC
            Pulse
        Impedance
            Below IIV
            Above 11V
OUTPUT,
    Coupling
    Polarity
    Range
            Open Circuit
            Linear
>10V
            Maximum
        Terminated, in 50 ohms
                    Linear
                    Maximum
            Impedance
                50 ohm setting
                    <l ohm setting
PEDESTAL (Input terminated
            in 50 ohms)
GATE SWITCHING TRANSIENTS
    Amplitude
    Width
50 ohms \pm1%
<l ohm
smV decaying to zero in l5us
<50 mV
<20 ns full width at half max.
```

```
GATE INPUT
    Coupling
    Polarity
    Threshold
    Maximum Input
    DC
    Pulse
    Hysteresis
    Width
    Input Impedance
    Below 4V
    Above 4V
PROPAGATION DELAY
    Linear channel
    Gate (0.1V overdrive)
FEEDTHROUGH
    (Gate closed, \pm10V
    quasi-gaussian pulse,
    2 us peaking time)
INTEGRAL NONLINEARITY
    O to \pm10V, lk load,
    quasi-gaussian input
    pulse, 2us peaking time
RISETIME (10% - 90%)
    0 to \pml0V, lk load
OVERSHOOT
NOISE
    Wideband, 50 ohm input
    (measured with Hewlett-
    Packard 400 Series ac
    voltmeter)
    Output filtered with
    quasi-gaussian shaping
    network, 2us peaking
    time
```

TEMPERATURE COEFFICIENT
Gain
Zero
SUPPLY VOLTAGE SENSITIVITY
Gain change Zero shift
$+24 \mathrm{~V},-24 \mathrm{~V}$ supplies
$+12 \mathrm{~V},-12 \mathrm{~V}$ supplies

SIGNAL INDICATOR LED Threshold
$\mathbf{\pm 0 . 2 5 V}$ typical
s0.018/Volt
$\leq 0.5 \mathrm{mV} /$ Volt 16 mV/Volt

OTHER INFORMATION
POWER REQUIREMENTS
$+24 \mathrm{~V}$
$+12 \mathrm{~V}$
$-12 \mathrm{v}$
-24V
WEIGHT
Shipping
Net
DIMENSIONS

WARRANTY
INSTRUCTION MANUAL
CONTROLS
FRONT-PANEL CONTROLS
PEDESTAL

Range
MODE
$\leq 100 \mathrm{ppM} /{ }^{\circ} \mathrm{C}, 0^{\circ}$ to $50^{\circ} \mathrm{C}$
$\leq 100 \mathrm{uV} /{ }^{\circ} \mathrm{C}, 0^{\circ}$ to $50^{\circ} \mathrm{C}$

45 mA maximum
55 mA maximum
50 mA maximum
35 mA maximum
4.0 lbs. $(1.82 \mathrm{~kg})$
2.1 lbs. (0.96 kg)

Standard single-width NIM (1.35 n x 8.714") per TID 20893 (Rev).

One year
One provided with each instrument ordered

Multiturn, screwdriver adjustable

0 to $\mathbf{\pm 0 . 2 5 V}$ nominal
Z-position toggle switch N.O. (normally open) and N.C. (normally closed).

The following test is a good way for users to familiarize themselves with the operation of the TC 307. The test results given below are typical.
5.1 Instruments Required

TC 307 LINEAR GATE
rECTANGULAR PULSE GENERATOR: Adjustable amplitude, risetime 0.25 us or less, output impedance 100 ohms or less.

ATTENUATOR BOX: Impedance to match pulse generator.

OSCILLOSCOPE: 5 MHz or greater bandwidth, delayed input, externally triggered sweep, dual trace.

SHAPING AMPLIFIER: Nuclear pulse amplifier with peaking time 0.25 us or greater.

TERMINATOR for the pulse generator.
COAXIAL CABLES: As needed.
nIm BIN or other power source.
