NATIONAL SUPERCONDUCTING CYCLOTRON LABORATORY PROPOSAL FOR EXPERIMENT

Date Submitted:	10/23/2003	Expe	riment #							
			(Assigned by NSCL)							
TITLE: Frag	mentation of ⁶⁸ Ni_									
SPOKESPERSON:	_Betty Tsang									
Address:	Address:NSCL/MSU South Shaw Lane, East Lansing, MI									
	Phone:333-63	86 Fax:_	E-:	Mal: tsang@nscl.msu.edu						
BACKUP SPOKESF	PERSON:Oleg Ta	rasov	act I ansing MI							
institution.	Phone:333-63	20 Fax:	E-Ma	ail: tarasov@nscl.msu.edu						
Is this a thesis experi	ment? Yes No	If yes, for whom?	incoming student							
OTHER EXPERIME Name	ENTERS: (please spell	out first name) Organization		Check, if applicable Grad Sr. Grad						
Betty Tsang		NSCL								
Bill Lynch		NSCL								
Michal Mocko		NSCL	Х							
Mike Famiano		NSCL	V							
Mark wallace		NSCL	X							
Daniel Bazin		NSCL		V						
Sorgoi Lukuonov		NOCL Dubna		Λ						
Klaus Summerer		GSI								
Wolfgang Trautmann	1	GSI								
REQUEST FOR PRI (summary of the deta	IMARY BEAM SEQU iled beam delivery tin Isotope	ENCE INCLUDING TU te calculation.) Energy (MeV/nucleon)	NING, TEST RUNS, AND IN Beam delivery time (Hours	-BEAM CALIBRATIONS) On-target time (Hours)						
Primary beam 1	⁷⁶ Ge	140	24	96						
Primary beam 2	⁷² Ge	140	24	48						
TOTAL REQUESTE	ED HOURS:192	(Calculated as	per item 4. of the Notes for PA	C27 in the <u>Call for Proposals</u>)						

HOURS APPROVED: _____

HOURS RESERVED: _____

		SET UP TIME (before start of beam)	TAKE DOWN TIME						
Access to:	Experimental Vault	7 days	2 days						
	Electronics Set-up Area	7davs	2 days						
	Data Acquisition Computer	7 days	2 days						
WHEN WILL YOUR EXPERIMENT BE READY TO RUN?06_ /01 /04									
DATES EXCLUDED:									
EXPERIMENT	AL LOCATION:								
Х	Transfer Hall	N2 vault	N3 vault (with 92" chamber)						
	N3 vault (92" chamber removed)	N4 vault User line	N4 vault (Gas stopping line)						
	N4 vault (Sweeper line)	S1 vault (RPMS line)	S1 vault (Irradiation line)						
	S2 vault (SuperBall line)	$ S2 \text{ vault (RPMS line)} \overline{X} $	S3 Vault						
EXPERIMENT	AL EQUIPMENT:								
Х	A1900	Beta Counting System	Beta-NMR Apparatus						
	4pi Array	92" Chamber	Sweeper Magnet						
	Neutron Walls	Modular Neutron Array	SuperBall Neutron Calorimeter						
X	S800 Spectrograph	Segmented Ge Array	High Resolution Array						
	Nal Array	Neutron Emission Ratio Observer	5 ·····						
	Other (give details)								
	le ,								

DETAIL ANY MODIFICATION TO THE STANDARD CONFIGURATION OF THE DEVICE USED, IF ANY:

TARGETS: ⁹Be, ¹⁸¹Ta

PLEASE LIST ITEMS THAT REQUIRE NSCL DEVELOPMENT:

OTHER SPECIAL REQUIREMENTS: (Safety related items are listed separately on following pages.)

SUMMARY (no more than 200 words):

We propose to measure projectile fragmentation at E/A=140 MeV of ⁶⁸Ni on two targets (⁹Be, ¹⁸¹Ta). ⁶⁸Ni is a radioactive beam. This data set will complement the fragmentation of stable Ni nuclei ⁵⁸Ni, ⁶⁴Ni, and will greatly assist the development of a theoretical understanding production of neutron rich isotopes.

