Evolution of Neutron hole states in N=50 closed shells

$^{84}\text{Se}(p,d)^{83}\text{Se}$
$^{86}\text{Kr}(p,d)^{85}\text{Kr}$

Beam time: 19$^{\text{th}}$ - 28$^{\text{th}}$ May, 2010

Experiment # 06035: HiRA group

• $^{56}\text{Ni}(p,d)^{55}\text{Ni}$
• $^{56}\text{Ni}(d,3\text{He})^{55}\text{Co}$

Beam time: 1$^{\text{st}}$ - 10$^{\text{th}}$ June, 2010

Evolution of neutron (p,d) and proton (d,3He) hole states in the “doubly” magic nucleus ^{56}Ni
Physics goal:

Spectroscopic factor (SF): quantifies the nature and occupancy of the single particle orbits in a nucleus.

- $^{56}\text{Ni}(p,d)^{55}\text{Ni} \rightarrow$ Measurement of Neutron SF factor of ^{56}Ni
- $^{56}\text{Ni}(d,^3\text{He})^{55}\text{Co} \rightarrow$ Measurement of Proton SF factor of ^{56}Ni

SF from Independent Particle Model = 8

$$SF = \left(\frac{d\sigma}{d\Omega}\right)_{Exp} \div \left(\frac{d\sigma}{d\Omega}\right)_{RM}$$

We will answer the question:
Is $N=Z=28$ closed shell?
• $^{56}\text{Ni}(p,d)^{55}\text{Ni} \rightarrow$ Beam energy 35 MeV/A data exists (Expt # 05133; thesis Alisher)

• New measurement at 75 MeV/A to look for the energy dependence of SF

• $^{56}\text{Ni}(d,3\text{He})^{55}\text{Co} \rightarrow$ New Measurement

• Neutron SF & Proton SF are same?
Experimental set up

- Beam energy: 75 MeV/A

Detect light particles (p,d,t, 3He) in HiRA

Detect residues in S800

Tower configuration:
- DE+E+CsI in each telescope
- 20 telescopes and 5 towers
- target – HiRA distance: 50 cm

-- Two MCP separated by 40 cm for beam tracking
- MCP1 to target distance 10 cm
Kinematics

Ni$_{56}$(p,d)$_{55}$Ni

Cross section (mb/sr)

Lab angle (deg)

Ni$_{56}$(d,3He)$_{55}$Co

Cross section (mb/sr)

Lab angle (deg)

HiRA Efficiency

Efficiency

θ (lab)

Total energy (MeV)

Lab angle (deg)
Punch through

E = 80 MeV/A

Lab angle (deg)

Total energy (MeV)

Punch thru for 3He in dE

Punch thru for 2H in E

Punch thru for 3He in dE

HiRA Efficiency

HiRA punch through summary

<table>
<thead>
<tr>
<th>Particle</th>
<th>65 micron dE Si (MeV)</th>
<th>1.5 mm E Si (MeV)</th>
<th>4 cm CsI (MeV)</th>
<th>Loss in Si (1.5 mm) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>2.45</td>
<td>15.6</td>
<td>115.8</td>
<td>1.84</td>
</tr>
<tr>
<td>d</td>
<td>3.17</td>
<td>20.9</td>
<td>154.8</td>
<td>2.48</td>
</tr>
<tr>
<td>t</td>
<td>3.68</td>
<td>24.8</td>
<td>183.4</td>
<td>2.96</td>
</tr>
<tr>
<td>3He</td>
<td>8.72</td>
<td>54.9</td>
<td>411.1</td>
<td>6.53</td>
</tr>
</tbody>
</table>
Energy deposited by the particles in HiRA

For 3He Etot @ 45 deg ~ 22 MeV
Loss in dE ~ 3MeV
No dE in telescope position 10 & 15
Efficiency without telescopes in position 10 & 15
56Ni(d,3He)55Co