Connect the system as shown in Fig. 5-1 and turn it on. Note the following:

1. The TC 307 was shipped with internal adjustments accurately set for power supply voltages within 0.1V of the nominal values of $\pm 24 \mathrm{~V}, \pm 12 \mathrm{~V}$.
2. The OUTPUT IMPEDANCE switch was set to the $\mathbf{5 0}$ ohm position prior to shipment.
3. The TC 307 will not be damaged by inserting or removing it from the bin with the power ON.

Fig. 5-1 Setup for observing operation of the TC 307

5.2 Control Settings

With the test instruments listed below, the following control settings should be made. Settings may require modification if instruments other than those listed below are used.

OSCILLOSCOPE
Channel A
Channel B
Sweep
Tc 307
MODE
SHAPING AMPLIFIER
Shaping Constant Gain

Coarse
Fine
Polarity
PULSE GENERATOR
Period
Width
Amplitude
ATTENUATOR

TEKTRONIX 475 (200 Mhz B.W.
0.5V/Div, dc coupled
$0.05 \mathrm{~V} /$ Div, dc coupled
0.5 us/Div
N.C.

TBNNELEC TC 205A
0.25 us, Unipolar

10
$\times 0.6$
+In, +Out
TEKTRONIX 114
0.5 ms
2.7 us
$\mathbf{0 . 9 V}$ or $\mathbf{1 . 5 V}$. See text.
X100

Fig. 5-2. TC 307 and gate-pulse waveforms, low-level signal.

In Fig. 5-2, a multiple exposure oscillogram is displayed of the gate-pulse generator output and TC 307 output. The gate was in the N.C. mode.

With the pulse generator output at l.5v (top waveform), the gate is opened and transmits the 90 mV guasigaussian pulse from the TC 205A amplifier. Note the switching spike approximately 30 mV high at the instant of gate closure (at 2.7 us). Another smaller and narrower spike exists at the start of the pulse, but is not large enough to be visible in the. figure. The delay in the onset of the TC 205A output pulse is inherent in the TC 205A. The pedestal control was tweaked to align the baseline before and after gate closure (at 2.7 us).

With the pulse generator output reduced to 0.9 V , the gate remains closed and no signal is transmitted. This is illustrated by the lowest line in the figure, which was displaced (with the oscilloscope positioning control) to distinguish it from the waveform above it. The L.E.D. should not glow under the conditions of the preceding test.

Fig. 5-3 shows the feedthrough of a l0V signal. To obtain the waveforms, reset the controls as follows (control settings other than those listed remain unchanged) :

OSCILLOSCOPE
Channel B 5V Div
TC 307
MODE N.O.
ATTEMUATOR out
PULSE GENERATOR 1.OV

SHAPING AMPLIFIER

Fine Gain
Adjust for $10 . \mathrm{V}$ output signc

Fig. 5-3 TC 307 and gate-pulse waveforms, high-level signal.

In the figure, the center waveform (amplitude scale at the right) is that transmitted by the TC 307. The uppermost wavetorm is tnat or tnè pulse generator.

If the TC 307 MODE switch is set to N.C. and the oscilloscope sensitivity increased to $10 \mathrm{mV} / \mathrm{Div}$, the lowest waveform results. (The oscilloscope position control was readjusted to separate the two lowest waveforms). This shows the feedthrough of the lov pulse when the gate is closed. Note that the peak of the feedthrough signal is synchronized with that portion of the input signal which exhibits the greatest slope.

The L.E.D. should glow when the TC 307 is transmitting the 10V signal, but not when the signal transmission is blocked (gate N.C.).

The waveform to the right of the 3 us mark is a response of the amplifier to the trailing-edge pulsegenerator transition and has no bearing on this test.

Waveform Observations, Switching Spikes
Disconnect the amplifier from the TC 307 and terminate its input with 50 ohms.

