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COEXISTENCE OF REGULAR UNDAMPED NUCLEAR DYNAMICS WITH
INTRINSIC CHAOTICITY

-

David A. McGrew, Wolfgang Bauer, Vladimir Zelevinsky®, and Peter Schuck °

The origin of dissipation from collective motion in finite Fermi systems such as atomic nuclei [1] is
not completely understood. The mutual balance of one-body and two-body processes is still a question of
debate. To understand the interaction between a collective multipole moment and the individual nucleons,
Blocki et al. [2] consider a classical gas of particles contained in a deformed container undergoing periodic
deformations. The deformations are multipole dependent and oscillate with frequencies much smaller
than typical single particle frequencies. For octupole and higher deformations the kinetic energy of the
particles increases and the particles move chaotically. However, this model is not consistent in that it has
a ‘collective coordinate’ (the deformation of the wall) that is independent from, rather than a sum of, the
single particle coordinates.

We introduce selfconsistency into the problem of motion in multipole-deformed nuclear potentials,
We use the Bohr-Mottelson [3] type of interaction with a static potential of the form r? or r® and
a quadrupole or octupole interaction through which the nucleons can exchange energy, as studied by
Stringari et al. [4.5.6] We also investigate the case with static r? or 6 potentials and static quadrupole or
octupole moments, which are similar to the Bohr-Mottleson model but do not allow the exchange of energy
between nucleons. These cases provide comparison with the Bohr-Mottelson cases.

We treat these problems in a semi-classical approximation by a Wigner transform of the von
Neumann equation of motion for the density matrix, 6, p = [H, p], to obtain a Vlasov equation &, f = {¥, f}.
We then solve the Vlasov equation in the test particle method (7,8] using a fourth-order Runge-Kutta
algorithm with a typical timestep of 1 fm/c. OQur numerical calculation is fully selfconsistent and conserves
total energy to better than 0.1%.

We start with spherical distributions of nucleons in coordinate and momentum space, then
introduce a temporary external potential in order to initiate a giant multipole oscillation of the nucleus.
After the excitation, regular undamped motion of the collective multipole coordinate is observed for
all cases. This contradicts the wall-formula prediction for a strongly damped octupole oscillation. A
Fourier transform of collective coordinates shows a single peak at a dominant frequency and no w~1 noise,
indicating that no chaoticity is present in these coordinates. This result is surprising as the collective
multipole coordinates are merely normalized sums of the single particle multipole coordinates, and the
single particles can exhibit chaotic motion.

To investigate single particle motion, we test for sensitive dependence on initial conditions by
finding the Lyapunov exponents. These exponents are a measure of the exponential divergence (or
convergence) of initially nearby trajectories in phase space. A dynamical system has a positive Lyapunov
exponent only if it is chaotic, and the lack of a positive Lyapunov exponent indicates the absence of chaos.

To caleulate the Lyapunov exponents, we consgider the motion of infinitesimal displacements from
a trajectory in phase space, called tangent vectors. These displacements obey the linearized equations
motion

%)— = J()x(¢)

where x(t) is the six-dimensional tangent vector and J () is the Jacobian matrix of partial derivatives
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evaluated along the trajectory in phase space. The ith Lyapunov exponent ); is defined as

1 (IOl
A= Jim 7o z(ux.(om)'

where ||x|| denotes the norm of x and the tangent vectors x;(t),i = 1, ..., 6, are orthogonal. The logarithm
base two is used so that the units of the exponents are bits per time.

We follow the practical scheme of Wolf et sl [9] and numerically integrate the linearized equation
for six orthogonal tangent vectors. Orthonormality of the vectors is maintained by applying the Gram -
Schmidt algorithm between every timestep; the re-normalization of the vectors keeps them bounded and
minimizes numerical error. The i** tangent vector seeks the direction of most rapid growth in the subspace
orthogonal to the i — 1 previous tangent vectors.

We applied this method to twenty representative particles in the model and averaged their
exponents together. The sum of the averaged exponents provides a check on accuracy; the sum should
be zero as phase space volume is conserved in our system. In all cases the magnitude of the sum of the
exponents was less than 10~7 bits ¢/fm. The results are given in table 1, which lists the largest Lyapunov
exponent for each case. Note that the positive exponents are all significantly larger than 10~7.

An interesting result comes from comparing the selfconsistent and the static cases for (Q2,r%).
The former has chaos while the latter does not; we attribute the origin of this chaoticity to the exchange of
energy between the single particles and the collective coordinate.