DESCRIPTION OF EXPERIMENT

(no more than 4 pages of text - 1 1/2 spaced, 12pt; no limit on figures or tables)

Please organize material under the following headings or their equivalent:

- 1. Physics justification, including background and references.
- 2. Goals of proposed experiment
- 3. Experimental details—apparatus (enclose sketch); what is to be measured; feasibility of measurement; count rate estimate (including assumptions); basis of time request (include time for calibration beams, test runs and beam particle or energy changes); technical assistance or apparatus construction required from the NSCL.
- 4. Status of previous work done at the CCF.

Physics justification

Projectile fragmentation is one of the most efficient ways to produce very short-lived rare isotopes. Understanding the mechanism for producing these isotopes is important because it is needed for accurate planning and operation of rare isotope facilities and because it is the main nuclear reaction mechanism at high incident energies with important links to the study of hot nuclei and nuclear matter.

Currently, phenomenological parameterizations such as EPAX2 [1] are widely used to estimate rates at the Coupled Cyclotron Facility and at other labs such as GSI and Riken. EPAX2 appears to provide reasonably accurate rates for production of nuclei at the CCF not too far from the valley of stability, however, problems emerge when these predictions are extended to the neutron-rich extremes of the secondary beams. Whether these problems are related to the number of protons that are removed from the beam or are related to actual properties of the final fragments is not known. This issue becomes particularly important when one wants to predict how the produced yield of a given rare isotope depends on the choice of primary beam. This is important for designing experiments at the NSCL. It is also very important, for example, to rates calculated for high energies where thick targets are used. In such cases, calculations have shown that multiple interactions in the target may be the dominant contribution and may be essential to describe thick target data[2]. If one assume for the purposes of argument that EPAX2 predictions are the correct description for the contribution from single interactions, one can make the prediction for the two and multi-step contributions. The solid line in Figure 1 shows the RIA prediction of Sulphur isotopes from fragmentation of ⁸²Ge beams using a 10g/cm2 ⁹Be target, which corresponds to 1.2 interaction lengths. The calculations use EPAX2. The dashed line shows the EPAX2 prediction for the contributions from one-step interactions and the solid line shows the yield for two-step interaction. Clearly the production of the extremely n-rich Sulfur isotopes with A>49 in such situations would be dominated by the 2-step processes; the dominance of 2-step processes is currently assumed in the official computations of the intensities of very heavy Sulfur isotope beams at RIA. Most of the 2-step processes arise from interaction of the unstable nuclei produced in the first step. Thus, it is important to understand and be able to predict the production yields from the fragmentation of unstable neutron-rich isotopic beams.

Phenomenological models such as EPAX2 derives its parameters from a careful empirical fit to a limited data set of production cross-sections measured under a wide variety of experimental conditions. It is

better at interpolating between measured data points taken under similar conditions than predicting isotopes far away from the valley of stability. Recent measurements with fragmentation of proton-rich projectile ³⁶Ar [3] are in good agreement with EPAX2. However, there are indications that EPAX2 prediction of n-rich isotopes production does not agree well with measurements. For example, for isotopes produced by mainly removing protons from a projectile without removing neutrons, EPAX2 underestimates fragment crosssections when only a couple protons are removed but overestimates fragment cross-sections when many protons are removed (>3). The disagreement worsens with increasing neutron excess of the produced isotopes. This discrepancy is shown in Figure 2 where the p-removal chain from the fragmentation of ⁵⁸Ni and ⁴⁰Ca are plotted as data points. In order to show the two data sets together, cross-sections from the p-removal chain of ⁴⁰Ca are displaced by 1000. The dashed lines are EPAX2 predictions, which over-predict the most n-rich nuclei in this region by orders of magnitudes. Similar observation is also obtained in the p-removal chain of ⁸⁶Kr.

Goals of proposed experiment

There is no substitute for confronting theory with good quality data. To test the fragmentation of neutron-rich nuclei, we propose to measure the fragmentation of ⁶⁸Ni on two targets (⁹Be, ¹⁸¹Ta). This nucleus is chosen because we have a good fragmentation cross-section measurement data set for ⁵⁸Ni and the fragmentation measurement for ⁶⁴Ni is scheduled to run early next year. The addition of the ⁶⁸Ni beam will provide a clear indication whether one can expect significant improvements in neutron-rich secondary beam yields by fragmenting a neutron-rich radioactive projectile. It may be that the cross-sections on the neutron rich side are strongly limited by the weak binding of the produced nuclei and little increase in cross-section is actually obtained.