Change control settings as follows:

OSCILLOSCOPE
Channel B
Sweep

$20 \mathrm{mV} / \mathrm{Div}$

0.05 us/Div

PULSE GENERATOR

Width
Amplitude
ATTENUATOR
0.2 us
1.5 V

The upper waveform in Fig. 5-5 is that of the pulse generator and the lower is that of the switching spikes.

Fig. 5-5. TC 307 switching spikes.

The delay between the gate-pulse transitions and the spikes is due mainly to the propagation delay ($\because 30 \mathrm{~ns}$) of the linear circuits in the TC 307 .

In the TC 307 used for this test, the pedestal was about 2 mv high and caused a vertical shift of the baseline between the leading-edge and trailing-edge spikes. This pedestal was tuned out with the PEDESTAL control prior to making the oscillogram.

$6.0 \quad$ ADJUSTMENTS

6.1 PEDESTAL Control

In normallpoff operation, when a gate enabling pulse occurs, a transient baseline offset known as a "pedestal" may appear at the OUTPUT of the TC 307. Linear signals will ride on this pedestal, causing an error in signal height equal to the pedestal height. The pedestal may be adjusted to zero using the PEDESTAL control.

The PEDESTAL control (front panel) was intended to compensate only for the dc offset in the signal source, and for this reason, the range is only $\pm 0.25 \mathrm{~V}$. Circuit modification is required for a larger range and is described in Sect. '8.7.
6.1.1 Pedestal Adjustment with Signal-Source Offset Control

If the signal source has an offset control, begin the adjustment by replacing the signal source with a 50 -ohm terminator (connected, to the TC 307 INPUT). Connect a dc millivolt meter or a dc-coupled oscilloscope to the OUTPUT of the TC 307 . With the gate signal removed (or below threshold), trim the PEDESTAL control so that no change in TC 307 output voltage occurs when the MODE switch is flipped. Note that the absolute voltage may be different from zero when this condition is attained. If this offset is excessive for the intended application, the internal offset controls must be readjusted. See (Sect. 6.2)

Remove the terminator and reconnect the signal source. Now trim its off set control as described above as if it
were the pEDESTAL adjustment. (If a meter is used for this adjustment, no pulses must emerge from the signal source because they will cause an error. The use of an oscilloscope permits pulses to be present because the baseline between pulses can be observed.)
6.1.2 Pedestal Adjustment, signal Source Offset not Adjustable

Connect a dc millivolt meter or oscilloscope to the OUTPUT of the TC 307 and connect the signal source to the INPUT. Do not gate the TC 307 and do not allow pulses to issue from the signal source. Adjust the pedestal control so that no change in de output level occurs when the MODE switch is flipped.

If pulses cannot be turned off from the signal source, use the oscilloscope as the dc indicator to allow observation of the baseline between pulses. If the dc offset from the signal source is large enough to be outside the range of adjustment of the PEDESTAL control $(\pm 0.25 \mathrm{~V})$, the range may be increased by an internal modification. See Sect. 8.7.

6.2 Internal Adjustments

The internal adjustments are one-turn screwdriveradjustable trimmers for normally closed zero (N.C. ZERO), normally open zero (N.O. ZERO), OUTPUT ZERO* and thermal balance (THERM BAL). The trimmers are mounted on the circuit board. The left-side module cover plate must be removed for access. The adjustments can be made with the TC 307 mounted in a NIM bin if the TC 307 is inserted in the slot nearest the right side of the bin and if the modules to the left of the TC 307 are removed for access to the trimmers.

THERM BAL readjustment should never be required unless the input integrated circuit is replaced. Even then, readjustment may be unnecessary.

As in the TBERM BAL case, it is unlikely that the zero adjustments will require changes. However, an offset may result from power supply errors. The supply voltages should first be trimmed to within $\pm 0.1 V$ of their nominal values to confirm that TC 307 readjustment is necessary.

[^0]In addition to the TC 307 and its power source, a square-wave generator, an oscilloscope, and a 50 ohm terminator will be required.

Connect the system as shown in Fig. 6-2.