We show ordered collective motion resulting from underlying chaotic dynamics, something qualita-
tively new in our investigation. This agrees with the idea of the mean field (static or coherently oscillating)
generated by averaging out random features of the motion of individual constituents. The smoothest
component of single-particle dynamics survives after such averaging and gives rise to the self-consistent
mean field. Therefore, chacs on a microscopic level does not necessarily lead to a catastrophic breakdown
of the system on the macroscopic scale.

selfconsistent static
1.2 '.S ,’.2 1.6
Q2 0 (2+1) x 103 0 )]
Qs (44 1) x 105 (154 0.5) x 10-3 (8+2) x 10-3 (1£0.3) x 10-3

Table 1: Values of the largest positive Lyapunov exponents obtained in the full selfconsistent calculations and
in the calculations with static external multipole potentials. Units are bits ¢/fm.
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IN-MEDIUM EFFECTS ON THE NUCLEON-NUCLEON CROSS SECTION
AND THE BUU TRANSPORT MODEL

W.Bauer and F.Daffin

It is known that nucleon-nucleon cross sections are modified in the presence of nuclear matter from
their values in a vacuum. The total cross sections depend at least on the local baryon density, temperature,
the momentum of the center of mass of the colliding nucleons relative to that of the local matter, and the
energy of the colliding nucleons. The Boltzmann-Uehling-Uhlenbeck (BUU) transport model code used to
simulate heavy-ion collisions has been modified to calculate these quantities. The modified cross sections
have been calculated [1] and incorporated into the BUU collision term.

In order to incorporate the in-medium nucleon-nucleon cross secitons into the BUU program code,
knowedge of the spacial distribution of the temperature, density and the momentum of the center of mass
of the colliding particles relative to the local fermionic matter is needed.

At every time-step in the simulation, the momentum of the center of mass of each occupied
in configuration space is calculated, stored and then subtracted from the momentum of the individual
particles within that cell. This procedures eliminates effects of collective streaming and thus obtains the
momentum of each cell due solely to random or thermal motion, and with it the thermal kinetic energy.
From the mean kinetic energy and the mean density of a given cell, we obtain the local temperature by
inverting the expressions

n = const. - [ dee'/? (exp((e — u)/T) + 1)~!

k = const. - f dee®/? (exp({e — u)/T) +1)"! .

Since the momentum of the center of mass of each occuped cell has been caleulated, the momentum
of the colliding nucleons relative to the matter within that cell is easily obtained. Finally, for each collision
the in-medium nucleon-nucleon cross section is calculated via linear interpolation among its tabulated
values. We are now studying the effects of the new cross sections on observable quantities of heavy-ion
reactions.
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CALCULATING COLLISION TERMS FOR PARTON BASED RHIC
SIMULATIONS

J. Murray, G. Kortemeyer, S. Pratt, K. Haglin and W, Bauer

RHIC at Brookhaven will collide 197 Au+197 Ay at a center of mass energy of 200 Gev/nucleon.
At these energies partons are the relevant degree of freedom, and perturbative QCD can be used to
calculate collision terms. The quarks and gluons are distributed within nucleons with momentum
fractions goverened by parton distribution functions; the nucleons are in turn distributed within the
Lorentz contracted nuclei, [1]. The interactions between partons that take place are strong interactions
because QCD’s coupling strength is larger than the electro-weak coupling. At present, only 2 — 2 scatter-
ings and fusions are included in the simulation. The leading order processes that have been calculated are...

99 — 9¢', 99 — 99,97 — 4, 4§ — ¢'¢
99 — 99, 97 — 99, 99 — ¢4, 99 — 99

Phenomenological screening or cut-off masses have been added into the propagators to avoid
divergent total cross sections. However, the gluon-gluon scattering cross section includes a four point
diagram which doesn’t contain a propagator. This means that the divergence in this cross section must
be handled differently from the other cross sections. Other methods of cutting off this cross section while
maintaining the correct physics are being investigated. In addition, the gauge invariance of these cross
sections with the screening masses will be studied. The expressions used in the simulation have been
checked in the maseless and massive limits {2],[3].

