Experiment e06006

Precise study of the diffractive components in two-proton knockout reactions

Two-proton knockout on neutron-rich nuclei

* Direct process
* Path through sequential process energetically forbidden
* See J. A. Tostevin et al., PRC 70, 064602 (2004)
* Spectroscopic information can be obtained from this type of reaction
* Reaction drives towards more neutron-rich species

FIG. 2. Energy diagram of the neutron-rich $N=16$ isotones ${ }^{28} \mathrm{Mg},{ }^{27} \mathrm{Na}$, and ${ }^{26} \mathrm{Ne}$, showing the single-neutron (ν) and proton (π) separation energies for each nucleus. The diagram shows that nondirect population of the bound states of ${ }^{26} \mathrm{Ne}$, by one-proton removal to excited ${ }^{27} \mathrm{Na}$ followed by proton evaporation, would involve states high above the (much lower) neutron evaporation threshold and so is expected to be negligible.

Knockout reactions

* Surface dominated collision with a light target
* Stripping or inelastic breakup: removed nucleon absorbed - target is excited or even broken
* Diffraction or elastic breakup: removed nucleon elastically scattered - target stays in its ground state
* Heavy residue detected at forward angles
* Residue final state measured from in-flight γ-ray decay
* Fast projectile
* Momentum of residue directly related to momentum of removed nucleon
* Longitudinal momentum free of Coulomb deflection and diffractive scattering, directly related to angular momentum of removed nucleon
* Sudden/adiabatic approximation and eikonal model

Previous experiment: ${ }^{9} \mathrm{C}$ and ${ }^{8} \mathrm{~B}$

* Study of elastic and inelastic parts of cross section
* One-proton knockout on ${ }^{9} \mathrm{C}$ and ${ }^{8} \mathrm{~B}$
* HiRA array used in coincidence with S800
* Clear kinematical differences between elastic and inelastic breakup
* Proportions calculated with eikonal model agrees with observations very well
* See D. Bazin et al., PRL 102, 232501 (2009)

Proj.	$\%_{\text {diff }^{\mathrm{a}}}$	$\%_{\text {diff }}{ }^{\mathrm{b}}$	$\%_{\text {diff }}[9]$	$\sigma_{\text {th }}(\mathrm{mb})$	$R_{S}{ }^{\mathrm{a}}$	$R_{S}[9]$	$R_{S}[11]$
${ }^{9} \mathrm{C}$	$25(2)$	26.8	$26(10)$	62.90	$0.84(5)$	$0.82(6)$	-
${ }^{8} \mathrm{~B}$	$38(3)$	37.1	$28(14)$	144.28	$0.88(4)$	$0.86(7)$	$0.88(4)$

[^0]
Goal of experiment e06006

* Study proportions of elastic breakup in two-proton reaction
* 3 scenarios possible
* Both protons removed inelastically
* One proton elastically removed, the other not (times two)
* Both protons elastically removed
* Eikonal model calculates cross sections for each scenario
* See J. Tostevin \& B. A. Brown, PRC 74, 064604 (2006)
* Branching ratios already measured from experiment 01013 using S800+SeGA
* Expected cross section for double diffraction channel: 0.1 mb

TABLE I. Calculated and measured two-proton knockout reaction partial cross sections $\sigma^{(f)}$ from ${ }^{28} \mathrm{Mg}$ and ${ }^{54} \mathrm{Ti}$ on a ${ }^{9}$ Be target showing their stripping, $\sigma_{\text {str }}^{(f)}$, stripping-diffraction, $\sigma_{\text {str-diff }}^{(f)}$, and diffraction, $\sigma_{\text {diff }}^{(f)}$, components. All cross sections are in mb. $R_{s}(2 N)=\sigma_{\text {expt }} / \sigma^{(f)}$ is the ratio of the experimental and the theoretical total partial cross section $\sigma^{(f)}$.

