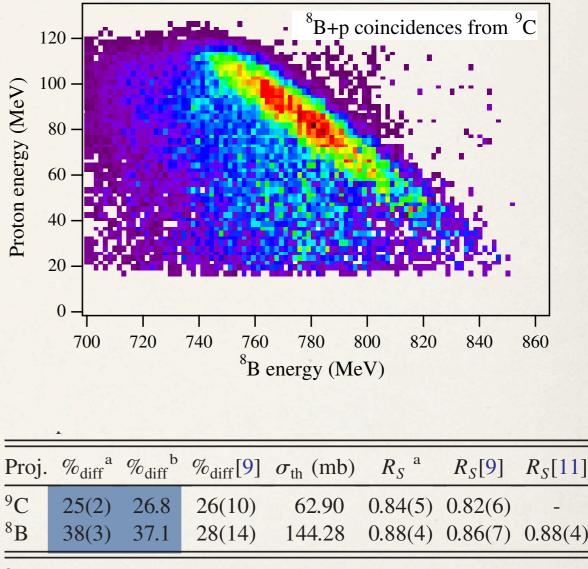
Experiment e06006

Precise study of the diffractive components in two-proton knockout reactions

Two-proton knockout on neutron-rich nuclei

- Direct process
 - Path through sequential process energetically forbidden
 - See J. A. Tostevin et al., PRC 70, 064602 (2004)
- Spectroscopic information can be obtained from this type of reaction
 - Reaction drives towards more neutron-rich species


FIG. 2. Energy diagram of the neutron-rich N=16 isotones ${}^{28}Mg$, ${}^{27}Na$, and ${}^{26}Ne$, showing the single-neutron (ν) and proton (π) separation energies for each nucleus. The diagram shows that nondirect population of the bound states of ${}^{26}Ne$, by one-proton removal to excited ${}^{27}Na$ followed by proton evaporation, would involve states high above the (much lower) neutron evaporation threshold and so is expected to be negligible.

Knockout reactions

- Surface dominated collision with a light target
 - Stripping or inelastic breakup: removed nucleon absorbed target is excited or even broken
 - Diffraction or elastic breakup: removed nucleon elastically scattered target stays in its ground state
 - Heavy residue detected at forward angles
 - Residue final state measured from in-flight γ-ray decay
- Fast projectile
 - Momentum of residue directly related to momentum of removed nucleon
 - Longitudinal momentum free of Coulomb deflection and diffractive scattering, directly related to angular momentum of removed nucleon
 - Sudden/adiabatic approximation and eikonal model

Previous experiment: ⁹C and ⁸B

- Study of elastic and inelastic parts of cross section
 - One-proton knockout on ⁹C and ⁸B
 - HiRA array used in coincidence with S800
 - Clear kinematical differences
 between elastic and inelastic
 breakup
 - Proportions calculated with eikonal model agrees with observations very well
 - See D. Bazin et al., PRL 102, 232501 (2009)

^aThis work ^bCalculated (from Table I)

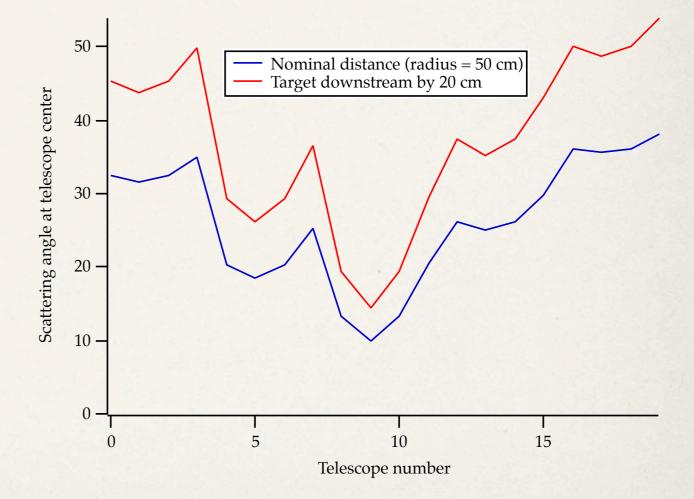
Goal of experiment e06006

Study proportions of elastic breakup in two-proton reaction

- 3 scenarios possible
 - Both protons removed inelastically
 - One proton elastically removed, the other not (times two)
 - Both protons elastically removed
- Eikonal model calculates cross sections for each scenario
 - See J. Tostevin & B. A. Brown, PRC 74, 064604 (2006)
 - Branching ratios already measured from experiment 01013 using S800+SeGA
 - Expected cross section for double diffraction channel: 0.1 mb

TABLE I. Calculated and measured two-proton knockout reaction partial cross sections $\sigma^{(f)}$ from ²⁸Mg and ⁵⁴Ti on a ⁹Be target showing their stripping, $\sigma_{str}^{(f)}$, stripping-diffraction, $\sigma_{str-diff}^{(f)}$, and diffraction, $\sigma_{diff}^{(f)}$, components. All cross sections are in mb. $R_s(2N) = \sigma_{expt}/\sigma^{(f)}$ is the ratio of the experimental and the theoretical total partial cross section $\sigma^{(f)}$.