Once it is decided that a collision between partons will occur, the angular distribution of the
outgoing partons, in the initial partons’ center of momentum frame, is determined by a standard monte
carlo that uses the perturbative cross section. Since gluons dominate the content of nucleons, the most
frequent interactions will include a gluon in the initial state.
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1. gg — gg monte carlo data and differential cross section at /3= 17 Gev 2. g9 — q§ monte carlo data and
differential cross section at /s= 17 Gev.
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In the future, 2 — 1 fusions and 1 — 2 decays will be included in the simulation. Splitting
functions, which are related to the probability a parton will split into 2 other partons, are being calculated
and studied, [4], [5]. Once these functions are understood, they can be implemented to govern the 1 — 2
decays in the model.
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PARTON CASCADE FOR RHIC
G. Kortemeyer, J. Murray, S. Pratt, K. Haglin and W, Bauer

Introductlon

The transport theory, so far being successfully apphed to heavy ion colhsmns in the intermediate energy
region, i8 being extended to high energy collisions. The main step in the extension of this microscopic.
model is using a parton based picture of the nuclei rather than a hadronic picture; consequently the
interactions between the testparticles are to be deseribed in the framework of QCD, leading to so-called
parton cascades. The results of this simulation hopefully help to mterpret first results ﬁ'om the BNL‘
Relativistic Heavy Ion Collider {(RHIC) at Brookhaven.

For a review of microgcopic models being applied to heavy ion collisions in the interinediate energy
region so far see [1]. For ultrarelavistic collisions transport theory has been applied to nucleon-nucleon
collisions, see for example [2] using the Vlasov equation and [3] using parton cascades. '

The microscopic simulation of recent heavy ion experiments like the proposed 200 GeV/nucleon
1%7Au + '*7Au collider at Brookhaven however has only been done using parton cascades, see [4]. The
same approach has been chosen in our simulation.

Implementation

Our code works in 3+1 dimensions using fully relativistic kinematics for the partons, where the quarks are
consequently treated as massive particles. Both quarks and gluons can have off-shell masses. Interaction
between the particles is mediated by QCD processes, no mean field or other means to guarantée confinement
or the stability of the nuclei are implemented so far. No medium modifications to the elementary cross
sections are taken into account so far.

Open Questions
Imitialization

The initialization of the partons is done according to the parton distribution functions f,(x,Q?), « =
g,u,@,d,d. ... Three questions arise immediately: What is the spatial distribition of the partons? As the
parton distribution functions dwerge with small =, what is the mnmmum z to be chosen" Finally, how is:
the parameter Q? to be chosen?

For the spatial distribution at the moment the partons are randomly placed within a highly
Lorentz contracted sphere of given nucleonic radins. Geiger [3] is using the “wee parton” model having
the softer partons being smeared out even outside the Lorentz contracted radius of the nucleons, resulting
in a minimum width of the nucleon pancake of about 1 fm in any frame of reference.

The z cutoff will remain a parameter of.the model, it has to be chosen such that the simulation
reproduces nucleon-nucleon scattering data, however not takmg into account in-matter effects. .

In other approaches Q? so far has been chosen corresponding to c.m.-energy available for the
collisions between partons from the colliding nuclei. It was then iteratively adjusted to the ¢.m.-energies
really found in different runs of the program.

However, once a parton has scattered with a parton from the other nuc]eus it can scatter with
fellow partons from the same nucleus at much lower c:m. —energles
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As a result, there are two classes of interactions: The high energy

Q2+ ® interactions between partons from different nuclei, which are viewed

\ -with a high parton resolution, and lower energy collisions between

® Qe e Ppartons from the same nucleus, which are viewed with a much smaller
parton resolution.

How these two classes of parton resolutions can be accomplished with one initial parton distribution has
not yet been studied.

The effects of different models for the initial parton distribution will be examined,

Soft Processes

For the soft processes between partons from the same nucleus mentioned above, a problem with the elastic
gluon-gluon cross section arises: In the 4-point component of the cross section no screening mass can be
introduced, resulting in the divergence of the cross section for the c.m.-energy /s — 0. Different methods
of dealing with the soft processes in the framework of our simulation will be subject of studies.

Hadronisation

No hadronisation scheme has been implemented so far. A gimple scheme suggested by Geiger based
only on distances both in configuration and momentum space might be a start. Other possibilities under
consideration are “coalescence,” “self-similar tree structure,” or even “fractal structure.” The study of
different hadronization schernes will be a large part of our research.

Superluminar Signals

An inherent problem of transport codes is that subsequent non-retarded interactions lead to signal
transport with velocities faster than the speed of light. This problem will especially occur in ultrarelativistic
parton cascades since the timesteps have to be chosen smaller and low-energy interactions are not
surpressed so that the damping of outgoing signals is very low.