J_{f}^{π}	$E(\mathrm{MeV})$	$\sigma_{\text {str }}^{(f)}$	$\sigma_{\text {str-diff }}^{(f)}$	$\sigma_{\text {diff }}^{(f)}$	$\sigma^{(f)}$	$\sigma_{\text {expt }}[4]$	$R_{s}(2 N)$
${ }^{28} \mathrm{Mg} \rightarrow{ }^{26} \mathrm{Ne}$	83.2 MeV						
0^{+}	0.0	0.63	0.47	0.09	1.19	$0.70(15)$	$0.59(13)$
2_{1}^{+}	2.02	0.18	0.12	0.02	0.32	$0.09(15)$	$0.28(47)$
4^{+}	3.50	0.59	0.37	0.06	1.02	$0.58(9)$	$0.57(9)$
2_{2}^{+}	3.70	0.25	0.17	0.03	0.45	$0.15(9)$	$0.33(20)$
Incl.							2.98
$1.50(10)$	$0.50(3)$						
${ }^{54} \mathrm{Ti} \rightarrow{ }^{52} \mathrm{Ca}$	72.0 MeV						
0^{+}	0.0	0.21	0.5	0.03	0.38	$0.21(3)$	$0.55(8)$

Experimental setup

* S800
* Collect and identify ${ }^{26} \mathrm{Ne}$ residues
* Two rigidity settings necessary to cover full parallel momentum distribution
* HiRA
* Detect high energy protons in coincidence
* Use $\Delta \mathrm{E}-\mathrm{E}$ with DSSD + CsI to identify protons
* Angular coverage between 10° and 50°, by moving target forward 15 cm
 (3 holes on table)

Rate estimation

* Target thickness compromise
* Increase reaction rate - reduce energy broadening due to differential energy loss
* Choice: ${ }^{9}$ Be $100 \mathrm{mg} / \mathrm{cm}^{2}$
* Differential energy loss between ${ }^{28} \mathrm{Mg}$ and ${ }^{26} \mathrm{Ne}: 22 \mathrm{MeV}$ (similar to width obtained during the ${ }^{9} \mathrm{C}$ experiment)
* Expected rate
* Expected rate of ${ }^{28} \mathrm{Mg}$ radioactive beam on target: $3.10^{5} \mathrm{pps}$
* Expected rate for double diffraction channel (cross section of 0.1 mb): 0.2 pps
* Solid angle efficiency of HiRA for two protons: ~ 5\% (need real value for new geometry)
* Rate for double diffraction events: 36 / hour
* 72 hours give about 2,500 counts

Precise measurement on one-proton knockout

* Use thin ${ }^{9}$ Be target ($9 \mathrm{mg} / \mathrm{cm}^{2}$)
* Reduce width of diffraction peak to $\sim 1 \mathrm{MeV}$
* Eikonal calculation of one-proton knockout cross section to ${ }^{27} \mathrm{Na}$ g.s. (remove valence proton from $\mathrm{d}_{5 / 2}$ orbital)
* Stripping (inelastic): 10.9 mb
* Diffraction (elastic): 2.4 mb
* Rate estimation
* Diffraction channel: 0.5 pps
* HiRA solid angle efficiency: $\sim 20 \%$
* Estimated rate for diffraction events: 360 / hour
* 12 hours give about 4,000 counts

Experiment planning

Goal
 Beam
 Target
 Time

Calibrate CsI	${ }^{1} \mathrm{H}$	197 Au $20 \mathrm{mg} / \mathrm{cm}^{2}$	6 hours
one-proton knockout	${ }^{28} \mathrm{Mg}$	9 Be $9 \mathrm{mg} / \mathrm{cm}^{2}$	12 hours
two-proton knockout	${ }^{28} \mathrm{Mg}$	9 Be	72 hours

To-Do list

* Scattering chamber configuration
* Remove MCP detectors and collimators
* Move target drive downstream by 15 cm (3 holes on table)
* Mount targets and target ladder
* Position camera for new target location and check image
* Check target drive control
* Trigger
* Need OR from DSSD for coincidence (good timing)
* Trigger in S800 trigger box (FPGA) sent back to HiRA electronics

To-Do list (continued)

* Readout
* Same readout code as for previous experiments e07037 and e06035
* HiRA readout with only DSSD + CsI
* Install software on account e06006 (readout, SpecTcl, eLog)
* Test it! (beware of recent upgrades from computer department)
* Run organization
* Read and acknowledge experimenter responsibilities
* Need one HiRA specialist and one S800 specialist per shift
* Sign up for shifts in Data-U6

[^0]: ${ }^{\text {a }}$ This work
 ${ }^{\mathrm{b}}$ Calculated (from Table I)