Fig. 6-2 Test setup for adjustment of TC 307 internal controls.

Set controls as follows:

OSCILLOSCOPE
Channel A
Channel B
sweep
Vert mode
GENERATOR
Repetition rate
Amplitude
Polarity
TC 307
MODE
0.5V/Div dc coupled
$10 \mathrm{mV} / \mathrm{Div}$ dc coupled $1 \mathrm{~ms} / \mathrm{Div}$
CHOP

250 Hz
0.9 V
$+$
N.C.

Trigger the oscilloscope sweep from Channel A (the generator channel) or directly from the generator. With Channel B disconnected, (orits INPUT switch set to GROUND), adjust the oscilloscope positioning controls to produce the waveforms shown in Fig. 6-3.

Fig. 6-3 Waveforms for TC 307 setup
Reconnect the TC 307 OUTPUT to Channel B. Adjust the N.O. ZERO and/or the OUTPUT ZERO (the two adjustments are virtually interchangeable) on the circuit board to zero output volts.

Switch the TC 307 MODE to N.O. and adjust the PEDESTAL control for zero volts output. If the control is out of range (which mayoccur if ICl or IC2 are changed), alter the relative adjustments of the N.O. ZERO and OUTPUT ZERO and start over.

With the PEDESTAL and N.O. ZERO controls correctly set, the trace will not move from zero when the TC 307 MODE switch is flipped back and forth.

Increase the generator output to 1.5 V , causing the TC 307 gate to operate. Adjust the N.C. ZERO trimmer so that the Channel B trace remains at zero for both half-cycles of the square wave (the MODE switch setting is immaterial).

Next, adjust the THERM BAL trimmer so that the positive and negative transients at the square-wave transitions are symmetrical. See Fig. 6-4. Note that changing the setting of the THERM BAL trimmer will move the TC 307 baseline. After adjustingthetrimmer for symmetrical transients, readjust the N.O. and N.C. ZEROS. This completes the alignment.

Fig. 6-4 THERM BAL trimmer adjustment

$7.0 \quad$ CIRCUIT OPERATION

A circuit diagram is at the end of this manual. The circuit is divided into four sections: Input Stage, Gate Switch, Output Stage, and Counting Monitor.

7.1. Input Stage

The input group is built around an integrated dual differential array (ICla and IClb). Depending on the state of the gate switch and the gate signal applied to pins 3 and 11 (Test Points 17 and 18) of ICl, one or the other half of the array will be conducting and will constitute the active input stage for the remainder of the inverting operational amplifier ol through Q5. In the absence of gate signal, ICla is normally conducting. The INPUT signal is routed through the MODE Switch either to ICla (N.O. position) or IClb (N.C. position).

The input resistor is R1 plus R5 or R6, depending on the position of the MODE switch. R8 and R9 limit the loop gain of the input group for stability against oscillation.

The PEDESTAL bias is derived from RO and is injected through R2 into the junction between R1 and R5(R6). -The diode network Dl-D4 limits the input signal to prevent any of the linear stages from saturating.

The THERM BAL control is used to set the operating voltage on the input IC transistors. Adjustable offset voltages are injected into the bases of these same transistors.

Rl, R5 (R6), and Rlo (Rll) determine the gain of the input group. The gain is precisely 0.49 referred to a signal source with a 50 ohm internal resistance.

Q1, Q2, and Q4 are gigahertz transistors.

7.2 Gate Switch

This stage is a Schmitt trigger. The loading on Q6 and Q7 was designed to give a symmetrical output such that the average voltage at pins 4 and 12 of ICl does not change when the gate is triggered. This symmetry minimizes gate transients. The switching voltage at pins 4 and 12 is set by R58 and is just large enough to cause complete current switching between ICla and IClb. D23-D26 limit, the switching voltage of $\mathbf{Q 6 - Q 7}$ and also speeds up the' transition.

D20-D22 protect Q6-07 from excessive input voltage.