First Results

The code so far runs only with realistic QCD interactions for two incoming and two outgoing particles.
Particle production and decay processes have not yet been implemented. First studies on superluminous
signals were performed, see separate report.

Outlook

The calculation of photen and lepton pair production will give the opportunity to calibrate the model with
experiment. The model dependence on the energy density will be studied, insights on the approach to
thermalization and/or equilibration will hopefully be gained. The investigation of different hadronization
schemes will hopefully help to gain more understanding of this critical part of any parton cascade model.
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CAUSALITY VIOLATIONS IN CASCADE CALCULATIONS
G. Kortemeyer, J. Murray, S. Pratt, K. Haglin and W, Bauer

Introduction

Parton cascade codes work by propagation of the testparticle configuration in discrete timesteps of a fixed
length Atg.p. An inherent problem of transport codes is that subsequent non-retarded interactions lead.
to information transport with velocities faster than the speed of light. The velocity of such signals can
approach \/_ / Atyiep, where o is the cross section of the interaction. This problem is especially serious in.
ultrarelativistic parton cascades since the timesteps have to be chosen smaller and low-energy interactions
are not surpressed so that the damping of outgoing signals is very low.

Signal Propagation o _
When talking about information transport we are mainly concerned about information being propagated
in the transverse direction. An example for such transport is given in the following figure:

v Slgnal )

A cAlgep ' .
et ¢ In the figure one particle coming from the left scatters
\/— { ) with another particle coming from the right. As part of
\ ) ° the model the scattered particles can not scatter again
e - in this timestep. However, one timestep later that,
\ : scattered particle from the right scatters with another
R ® sarticle coming from the right. As a result information
P 7 . from the first scattering, for example about momenta

and particle types, has travelled to the second one.

This kind of information transport can continue over several scattering events. As the signal can travel
over the diameter of the cross section o in just one timestep and then continue it’s propagation over more
than one timestep the signal velocity can reach the velocity %/ Ataep over several timesteps. This is a
general problem of all transport codes, however, as the gluon-gluon cross section reaches rather high sizes
instead of vanishing for low ¢.m -energies, subsequent scattering events are not damped, and also as ghaon
densities are very high, the probability for scattering in two immediately subsequent hmesteps is very
high. 1t is to be pointed out that the “closest point” approach for interactions times has no eﬁ'ect on this
violation of causality in the transverse direction.

Results

The code was run for the
collision of two Au-nuclei
with 3 fm impact param-
eter. So far only pro-
cesses with two partons
in the incoming and out-
going state were imple-
mented, we had approxi- R e : 7 o
mat.ely 17,000 P artons 8w 0.08 n:.'lq. /e (X7 o 000 0.08 no:t:. e 0.16 o0

per testrun with 5 parallel testruns for better statistics. The above figure shows the distance of collisions
from the = = y = 0 axis in fm versus the time since the simulation was started. The figure on the lefl is

SPRNTA+TeY) IX P
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the result of a calculation with no restrictions on signal propagation, the figure on the right results from
a calculation where signal transport with velocities faster than light was explicitly forbidden. Namely,
interactions with |7 — 7;)/(t; — ;) > ¢ were considered impossible, where x; refers to the coordinates of the
midpeint of the collision in question, and z; to the last collision of one of the partons involved.

It turns out that indeed in the restricted model the signal propagation inside the nuclei is damped
after the initial collisions with partons from the other nucleus, while in the unrestricted model the shock
wave keeps expanding. At low energies the gluon-gluon cross section was cut off at 5 fm?, the gluon
density is high enough to make the gluons scatter in every timestep. Analyzing the signal velocities, one
can indeed find signals travelling with the above calculated maximum velocity.

With the timestep length
of 0.005 fm/c and a
gluon-gluon cross section
of 0.5 fm? this maximum
velocity is approximately
80c. Looking at a projec-
tion of the parton densi-
ties from above one can
see that in the unre-
stricted model the cen-
ter region is expanding
faster than in the re-
stricted model.The pic-
ture shows the configu-
ration of 0.17 fm/c after
the first collisions,

However, the differences can more clearly be seen in the rapidity distributions. The partons from
the two nuclei come in with about 6 units of rapidity, right after the first collisions many partons lose
several units of rapidity, resulting in gaps in the rapidity distribution between the scattered and the
unscattered partons. As the collision rate is higher in the unrestricted model those gaps wash out quite
soon, which they don’t in the restricted model. The rapidity region around zero however looks the same in
both models:

" P
03 -08

Final rapidity distributicn, unrestricted modsl Final rapidity distribution, restricted modal
m‘;—' I I { 'q:. m’;—l T I I .
104 — I.D‘r -3
E 109 | -gE 10° |- —
E F 12 3
10* | - 10% |- -
10!