We plan to use the S800 as a fragment separator for the identification of the fragments produced in the fragmentation of ⁶⁸Ni. In order to develop the method of measuring absolute fragmentation cross-sections and to ensure that we understand the transmissions and characteristics of the S800, we propose to measure the fragmentation of ⁶⁴Ni at the S800 spectrometer. The ⁶⁴Ni beam will be produced as secondary beam from the primary beam of ⁷²Ge. The result can be compared directly with the ⁶⁴Ni fragmentation cross-sections measured at the A1900. The latter measurement is scheduled to run early part of 2004.

Experimental Details & Beam Time Request:

The experiment will be performed with the A1900 and S800 spectrometer. ⁶⁸Ni ions will be produced as a secondary beam from the fragmentation of ⁷⁶Ge primary beam and transmitted to the S800 vault. With the target placed in the S800 scattering chamber, the fragment products will be identified by the S800 spectrometer in the focal plane. The S800 magnet setting will be optimized so that isotopes of the same N/Z ratios are measured. To optimize the counting rates and to improve the data acquisition rates with minimal dead time, we will avoid the N/Z=1.43 of the beam, i.e. we will focus on the n-rich region and the p-rich region compared to the beam. Counting rates are lower for the n-rich region so we provide the count rate for the production of ⁶⁵Mn (N/Z=1.6) as shown in Figure 3. From the LISE calculation, assuming 6000 pps of ⁶⁵Mn and 150 mg/cm2 Be, the count rate estimate of ⁶⁵Mn is 0.002 per sec.

A ⁶⁸Ni beam was developed and used in an experiment at the S800 vault in January 2003. Thus we are more certain about the beam intensity (2500 cts per pnA of ⁷⁶Ge beam). If 10 pnA is produced based on past experience, the count rate estimates above should be increased by a factor of 4. Thus obtaining 100 ⁶⁵Mn nuclei will require 3.3 hours or 3.5 hours including time for setting magnets. Each of the settings will give measurements of 3-4 isotopes with similar N/Z. We expect to do about 10 settings for the Be target, a total of 35 hours. For the Ta target, due to the much smaller event rate for the same energy loss of the beam in the target, we cannot complete the measurements of most neutron-rich isotopes within the same allotment of time. Thus we request 16 extra hours for the Ta target and we will use a much thicker Ta target to produce the n-rich fragments. Based on our experience on A1900 fragmentation cross-section measurements, we need an extra 8-hour overhead to calibrate beam intensity monitors, charge state distributions measurements and check the data coming from the detector setup of the S800. Thus we are requesting a total of 4 days (36(Be)+52(Ta)+8(setup)=96 hr) for the ⁶⁸Ni beam on target. For the calibration secondary beam of ⁶⁴Ni, we will skip the measurement with Ta target and the beam time request is 48 hr. (36(Be)+12(setup)=48 hr.)

Status of previous work done at the CCF.

Of the four beams requested in experiment #01036, we have completed the fragmentation crosssection measurements of ⁴⁰Ca 2003. Due to technical problems, we did not pursue the Kr beams, instead we ran ⁵⁸Ni beam in October 2002. Both of these experiments are in the final stage of data analysis. Some of the results was discussed in the NSCL 2003 user workshop [4].

Comparison of the cross-sections with neutron-rich beams will start with the fragmentation experiment of ⁴⁸Ca scheduled to run in November or December this year, and the fragmentation experiment of ⁶⁴Ni beam will run early next year.

Reference:

[1] K. Summerer and B. Blank, Phys. Rev. C 61, 034607 (2000).

[2] W. Friedman, Proceedings of the Yukawa International Seminar 2001, November 5-10, 2001, Kyoto, Japan.

[3] K. Summerer, private communication.

[4] M.B. Tsang, NSCL user-workshop, September 27-28, 2003, E. Lansing, USA

http://meetings.nscl.msu.edu/userworkshop2003/Presentation%20files/tsang.pdf

Figure 1: Production of Sulfur isotopes in RIA.

circles).