$7.3 \quad$ Output Stage

This is an inverting op amp built around IC2. D9, D10, and D13 limit the base currents to Q12 and Q13 when the output is short circuited.

IC3 and IC4 are 15 V regulators which limit at 100 mA minimum; 200 ma typical. With the OUTPUT IMPEDANCE switch in the 50 ohm position,, rated maximum output will be obtained if one of the two outputs is loaded with 50 ohms and may or may not be obtained if both outputs are loaded, depending on the saturation level of IC3 or IC4. If the switch is in the <1 OHM position and either of the outputs is loaded with 50 ohms, a maximum signal level of 5 V can be obtained, and the maximum may be 10 V depending on the saturation level of IC3 or IC4.

7.4 Counting Monitor

This circuit consists of a pair of comparators IC5a and IC5b connected as a univibrator. IC5a responds to positive polarity signals and IC5b to negative. R92 and R94 set the threshold of IC5a, and D15 and D16 set
the threshold of IC56. C52 and R95 determine the recovery time ($=1 \mathrm{~ms}$) after triggering. Q13 and 014 are normally nonconducting. When IC5 is in the triggered state, Q13 and Q14 turn on, illuminating the LES D19. R103 and C56 constitute a saturating differentiator. For low count rates, the current into the LED is high so that the presence of a single pulse is visible. As the pulse rate increases, the average current drops off to maintain approximately constant LED illumination. C54 is a filter to prevent LED pulse current from appearing in the output signal;
8.0 OPERATING NOTES
6.1 Gate Control

The gate will remain in a switched state for the duration of a greater-than-1.3V gate signal. The duration and time of occurence of the gate signal can be controlled by a Delay and Gate Generator, such as a TENNELEC TC 410A (0.1 to 110 us range for both delay and duration).
a. 2 Output Impedance

The output impedance may be set to $50 \mathrm{ohms} \pm 1 \%$ or to less than 1 ohm by a slide switch which is mounted on the circuit board. The switch is in the 50 ohm position when shipped. Unless there is a particular need for the $<1 \mathrm{ohm}$ output impedance, it is recommended that the switch be kept in the 50 ohm position.
8.3 <l ohm Operation

In the <1 ohm switch position, output loads on the TC 307 of lk produce at most a 0.1% drop in signal height. However, except for very short connecting cables, cable termination probably will be required to avoid ringing. Critical cable lengths, unless terminated, may cause oscillation.

If the cable is terminated in 50 ohms, a lov output signal will require the output stage to feed 200 mA into the termination. Because the voltage regulators which supply the output stage are guaranteed for a saturation level of only 100 mA , not all TC 307 s will furnish a 10V signal into a 50 ohm load, (However, the TC 307 will not be damaged by such operations).

8.5 Placement in a System

The usual placement of a linear gate in a pulse height measurement system is between the output of the shaping amplifier 'and the following pulse height discriminator or multichannel analyzer. In situations where there is a high background of unwanted pulses and the desired Pulses are of relatively low rate and are time correlated with the gating signal, it is tempting to place the gate between the preamplifier and shaping
If the output is loaded with 50 ohms (terminated cable in the 50 -ohm output impedance setting), the signal will be halved. Linearity will not be affected up to 5 V output in this instance if only one output connector is loaded, but if both connectors are loaded with 50 ohms, the unit may not be able to drive the outputs to full voltage.
With an internal impedance of 50 ohms, lk loading will
cause signal attenuation of 5%. If two instruments
with the same input resistance are driven from a
TC 307 , signal loss can be halved by driving one from
the front-panel output connector and the other from the
With an internal impedance of 50 ohms, lk loading will
cause signal attenuation of 5%. If two instruments
with the same input resistance are driven from a
TC 307 , signal loss can be halved by driving one from
the front-panel output connector and the other from the
With an internal impedance of 50 ohms, lk loading will
cause signal attenuation of 5%. If two instruments
with the same input resistance are driven from a
TC 307 , signal loss can be halved by driving one from
the front-panel output connector and the other from the
With an internal impedance of 50 ohms, lk loading will
cause signal attenuation of 5%. If two instruments
with the same input resistance are driven from a
TC 307 , signal loss can be halved by driving one from
the front-panel output connector and the other from the
With an internal impedance of 50 ohms, lk loading will
cause signal attenuation of 5%. If two instruments
with the same input resistance are driven from a
TC 307 , signal loss can be halved by driving one from
the front-panel output connector and the other from the rear, but this arrangement usually is unnecessary.