- 10! -

Outlook : We are studying further the effects of superluminar signals in the context of various
scattering prescriptions. :
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DILEPTON PRODUCTION IN PROTON+NUCLEON COLLISIONS

Kevin Haglin

It has been argued over and over that the dipole approximation of proton-nucleon bremsstrahlung
is a good one, even for Bevalac energies. This means that one would argue that np bremsstrahlung is
a much stronger contributor to e*e~ production than pp. If this were true one would expect that the
pd/pp ratio is not too small. The np component allowed by the target deuteron would clearly dominate—
pushing this ratio to something large. Yet, the experimentally observed ratios are 10 at 1.0 GeV with
monotonic decrease to nearly 2 at 4.9 GeVi1,2). Resolution is suggested. after careful re-examination of
simple nucleon-nucleon bremsstrahlung calculations for these energies as well as a serious examination
of bremsstrahlung beyond two-to-two hadronic reactions. We investigate the effects of pions in the final
state since the energies of interest are clearly above pion production thresholds. We find their effect to be'
most important[3,4].

We start with a completely general hadronic reaction ¢ + 5 — 1+ 2+ ...+ n. In the soft-photon
approximation, the scattering amplitude for radiation off the external lines diverges since the half off
shell hadron approaches its mass shell. All the rest, dubbed internal radiation, stay finite. To a good
approximation, they can be neglected. Then, the matrix element for soft-photon production simplifies to the
purely hadronic counterpart times a multiplicative function describing the complicated electrodynamics of
the reaction[5]. Partially correcting for phase space and insisting on energy conservation at the photon-
dilepton vertices, the differential cross section for pure hadronic scattering (elastic or inelastic) while at
the same time producing a virtual photon (electron-positron pair) of invariant mass M and energy g, is

+

diMe (;4 M / 8(a® — M?)8* (¢ — (p4+ +p-)) d'q (64(5)) dsEp:dEs— - };3:((‘:')), ?

0

where R, is n-body phase space[6], 5 = s + M2 — 2,/z g0, and

7= Hdsp. (s (8191 . @

|‘°1

The bracketed expression in Eq. (2) is the purely hadronic cross section and ¢2|¢ - J|? is the dimensionless
electromagnetic weighting representing a coherent sum of all radiating extérnal lines in the diagrams(8].

Hadronic cross sections are input for the soft-photon calculations we are discussing. Precise forms -
we take for differential np and pp cross sections have been published elsewhere[4], so we do not reproduce
them here. But we stress the importance of choosing parametrizations that account for observed angular
dependences of the cross sections. Upon integrating Eq. (1) with the DLS acceptance version 2.0 included, |
we arrive at a cross section.

In Fig. 1a we show the one-pion channels’ contributions in pp scattering as compared with simple
bremsstrahlung and DLS data[7}. Though not shown here, np simple bremsstrahlung is lower than pp
bremsstrahlung by a factor ~ 1.5. The double pion channels are intermediate between these and simple
bremsstrahlung, but fall faster with increasing mass due to phase space. Finally, the three pion channels
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contribute roughly the same as the two-pion channels at very low mass, but phase space cuts them off
even faster. When all the channels are added together we arrive at the total pp bremsstrahlung shown in
Fig. 1b as open squares. One concludes that bremsstrahlung is indeed the largest source of dielectrons
and that it comes from many-body bremsstrahlung, Also included in Fig. 1b are results from » Dalitz,
radiative A decay and an estimate of 7+ =~ annihilation[9]. Details can be found in Ref. [4].
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Fig. 1: Invariant masa distribution from single pion channels (a) and from several different sources (b) as compared with inclusive
PP results at 4.9 GeV from the Bevalac. Solid histogram in (b) is the sum of all four sources.

