Rare Isotope Production

September 6, 2006

Projectile fragmentation experiments

- Production technique for rare isotope beams
- Understand the fragmentation reaction mechanisms with models
 - ➢ How do the data compare to EPAX?
 - > How do the data depend on target/projectile?
 - How do the data compare to Abrasion-Ablation models?
 - How can one go beyond the AA models?
- NSCL experiments
 - ⁴⁰Ca, ⁴⁸Ca, ⁵⁸Ni, ⁶⁴Ni at **140 MeV/u** (10⁶-10¹¹ pps)
 - ▶ 9Be (100 mg/cm²) and ¹⁸¹Ta (220 mg/cm²)
- RIKEN experiment
 - ⁸⁶Kr at 64 MeV/u (10⁶-10¹¹ pps)
 - ▶ 9Be (96 mg/cm²) and ¹⁸¹Ta (153 mg/cm²)

CCF @ NSCL

A1900: setup

Fragments fully stripped -> Z=Q

- Bρ → A1900 (0.2% in dp/p)
- ToF \rightarrow RF \Leftrightarrow scint.
- dE → PIN

$$B\rho \approx \frac{A}{Z}\beta\gamma \quad dE \approx \frac{1}{2}$$

$$dE \approx \frac{Z^2}{\beta^2}$$

- **PIN:** 0.5 mm thick, 50×50 mm² Si
- PPAC: 100×100 mm², resistive readout, Isobutane (5 Torr)
- Scintillator: 150×100×100 mm³, plastic

Fragment identification ⁵⁸Ni+⁹Be

NIVERS

NSC

Momentum distributions

Fragment velocities: parameterization

Borrel Kaufman Morrissey

- Defined as maximum of the distribution (p₀)
- Similar predictions close to the projectile
- Deviate significantly for light fragments

Width of momentum distributions

- High momentum side (σ_R)
- "pure" fragmentation

 $\sigma_0 = 84-97 \text{ MeV/c}$ $\sigma_0 \approx 120 \text{ MeV/c}$

Michal Mocko

Morrissey

Goldhaber (fit)

 $\sigma_{R} = 85\sqrt{A_{P} - A_{F}}$

 $\sigma_R = \sigma_0 \sqrt{\frac{A_F (A_P - A_F)}{A_P - 1}}$

Quality of data

N

NSC

Measured cross sections

System	#CS
⁴⁰ Ca+ ⁹ Be	100(11)
⁴⁰ Ca+ ¹⁸¹ Ta	101(15)
⁴⁸ Ca+ ⁹ Be	176(26)
⁴⁸ Ca+ ¹⁸¹ Ta	167(32)
⁵⁸ Ni+ ⁹ Be	184(12)
⁵⁸ Ni+ ¹⁸¹ Ta	179(10)
⁶⁴ Ni+ ⁹ Be	240(3)
⁶⁴ Ni+ ¹⁸¹ Ta	232(2)
⁸⁶ Kr+ ⁹ Be	180(0)
⁸⁶ Kr+ ¹⁸¹ Ta	70(0)

Total: 1740

UNIV

S

S NSC

Fragmentation models

Models used to characterize the data:

- 1. <u>EPAX:</u> parameterization of the existing fragmentation data with little physics but important for experimental rate estimations.
 - 2. <u>Abrasion/Ablation model:</u> two stage model with simplified assumptions.
 - **3.** <u>Dynamical models:</u> ultimate model. It incorporates the "full" physical picture of nuclear collisions.

