

Nuclear Structure Study with HiRA

<u>J. Lee¹</u>, A.M. Rogers¹, B. Tsang¹, A. Sanetullaev¹, Z. Sun¹, M. Famiano¹,², W.G. Lynch¹, V. Henzl¹, D. Henzlova¹, M. Kilburn¹, D. Coupland¹, M. Youngs¹, M. Wallace¹,⁵, R. Charity³, L. Sobotka³, F. DeLaunay¹, S. Hudan⁴, R. de Souza⁴

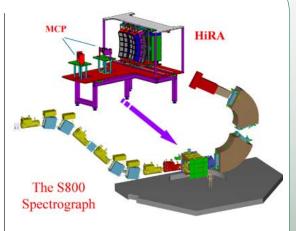
¹NSCL, ²Western Michigan University, ³Washington University in St. Louis, ⁴Indiana University, ⁵LANL

Is Nickel-56 doubly magic ?

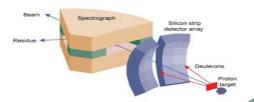
Two shell structures for unstable ⁵⁶Ni nucleus:

- ⁵⁶Ni as inert core
- All 28 protons and 28 neutrons are inside the core

- ⁴⁰Ca as inert core
- 8 valence protons and 8 neutrons are outside the core


Classical tool: To use transfer reaction such as (p,d) to pick up a neutron from the ⁵⁶Ni nucleus. Comparison of the data to model predictions will distinguish the two models.

Two for the price of one: Since N=Z=28 in ^{56}Ni , we can test the mirror symmetry of ^{56}Ni nucleus by using (d, ^{3}He) reaction to pick up a proton in the same experiment and compare the neutron and proton pickup mechanisms.


Complete Kinematics

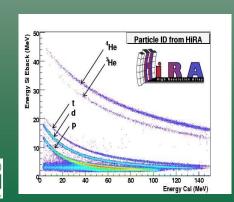
- Projectile residues are detected with spectrometer
- Light particles are detected with Si charged particle detectors


Schematics of setup with HiRA and S800

Inverse kinematics: ⁵⁶Ni is the radioactive beam and proton is the target.

II.RA

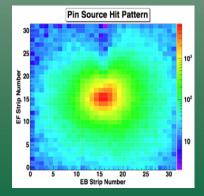
HiRA is an array of charged particle detectors:


- √ highly efficient
- √ covers large solid angle
- ✓ good energy and position resolution

Excellent for Investigation of the Structure of Exotic Nuclei using inverse kinematics

The People: Current and Future Scientists

Performance of HIRA in previous transfer reaction experiments


⁶⁶As(p,d)⁶⁵As, ⁶⁵Ge(p,d)⁶⁴Ge, ⁶⁹Se(p,d)⁶⁸Se – important for Nuclear Astrophysics

PID (Particle Identification):

☐ Particles are identified in HiRA by comparing the energy lost in the various detectors.

☐ Each band corresponds to a different nuclear species.

Position Resolution:

☐ 32 vertical strips on the front side and 32 horizontal strips on the back side of Si detector → 1024 pixels

□ Each pixel is 1.8mm x 1.8 mm → Good angular resolution

☐ At a distance of 35cm, the angular resolution for one pixel is 0.15° degree