ISE ++ [H:\user\c\lise_pp\FILE5\68ni_s800_d0.lpp]																
Projectile 68Ni28+ 111 MeV/u 6e43 pps Eragment 65Mn25+ To Target Be 150 mg/om2 Sto Stripper	¢															
D1_S800 38672 Im D2_S800 38672 Im	61Ga	62Ga	⁶³ Ga	64Ga						-H	H J					
CRDC1 Al S mg/cm2 S Drift CRDC standard 107 m	⁶⁰ Zn	⁶¹ Zn	⁶² Zn	⁶³ Zn	⁶⁴ Zn	⁶⁵ Zn	⁶⁶ Zn	67 _{Zn}	⁶⁸ Zn	⁶⁹ Zn	⁷⁰ Zn	71 _{Zn}	72 _{Zn}	73 _{Zn}	⁷⁴ Zn	75 _{Zn} 7
Image: CRDC2 All 13 mg/cm2 S Drift IC1 0.25 m	⁵⁹ Cu	⁶⁰ Cu	⁶¹ Cu	⁶² Cu	63Cu	⁶⁴ Cu	⁶⁵ Cu	⁶⁶ Cu	67Cu	⁶⁸ Cu	⁶⁹ Cu	⁷⁰ Cu	71Cu	72 _{Cu}	73Cu	74Cu 7
IC Ar90C2H8 500 mm S Drift IC2 0.25 m	⁵⁸ Ni	⁵⁹ Ni	⁶⁰ Ni	⁶¹ Ni	⁶² Ni	⁶³ Ni	⁶⁴ Ni	⁶⁵ Ni	⁶⁶ Ni	67Ni	68 _{Ni}	69Ni 8.3e-8	70 _{Ni}	71 _{Ni}	72 _{Ni}	73 _{Ni} 7
Scint1 H11C10 -200 H +200 -150 V +150	57Co	⁵⁸ Co	⁵⁹ Co	⁶⁰ Co	61Co	62 _{C0}	63Co	⁶⁴ Co	⁶⁵ Co	⁶⁶ Co	67C0	0% 68Co 1.81e-3	⁶⁹ Co	70Co	71 _{Co}	72 _{C0} 7
Scint2 H11C10 5000 mm config:s600_s0 dp/p option: A1990_FAC27 6.29%	⁵⁶ Fe	⁵⁷ Fe	⁵⁸ Fe	⁵⁹ Fe	⁶⁰ Fe	⁶¹ Fe	⁶² Fe	⁶³ Fe	64Fe 2.86e-9	65Fe 3.62e-3	0.004% 66Fe 2.44e-2	23.625% 67Fe 3.48e-4	⁶⁸ Fe	⁶⁹ Fe	⁷⁰ Fe	71 _{Fe} 7
version, 6.2,13.	⁵⁵ Mn	⁵⁶ Mn	⁵⁷ Mn	⁵⁸ Mn	⁵⁹ Mn	⁶⁰ Mn	⁶¹ Mn	62 _{Mn} 1.25e-4	0% 63 _{Mn} 7.48e-3	3.057% ⁶⁴ Mn 6.58e-3	55.827% 65 _{Mn} 2.02e-3	79.582% 66Mn 2.12e-5	⁶⁷ Mn	⁶⁸ Mn	⁶⁹ Mn	
	⁵⁴ Cr	⁵⁵ Cr	⁵⁶ Cr	57Cr	⁵⁸ Cr	⁵⁹ Сг 8.17е-6	⁶⁰ Сг 1.72е-3	0.203% ⁶¹ Cr 4.09e-3	28.522% 62Cr 1.87e-3	72.149% 63Cr 5.64e-4	89.243% ⁶⁴ Cr 9.49e-5	93.681% ⁶⁵ Cr 4.25e-7	⁶⁶ Cr	67Cr		
CANU	53V	54V	55V	⁵⁶ V	57V	0.017% 58∨ 1.98e-3	8.774% 59∨ 1.39e-3	56.503% 60∨ 5.35e-4	80.821% 61∨ 1.44e-4	91.005% 62∨ 1.75e-5	79.836% 63∨ 1.22e-6	35.749% 64∨ 5.84e-9				
GRAND ACCELERATEOURINT CHALL CHONG LOUIDS	⁵² Ti	⁵³ Ti	⁵⁴ Ti	⁵⁵ Ti	⁵⁶ Ti	33.219% 57Ti	69.515% ⁵⁸ Ti	86.937% 59Ti	86.685% ⁶⁰ Ti	48.091% 61Ti	20.4%	9.746%				_
	51Sc	⁵² Sc	⁵³ Sc	⁵⁴ Sc	⁵⁵ Sc	⁵⁶ Sc	57Sc	⁵⁸ Sc								
	⁵⁰ Ca	⁵¹ Ca	52 _{Ca}	53Ca	⁵⁴ Ca	⁵⁵ Ca	⁵⁶ Ca									
Notification No Difference Differenc																

Figure 3: Count rate estimates using LISE++. The magnet setting is optimized to produce ⁵⁵Mn.