Data vs. EPAX (Ni+Be)

⁵⁸Ni+⁹Be ⁶⁴Ni+⁹Be **EPAX**: overall good agreement, deviations near maxima (projectile-like) and tails of the distributions

Target dependence

$$R_{tgt} = \frac{\sigma_{Ta}(A,Z)}{\sigma_{Be}(A,Z)}$$

EPAX

EPAX

 Enhancement for n-rich and p-rich fragments

- Projectile/target isospin equilibration
- Not significant for production purposes

13

Projectile dependence

$$R_{proj} = \frac{\sigma_{48}(A,Z)}{\sigma_{40}(A,Z)} = \frac{\sigma_{64}(A,Z)}{\sigma_{58}(A,Z)}$$

- Shown for reactions on ⁹Be target
- Much larger effect than target ratios
- Lines = ratios by EPAX

Fragmentation models

Models used to characterize the data:

- 1. **EPAX:** parameterization of the existing fragmentation data with little physics but important for experimental rate estimations.
- 2. <u>Abrasion/Ablation model:</u> two stage model with simplified assumptions.
- **3.** <u>Dynamical models:</u> ultimate model. It incorporates the "full" physical picture of nuclear collisions.

Abrasion-Ablation model

- Frequently employed fragmentation model
 Approximates reaction by two steps:
 - Abrasion → geometrical overlap
 Ablation → excitation function integration

Abrasion (Shear-off)

Ablation (Evaporation)

E*~K ΔA (ΔA = removed nucleons) K = 13.3[#], 27* MeV

#(Gaimard et al., NPA 531 (1991) 709)
*(Schmidt et al., NPA 710 (2002) 157)

AA LISE++ (Ca+Be)

Fragmentation models

Models used to characterize the data:

- Abrasion/Ablation model: two stage model with 2.
- **Dynamical models: ultimate model. It** 3. incorporates the "full" physical picture of nuclear collisions.

Dynamical models

- Heavy Ion Phase Space Exploration (HIPSE) (D. Lacroix *et al.*, PRC 69, 054604, 2004)
 - Clusters defined at t=0 in complete phase space (x,y,z,p_x,p_y,p_z)
 - Total excitation energy from the energy balance
 - Divided among fragments with A_f as weight
- Boltzmann-Uehling-Uhlenbech (BUU) (P. Danielewicz, Nucl. Phys. A673 (2000), 375)
 - Transport model that solves the equation of motion for nucleons
 - Residue properties from integration over density
 - Excitation energy from the total energy minus the calculated ground state
- Antisymetrized Molecular Dynamics (AMD) (A. Ono and H. Horiuchi, Prog. Part. Nucl. Phys. 53 (2004) 501-581)
 - The most sophisticated <u>dynamical model</u> to simulate collisions between heavy nuclei
 - Residues defined in (x,y,z) space at t=150 fm/c
 - Excitation energy calculated from the kinetic energies of nucleons within a prefragment and experimental masses

September 6, 2006

Michal Mocko

Decay: GEMINI (R. J. Charity et al., Nucl. Phys. A483, (2004) 371)

Primary fragments: comparison

NIV

R S

Excitation energy: comparison

Final states: Ni+Be systems

Fragment velocities: comparison

- Velocity deviations with respect to the projectile
- Be data reproduced by HIPSE calculation
- AMD and BUU high stopping
- HIPSE suggests very different trend for Ta target systems

Summary

- Systematic fragmentation data with (^{40,48}Ca, ^{58,64}Ni) + (Be, Ta) & ⁸⁶Kr+(Be, Ta) → <u>1740</u> measured cross sections (momentum distributions)
- EPAX2 reproduces the experimental data rather well while discrepancies are observed
- Abrasion-Ablation model in LISE++
 - Small sensitivity to excitation energy
 - Very good description of experimental data
- Reaction mechanisms investigated with dynamical models (AMD, HIPSE, BUU)
 - Final distributions governed by the statistical decay.
 - Cross sections not very sensitive to E* determination.
 - Kinematics observables such as velocity distributions may provide insights to the fragmentation reaction mechanisms.
- Evaporation codes
 - Essential to understand details (level density)

Acknowledgement

<u>Thanks to:</u>

<u>M. B. Tsang</u>, A. Ono, D. Lacroix, P. Danielewicz

M. Andronenko, L. Andronenko, F. Delaunay, M. Famiano, T. Ginter, M-J. van Goethem, H. Hua, S. Lukyanov, W.G. Lynch, D. Oostdyk, M. Steiner, A. Stolz, O. Tarasov, G. Verde, M. Wallace, A. Zalessov