J_f^π	E (MeV)	$\sigma_{ m str}^{(f)}$	$\sigma^{(f)}_{ m str-diff}$	$\sigma^{(f)}_{ m diff}$	$\sigma^{(f)}$	$\sigma_{\rm expt}$ [4]	$R_s(2N)$
$^{28}Mg \rightarrow ^{26}Ne$	83.2 MeV				100		
0+	0.0	0.63	0.47	0.09	1.19	0.70(15)	0.59(13
2 ⁺ 4 ⁺	2.02	0.18	0.12	0.02	0.32	0.09(15)	0.28(47
4+	3.50	0.59	0.37	0.06	1.02	0.58(9)	0.57(9)
2^{+}_{2}	3.70	0.25	0.17	0.03	0.45	0.15(9)	0.33(20
Incl.					2.98	1.50(10)	0.50(3)
$^{54}\text{Ti} \rightarrow ^{52}\text{Ca}$	72.0 MeV						
0+	0.0	0.21	0.5	0.03	0.38	0.21(3)	0.55(8)
8999 <u>1</u> 83							
		0.84	0.58	0.1			


Experimental setup

* S800

- * Collect and identify ²⁶Ne residues
- Two rigidity settings necessary to cover full parallel momentum distribution

HiRA

- Detect high energy protons in coincidence
- Use ΔE-E with DSSD + CsI to identify protons
- Angular coverage between 10° and 50°, by moving target forward 15 cm (3 holes on table)

Rate estimation

Target thickness compromise

- * Increase reaction rate reduce energy broadening due to differential energy loss
- Choice: ⁹Be 100 mg/cm²
- Differential energy loss between ²⁸Mg and ²⁶Ne: 22 MeV (similar to width obtained during the ⁹C experiment)
- Expected rate
 - Expected rate of ²⁸Mg radioactive beam on target: 3.10⁵ pps
 - * Expected rate for double diffraction channel (cross section of 0.1 mb): 0.2 pps
 - Solid angle efficiency of HiRA for two protons: ~ 5% (need real value for new geometry)
 - Rate for double diffraction events: 36 / hour
 - 72 hours give about 2,500 counts

Precise measurement on one-proton knockout

- Use thin ⁹Be target (9 mg/cm²)
 - * Reduce width of diffraction peak to ~ 1 MeV
 - Eikonal calculation of one-proton knockout cross section to ²⁷Na g.s. (remove valence proton from d_{5/2} orbital)
 - Stripping (inelastic): 10.9 mb
 - * Diffraction (elastic): 2.4 mb

Rate estimation

- Diffraction channel: 0.5 pps
- HiRA solid angle efficiency: ~ 20%
- Estimated rate for diffraction events: 360 / hour
- 12 hours give about 4,000 counts

Experiment planning

Goal	Beam	Target	Time
Calibrate CsI	¹ H	¹⁹⁷ Au 20 mg/cm ²	6 hours
one-proton knockout	²⁸ Mg	⁹ Be 9 mg/cm ²	12 hours
two-proton knockout	²⁸ Mg	⁹ Be 100 mg/cm ²	72 hours

To-Do list

- Scattering chamber configuration
 - Remove MCP detectors and collimators
 - * Move target drive downstream by 15 cm (3 holes on table)
 - Mount targets and target ladder
 - Position camera for new target location and check image
 - Check target drive control
- Trigger
 - Need OR from DSSD for coincidence (good timing)
 - Trigger in S800 trigger box (FPGA) sent back to HiRA electronics

To-Do list (continued)

- * Readout
 - * Same readout code as for previous experiments e07037 and e06035
 - HiRA readout with only DSSD + CsI
 - Install software on account e06006 (readout, SpecTcl, eLog)
 - Test it! (beware of recent upgrades from computer department)
- Run organization
 - Read and acknowledge experimenter responsibilities
 - Need one HiRA specialist and one S800 specialist per shift
 - Sign up for shifts in Data-U6