In the. 50 ohm position, cable termination should not be required for output cable lengths up to or greater than 100 feet, and then only if signal risetime is less than approximately 0.2 usec. Termination will halve the signal height.
amplifier (keeping the gate in the normally closed mode) in an attempt to reduce pileup in the shaping amplifier. This is not a recommended arrangement for the following reasons:

1. Preamplifiers usually have a decay time which is many times that of the pulse width existing in the shaping amplifier. The result is that even at moderate count rates, the preamplifier output rarely has an opportunity to fully recover between pulses. If the gate is opened for a desired pulse, the instantaneous preamplifier output voltage will constitute a pedestal which is superimposed on the desired pulse. This pedestal will vary in amplitude and polarity from instant to instant, making for a very noisy measurement.
2. To avoid the preceding problem, the user may be tempted to reduce the decay time of the preamplifier, in effect placing the system's first differentiator there. This arrangement is undesirable for these reasons:

2a. Moving the first differentiator to the preamplifier can quadruple the system noise level.
2b. Superimposed on the preceding noise will be an added component which results from a gating operation in the part of the system' which precedes the low pass portion of the shaping network.

2c. The equivalent input noise of the TC 307 is 3 X to 7X greater than that of the usual shaping amplifier. This does not affect the system performance when the gate follows the main amplifier, but it may if the gate. precedes it.
2d. The dc output stability of preamplifiers is poor A changing de level will result in a changing pedestal in the gate, further adding to the measured noise level.

6.6 AC vs DC Coupling

A linear gate should never be ac coupled (capacitively coupled) to an amplifier because baseline shifts directly proportional to the count rate will occur. Any change in baseline will appear in the gate as a pedestal.

If the output of the gate is ac coupled to a following instrument, a baseline shift proportional to count rate also will occur unless the following instrument contains a baseline restorer.
0.7 Increasing the Range of the PEDESTAL Control
The range of the PEDESTAL control can be approximately doubled (from $\pm 0.25 \mathrm{~V}$ to $\pm 0.5 \mathrm{~V}$) by shunting R2 with a $20-k i l o h m$ resistor. For a further increase in range, the 50 k PEDESTAL control should be replaced with a 10 k , 2 -watt unit and R2 further reduced. If R 2 is reduced to 2 kilohms, the range will be increased to $\pm 3 \mathrm{~V}$. However, this change will also reduce the gain of the TC 307 to a value which varies from 0.92 with the control at its midrange setting to 0.84 with the control at one of its end settings.

9.0 SHIPPING DAMAGE

Upon receipt of the instrument, examine it for shipping damage. Damage claims should be filed with the carrier. The claims agent should receive a full report: a copy of that report should be sent to TENNELEC, Inc., P.O. Box 2560, Oak Ridge, Tennessee $37830-2560$. The model number and serial number of the instrument must be included in the report. any remedial action taken by TENNELEC, Inc., will be based on the information contained in this report.
10.0 SERVICING

In the event of a component failure, replacement may be done in the field or the instrument may be returned to our plant for repair, There will be no charge for repairs that fall within the warranty.

11.0 WARRANTY

In connection with TENNELEC's warranty (inside front cover), TENNELEC suggests that if a fault develops, the customer should immediately notify the TENNELEC Customer Service Manager. He may be able to prescribe repairs and send replacement parts which will enable YOU to get the instrument operating sooner and at less expense than if you returned it.

[^0]: *Serial numbers above 209.