SAFETY INFORMATION

It is an important goal of the NSCL that users perform their experiments safely, as emphasized in the <u>Director's Safety Statement</u>. Your proposal will be reviewed for safety issues by committees at the NSCL and MSU who will provide reviews to the PAC and to you. If your experiment is approved, a more detailed review will be required prior to scheduling and a <u>Safety Representative</u> needs to be designated.

SAFETY CONTACT FOR THIS EXPERIMENT:

HAZARD ASSESSMENTS (CHECK ALL ITEMS THAT MAY APPLY TO YOUR EXPERIMENT):

- Radioactive sources required for checks or calibrations.
 - _____ Transport or send radioactive materials to or from the NSCL.
- _____ Transport or send— to or from the NSCL—chemicals or materials that may be considered hazardous or toxic.
- _____ Generate or dispose of chemicals or materials that may be considered hazardous or toxic.
- _____ Mixed Waste (RCRA) will be generated and/or will need disposal.
- _____ Flammable compressed gases needed.
- _____ High-Voltage equipment (Non-standard equipment with > 30 Volts).
- _____ User-supplied pressure or vacuum vessels, gas detectors.
- _____ Non-ionizing radiation sources (microwave, class III or IV lasers, etc.).
- _____ Biohazardous materials.

PLEASE PROVIDE BRIEF DETAIL ABOUT EACH CHECKED ITEM.

DETAILED BEAM REQUIREMENTS

The information supplied in this section will serve as the basis for the total beam time requested from the PAC. In addition to Beam-on-target time¹ entered below, an estimate of the beam delivery time² calculated according to the guidelines under the section entitled "Beam Delivery Time Calculation" in the PAC 27 Call for Proposals will also be presented to the PAC.

For each primary beam requested, please fill in the table below. Not all items will apply to all experiments. Please add additional primary and secondary beams as needed. Please list the total time requested for each primary beam on the first page of this proposal.

Primary Beam 1 (from beam list, to be included	d in Beam Delivery Time) Primary beam tune	24 hrs
Isotope	—	
Energy	MeV/nucleon	
Minimum intensity	_ (particle nA)	
Modification of <u>A1900 standard configuration</u>	Addt'l time per Tom Ginter	hrs
Development of special optics	Addt'l time per Tom Ginter	hrs
Secondary beam A from primary beam 1 Isotope	Delivery time per table	hrs
Energy	MeV/nucleon	
Rate ⁴	$(\text{particle nA} \cdot \text{sec})^{-1}$	
A1900 Momentum acceptance \pm	0/_0	
Acceptable purity	_%	
Additional requirements	_ Event-by-event momentum correction from position	
	in A 1900 Image 2 measured with PPAC Scintillator	
	_ 1 ming start signal from A1900 extended focal plane	
Secondary beam B from primary beam 1	Delivery time per table	hrs
Isotope	Denvery time per more	III5
Energy	MeV/nucleon	
Rate	$(\text{particle nA} \cdot \text{sec})^{-1}$	
A1900 Momentum acceptance \pm		
Acceptable purity	%	
Additional requirements	Event-by-event momentum correction from position	
	in A1900 Image 2 measured with PPAC Scintillator	
	_ Timing start signal from A1900 extended focal plane	
If experiment is not in A1900	Tune to vault (4 hrs)	hrs
Ream-on-target time for nrimary heam 1	hrs	
On-target time for primary beam 1	hrs	
On-target time for secondary beam A	hrs	
On-target time for secondary beam B	hrs	
Beam delivery time for primary beam 1		hrs

¹ Beam-on-target time is the time that the beam is needed for the purpose of the experiment, including activities such as testing, debugging the experimental setup, and calibrations.

 $^{^{2}}$ Beam delivery time is the time required by the NSCL for beam development and beam delivery; this time is not part of the time available for performing the experiment.

³ A primary beam can be delivered with reduced energy by passing it through a degrader of appropriate thickness; this process necessarily impacts the beam properties.

⁴ The rate for secondary fragment should be reported in units of particles per second per particle-nanoampere of primary beam.

⁵ These capabilities are described in detail in the <u>A1900 standard configuration</u>.