Proton-proton bremsstrahlung is as strong or stronger than proton-neutron at Bevalac energies,
Hadronically inelastic channels, i.e. single and double pion channels, are more important to low-mass
dielectron production than simple bremsstrahlung and even 5 Dalitz decays. Observed pd/pp dielectron
production ratios can be understood by including simple and many-body bremsstrahlung, Dalitz and
radiative decays and two-pion annihilation. A more detailed study of the ratios properly incorporating the
target deuteron and also isospin differences in 1 production (and therefore Dalitz decays) must be done.
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ON THE MEAN FREE PATHS OF PIONS AND KAONS
IN HOT HADRONIC MATTER

Kevin Haglin and Scott Pratt

By measuring outgoing hadrons in a heavy-ion collision one can reconstruct a reaction’s breakup
stage. The momenta of outgoing particles can be measured directly and a space-time picture of the
last collisions may be constructed using the techniques of two-particle interferometry[1]. Space-time
information is especially useful. For instance, if the time a reaction takes to proceed is much longer than
10 fm/e, it would signal a reduction in pressure, inferring a first-order phase transition{2].

We study mean free paths of pions and kaons at temperatures and densities characteristic of
hadronic matter from the breakup stage of a relativistic heavy-ion collision at CERN[3]. We find that
in this environment mean free paths are remarkably similar and conclude that information from kaon
interferometry describes the dissolution of the entire system, as kaons should escape at the same time as
pions which comprise the bulk of the matter. In the context of a thermodynamic model we estimate mean
free paths of a meson of type a given its momentum. Assuming the meson interacts with an assortment of
hadrons of type & whose density is given according to a relativistic Boltzmann distribution and assuming
we know the cross sections o,;, the mean free path is;

P, 1
Aalp,) = F. R’ (1

Here p, and E, represent the meson’s momentum and energy while R, is the collision rate. The net
collision rate includes contributions from all different species,

Ry*(p)) = ) Rar(p,) (2)

Rab(pa) = j (2 )3 f(pb)aab(s)”re16 (3 - (Pa +pb)2)

where

_ V(pa-ps)? — mIm}
E.Ey '

f(pb) = (285 -+ l)e"'(Eg—,u)/T.

Vel =

Only baryons are given a chemical potential which is chosen to result in a free =+ to proton ratio of 10.
Species included in the caleulation are «, K, p, 5, w and K*. ‘
Cross-sections are dominated by contributions of resonances. For pions the largest contributor to _
the collision rate is the resonant reaction through the p while for kaons the most common collision is with
pions through the X* resonance. Heavier resonances are also included.
The average mean free path is obtained by

_ S &®pf(p)Mp) 3)
- [dpf(p)
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Results are shown in Fig. 1.

The reaction should end when the mean free path is near the size of the system. From
interferometry the size of the dissolving system appears similar to the size of a lead nucleus which has a
radius of seven fm. A mean free path of seven fermi corresponds to a temperature of approximately 110
MeV. One must be cautious of such conclusions both because of the lack of geometric detail involved in
the inference and the questionable assumption of zero chemical potential. Rapid expansion can outrun
a system’s ability to stay in chemical equilibrium, resulting in large chemical potentials[4,5,6], higher
densities and therefore shorter mean free paths. This would allow the system to stay together longer,
resulting in lower breakup temperatures.

100 T | T ] T

) I
pions
= kaons
1] e —
% - q."'-v._ -
[ =N -1
f< E N 3
1 I I ) | 1
76 100 126 160

T (MeV)
Fig. 1: Average mean free paths of pions (solid curve} and kaons (dashed curve) as they depend on the temperature.

Notice from Fig. 1 that the mean free paths of kaons and pions are so similar. This means that
kaons can be used to view the final stage of the collision without the qualification that they have escaped
prematurely. This does not mean that correlation functions from kaons and pions should have the same
apparent source sizes, and indeed at CERN preliminary measurements point to smaller sizes for kaons
than pions[7). Even if one can account for pions from long-lived resonances, kaon sources can appear
smaller due to collective expansion. A heavier particle with a given velocity is more confined to the region
with the same collective velocity[8,2]. Given that pions and kaons have such similar escape probabilities,
one can then compare and interpret correlation results from kaons and pions. This clarifies the meaning
of both measurements.
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PROPERTIES OF THE PHI MESON AT FINITE TEMPERATURE

Kevin Haglin and Charles Gale®

We calculate the ¢-meson propagator at finite temperature at one-loop order[1l. The real and
imaginary parts are studied separately in full kinematic ranges. From this activity we investigate how
temperature affects such things as decay widths and dispersion relations. We also estimate the thermal
rate of lepton pair radiation in a hadron gas proceeding through X+ K~ — ¢ — ¢+¢- and 7p — ¢ — £+£-,

Vector mesons interact in a renormalizable fashion with a conserved current. The full Lagrangian
for K-¢ dynamics is