<table>
<thead>
<tr>
<th>E_{level} (keV)</th>
<th>$J\pi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>7/2-</td>
</tr>
<tr>
<td>2165.89</td>
<td>3/2-</td>
</tr>
<tr>
<td>2565.85</td>
<td>3/2-</td>
</tr>
</tbody>
</table>

56Ni(p,d)55Ni

<table>
<thead>
<tr>
<th>E_{level} (keV)</th>
<th>$J\pi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>7/2-</td>
</tr>
<tr>
<td>2089</td>
<td></td>
</tr>
<tr>
<td>2462</td>
<td></td>
</tr>
<tr>
<td>2839</td>
<td></td>
</tr>
<tr>
<td>2882.1</td>
<td>11/2-</td>
</tr>
<tr>
<td>3185.6</td>
<td>1/2+</td>
</tr>
</tbody>
</table>

56Ni(p,t)54Ni

<table>
<thead>
<tr>
<th>E_{level} (keV)</th>
<th>$J\pi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0+</td>
</tr>
<tr>
<td>1396</td>
<td>2+</td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
</tbody>
</table>
1st peak at 75 MeV/A beam → 10-40° → ~7-15 MeV of 3He

Energy loss of 15 MeV 3He in 65 micron Si ~ 4 MeV

Maximum energy to be measured in E ~ 11 MeV

Punch-through energy of 3He in dE = 8.8 MeV
Punch-through for E is ~55 MeV
HiRA punch through summary

<table>
<thead>
<tr>
<th>Particle</th>
<th>65 micron dE Si (MeV)</th>
<th>1.5 mm E Si (MeV)</th>
<th>4 cm CsI (MeV)</th>
<th>Loss in Si (1.5 mm) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>2.45</td>
<td>15.6</td>
<td>115.8</td>
<td>1.84</td>
</tr>
<tr>
<td>d</td>
<td>3.17</td>
<td>20.9</td>
<td>154.8</td>
<td>2.48</td>
</tr>
<tr>
<td>t</td>
<td>3.68</td>
<td>24.8</td>
<td>183.4</td>
<td>2.96</td>
</tr>
<tr>
<td>3He</td>
<td>8.72</td>
<td>54.9</td>
<td>411.1</td>
<td>6.53</td>
</tr>
<tr>
<td>4He</td>
<td>9.69</td>
<td>62.1</td>
<td>462.3</td>
<td>7.34</td>
</tr>
<tr>
<td>6He</td>
<td>11.21</td>
<td>74.0</td>
<td>548.3</td>
<td>8.72</td>
</tr>
<tr>
<td>8He</td>
<td>12.36</td>
<td>83.6</td>
<td>619.1</td>
<td>9.89</td>
</tr>
</tbody>
</table>
Cross section (mb/sr)

56Ni(d,3He)55Co

CM angle (deg)
<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>Jπ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>7/2−</td>
</tr>
<tr>
<td>2165.89 5</td>
<td>3/2−</td>
</tr>
<tr>
<td>2665.85 3</td>
<td>3/2−</td>
</tr>
<tr>
<td>2699.48 6</td>
<td>5/2−</td>
</tr>
<tr>
<td>2910.50 6</td>
<td>7/2−</td>
</tr>
<tr>
<td>2922.25 12</td>
<td>1/2+</td>
</tr>
<tr>
<td>2939.16 8</td>
<td>1/2−</td>
</tr>
<tr>
<td>2960.1 4</td>
<td></td>
</tr>
<tr>
<td>2973.47 20</td>
<td>11/2−</td>
</tr>
<tr>
<td>2976.34 18</td>
<td>9/2−,(7/2)</td>
</tr>
<tr>
<td>2990 80</td>
<td>(3/2)−</td>
</tr>
<tr>
<td>3305.11 7</td>
<td>5/2−</td>
</tr>
<tr>
<td>3323.23 10</td>
<td>1/2−</td>
</tr>
</tbody>
</table>

Alisher’s expt
To Do: Before Experiment:

- Alpha source calibrations of E
- Alpha source calibrations of DE
- Pin source calibration of E
- Pulser ramp calibration of DE, EF, EB and CsI
- Optical Alignment with cross-hair to determine the position of the reaction target and MCP target/Mask – chamber installation
- TDC (S800 and MCP) calibrations
- Pulser ramp for MCP/QDC to match the high gain and low gain.
To Do: After Experiment:

- Position measurement of HiRA, target and MCP foil + Mask using romar arm
- Position measurement of target and MCP foil + Mask using LBAS and references
- Alpha source calibrations of DE
- Pin source calibration of E
- Take out DE, do alpha source calibrations of EF and EB
- Pulser ramp calibration of DE, EF, EB and CsI
- TDC (S800 and MCP) calibrations
- Pulser ramp for MCP/QDC to match the high gain and low gain
To Do: During Experiment:

- Data Run
- Unreacted Beam (also whether the A1900 setting is changed)
- CDRC mask calibration (CRDC1 and 2)
- Reaction target mask (5 holes) calibration
- MCP mask calibration (defocused beam, if it takes a while to tune the beam, then just move the MCP mask for more hole coverage)
- Alpha calibration when there is no beam
- Background measurement at the end of experiment
- Magicity of ^{48}Ca suggests good closed shell.
- Recent measurement of magnetic moment of ^{57}Cu implies shell breaking of N=28 in the core.
Magicity of 42Si suggests that N=28 is a good closed shell

Nuclear Magnetic Moment of the 57Cu Ground State

K. Minamisono,1 P. F. Mantica,1,2 T. J. Mertzimekis,1 A. D. Davies,1,3 M. Hass,4 J. Pereira,1 J. S. Pinter,1,2 W. F. Rogers,5 J. B. Stoker,1,2 B. E. Tomlin,1,2 and R. R. Weerasiri1,2

1National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
2Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
3Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
4Department of Particle Physics, Weizmann Institute, 76100 Rehovot, Israel
5Department of Physics, Westmont College, Santa Barbara, California 93108, USA

(Received 21 December 2005; published 17 March 2006)

The nuclear magnetic moment of the ground state of 57Cu($I^\pi = 3/2^-$, $T_{1/2} = 196.3$ ms) has been measured to be $|\mu(^{57}\text{Cu})| = (2.00 \pm 0.05)\mu_N$ using the β-NMR technique. Together with the known magnetic moment of the mirror partner 57Ni, the spin expectation value was extracted as $\langle \Sigma \sigma_z \rangle = -0.78 \pm 0.13$. This is the heaviest isospin $T = 1/2$ mirror pair above the 40Ca region for which both ground state magnetic moments have been determined. The discrepancy between the present results and shell-model calculations in the full f_{p} shell giving $\mu(^{57}\text{Cu}) = 2.4\mu_N$ and $\langle \Sigma \sigma_z \rangle \sim 0.5$ implies significant shell breaking at 56Ni with the neutron number $N = 28$.

M measurement of the nuclear magnetic moment of the ground state of 57Cu which could be viewed as a valence proton outside a closed 56Ni core suggests significant shell breaking of N=28 in the core.
To do: 30th April

1. Alpha source test: Dan, Zibi, Bill
2. Fix the dE motherboard and chip: Dan
3. Get the CsI ribbon cable: Mike
4. Making the CsI cable: Mike
5. Put CsI shaper into HiRA lab and test: Ali
6. Bias cable adaptar
7. Protector circuit hook up to interlock system: Tilak/Mike
8. Clear up and check grounding: Bill
9. Close up the PLC box, check the readout with cables: Mike/Bill
10. Reshiled the dE cables: Patrick/Tilak
11. Install the other HiRA telescope: Tilak & Ali
12. Put dE motherboards/preamp at the top of the chamber and test with pulser
13. Make 34 Pin male to male cable: Mike
14. Make decision on gain setting for dE & E: Tilak, Betty