1 1 1 1
L= 5|D,J{|" - Em}dKlz - Zm,qs*‘” + Emﬁqs,,#', (1)

where K is the complex charged kaon field, ¢,, = 8,4, — 8, ¢u is the ¢ field strength tensor, and
Dy = 8y — igsxx du is the covariant derivative. This gives rise to two diagrams which contribute to the
self-energy at the one-loop level shown in Figs. 1a and b. We go further by including a ¢-p-= interaction
given by the Lagrangian[2] ‘

Ling = gépw‘pvaﬁayﬁbvaapp -, (2)
where the complex charged rho and pion fields appears as p? and . This term gives the diagram shown
in Fig. 1c

[y

LT
aree » .,
+ ‘e

______

(e)

Fig. 1: One loop contributionsto the self-energy: (a) and (b) are bubble and tadpole kaon contributions while (c) is a 7p contribution.

The self-energy is decomposed into scalar functions times the standard longitudinal and transverse
projection tensors asf3]

II** (k) = F(k)P!” + G(k)PL. (3)

By studying the functions F and G at nonzero temperature we learn how physically meaningful quantities
such as decay widths, effective masses, and so on, behave. A notion more general than effective mass is
dispersion. In Fig. 2 the dispersion relation for longitudinally polarized phi mesons are presented at three
values of temperature. The effect of temperature is small but the direction of it is quite clear: We see an
increase in the effective mass with temperature.

We have learned that within this type of modelling for the relevant hadronic degrees of freedom
and their (strong) interaction, the effective mass of the ¢-meson is nearly temperature independent below
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~ 50 MeV. Above this, it shows slight increase: It rises by 0.42, 1.55, and 4.59 MeV at temperatures 100,

150 and 200 MeV, respectively.
1.10

1.06

w” (GeV)

1.00 A
0.00 0.25 0.50

k (GeV/c)
Fig. 2: Dispersion relation for longitndinally polarized $-mesons at zero {solid curve) and finite temperature {dashed curve T=150
MeV and dotted curve T= 200 MeV).

This rise is mostly due to the kaon contributions, although the effect of the mp channel is to move the mass
in the same direction. The partial decay width into the mp channel is the most affected by temperature.
Since it is smaller than the kaon channel to begin with, the net result for the width’s modification is also
modest. At 150 MeV temperature, the width increases by 11% and at 200 MeV temperature it increases
by 23% as compared to its vacuum value. The thermal rate of dielectron production near the ¢ mass was
shown to be altered accordingly. Polarization effects are ingignificantly small,

a. Physics Department, McGill University, Montréal, QC, H3A 2T8, Canada.
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HANBURY-BROWN-TWISS ANALYSIS IN A SOLVABLE MODEL

G.F. Bertsch®®, P. Danielewicz, and M. Herrmann®

The analysis of meson correlations by Hanbury-Brown-Twiss (HBT) interferometry is tested {1]
with a simple model of meson production by resonance decay.

The basic observables within the HBT analysis are the one- and two-particle differential cross
sections, do(!)/d% and do(?/d%q;d3%;, in some class of events. With the cross section for those events
denocted as oy, the doubles-to-singles correlation function is defined as ' |

as @ [ deD) g - 1
C% (dav. are)) = 00 Podiy, [ g dig ®

To facilate later on the interpretation of the correlation function, we chose the arguments to be the average
and relative momentum, g4y = (¢, + ¢,)/2 and rel = 91 — 92, respectively. We further find it also useful
to analyze correlations in our model by dividing the two-particle cross section by the unsymmetrized cross.
section, such as in the case of unlike mesons,

la __do® do ) 2)
C* N aav. qre)) = dPqdq [ $PodPe | ?

Within the HBT analysis, under assumptions that, in particular, involve the factorization of
unsymmetrized two-particle phase-space distribution,

9(2) (-‘31 ydh; T2, 91) = 9(1) (1‘1, '11)9(1) (-ﬁ'z,q’z) . (3)

either correlation function may be related to the one-particle distribution ¢ [2),

S d*e1d*z2 9 (21, gav)g™ (2, gav) cos gg (1 — z2) n
J dAz190(x1, q1) [ di2290)(x5, g2)

C(Qa\h qre]) =1+

Our model is based on a picture of a small source that emits heavy resonances that propagate and

decay by emitting a meson, see Feynman graphs in Fig. 1. Up to a constant factor the differential cross
section for pion emission is given by

de® 1 j
= = [ dk1 dky QW) (E — E, ~ E,, P — P, — P} |G (Ey, PG, (Es, P
Bqdiq, : 2W('Il)w(42) 15 ( 1T = P) |G By, POG: (B, o)
_ 2
+Gy (By + w(g2) — w(g1), P + g2 — 01) Gr (B2 4+ w(qn) — w(e), 2+ a1 —a3) | (5)
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Figure 1: Graphical representation of the symmetrized amplitude for the production of two mesons in our model.

where Q(V) is N-particte phase-space volume, E; = ¢;(k;) + w(g;). 'The resonace propagator G, is

1

Gr (B, P)= 5— (P) — mgsgp + i1, /2 ©

where ¢, (P) = P%/2m,, and myiff = M — my is the difference between resonance mass and the mass
of an unobserved particle in the final state. We choose m, = 139 MeV,m; = 939 MeV, m, = 1232 MeV,
Fy = I'a = 115 MeV, and work for simplicity in one dimension.

Figure 2 shows typical results for Y8 caleulated with Eq. (5). The deviations from the thermal
N — oo limit for finite N are associated with recoil effects that lead to the violation of Eq. (3). Following
(4) the correlation function should start at 2 at zero 9re] @nd fall monotonically to 1 at large Ipe]- It i8
quite apparent in Fig. 2 that even in thermal limit the correlation function does not follow such behavior.
This can be followed to the effect of symmetrization on one-particle distribution, ¢f, Eq. (3). The effect is
large, of the order of 26% in our model, when the inverse of the source size is comparable to size of meson
momentum space. Effects of comparable magnitude were found in the past in the analyses of data [3,4].

Problems with the effects of symmetrization in normalizing the correlation function are absent in
(2). In data analysis in the past, the removal of the effects of symmetrization in normalizing the correlation
function has been attempted in Refs. [5,3); see further [1]. The correlation fanction from (2} in thermal
limit is shown in Fig. 8. It behaves as expected on the basis of Eq. (4).

Following (4) the inverse of a width of the correlation function in relative momentum gives a size
of the emission region. Classically, the resonances decaying at a rate 1/I', should give an rm.s. size
independent of the temperature, < z? >::{ 2= V/2v,/T,. However, it is apparent in Fig. 3 that the size of
the emission region within our model depends on the temperature; see further Fig. 4. Primarily, at
temperatures of the order pion mass most resonances are emitted with masses m that are below m,. If
fm — m,| > T, /2, then the resonance may be considered a virtual particle that lives a time given by the
inverse of particle virtuality 1/|m — m,| rather than 1/T,. Explicitly we find within our model that the
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the meson pair is zero for all cases.

Figure 2:‘ Correlation function /8 for different numbers of particles and in the tlie'i-mal limit. The energy is
E = 1.5Nm, which corresponds in the thermal limit to a temperature of T = 3 m,. The average momentum of
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Figure 3: The correlation function WU for different temperatures T' = 0.5m, {full line), 1.0m, (dashed line),
and 5.0m, (dot-dashed line). The width of the resonance is ', = 'a.

5



0 1 L ] X 1 1 1 "
o 1 2 3 4 5

Tim,)
Figure 4: The mean square source size as a function of the temperature in various treatments. The horizontal

dashed line is the classical size. The dot-dashed curve includes corrections to the size of the classical source. The
solid line gives the result from the quantum mechanical calculation. The width is I'y =Tx.

mean square radius deduced from the correlation is

ff_ v
< >s (((AE)’+(r,/2)’>>’ @

which ig consistent with the above consideration. We used AE = & (k + qav) + mgir— €7 (k) — wlgav) in (7)
and the thermal average ({f)) weighted by the resonance distribution is defined as

[dk e=es®)Tf ((AE)"’ + (I‘,/2)’) -
S dk e-es®IT ((AE)2 + (T, /2)2)_l .

{(r)n= (8)

To summarize, we find that for small number of particles (<15 in 3 dimensions} recoil effects
may play a role in the correlation function. When normalizing correlation function using single-particle
cross sections, the effect of correlations onto the latter need to be eliminated within the analysis. Strong
quantum effects in the source size indicate an importance of the off-shell propagation for resonances at
the temperatures of interest in nuclear collisions.

a. Institute for Nuclear Theory, HN-12, University of Washington, Seattle, WA 98195.
b. Physics Department, FM-15, University of Washington, Seattle, WA 98195.
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