Precision Measurement of Isospin Diffusion and Odd-Even Staggering in Fragment Yields

Jack Winkelbauer
NSCL, MSU

ASY-EOS Workshop 2012, Siracusa Italy, September 2012
Outline

• Isospin Diffusion Experiment
 – Motivation
 – Experimental Setup
 – Current Progress (Analysis is ongoing)

• Fragment Production (Staggering in fragment yields)
 – Motivation
 – Preliminary Results

• Future
Isospin Diffusion → Isospin Transport Ratio

Isospin diffusion occurs only in asymmetric systems \(A+B \)

No isospin diffusion between symmetric systems \(A+A, B+B \)

Non-isospin diffusion effects:
- same for \(A \) in \(A+B \) & \(A+A \);
- same for \(B \) in \(B+A \) & \(B+B \)

\[
R_i = 2 \frac{x_{AB} - (x_{AA} + x_{BB})}{2} \quad x_{AA} - x_{BB}
\]

\(\delta \) - Residue asymmetry (from theory)
\(\alpha \) - (isoscaling parameter, Exp. Obs.)
\(R_i(\alpha) = R_i(\delta) \ assuming \ \delta = m\alpha + b \)

Non-isospin transport effects are "cancelled"!
Main Goal: Isospin Transport in Residues

- Different amount of isospin diffusion for heavy residues.
- We will measure the isospin transport for the residue using the S800 spectrograph in addition to measuring the fragment distributions.

\[E_{\text{sym}}(\rho) = S_k \left(\frac{\rho}{\rho_0} \right)^{2/3} + S_i \left(\frac{\rho}{\rho_0} \right)^{\gamma_i} \]
Experiment 07038: Precision Measurement of Isospin Diffusion

- Investigates the density-dependence of the nuclear symmetry energy
- 112,118,124Sn$^+$ 112,118,124Sn Collisions
- Combines the MSU Miniball, the LASSA Array, and the S800 Spectrograph
Experiment 07038: Precision Measurement of Isospin Diffusion
The LASSA Array

LASSA PID

- H
- He
- Li

Si energy (MeV) vs. CsI Energy (ADC channel)
The MSU Miniball/WU Miniwall

- Total charged particle multiplicity is related to impact parameter
The MSU Miniball/WU Miniwall

- Total charged particle multiplicity is related to impact parameter

Figure: Andira Ramos (CEU Poster)
The S800 Spectrometer separates isotopes (Z≈20-50) by comparing ΔE, TOF, and $B\rho$.

S800 Particle ID

- Ion Chamber Energy Loss (AU) ($-Z^2$)
- Time of Flight (ns)

- Z=28
- N Z=3

Color scale:
- 40
- 35
- 30
- 25
- 20
- 15
- 10
- 5

National Science Foundation
Michigan State University

J.R. Winkelbauer, 9/2/2012, Slide 10
Progress Towards Isospin Diffusion

• Impact parameter Selection using MB (Rachel Showalter, GS NSCL)
• Analysis of LASSA data is underway
• S800
 – Detector calibrations are done
 – Working on implementing TKE CsI Hodoscope for q-state identification
 – Working on producing/fitting momentum distributions for heavy fragments

• Meanwhile, we are looking at the structure in heavy fragment yields
 – Hot excited system -> stable heavy fragment
Odd-Even Z Staggering

112Sn+58Ni 35 MeV/u, Catania

- 112Sn+112Sn 70 MeV/u, NSCL
 - See odd-even staggering, but analysis is incomplete
- Staggering is complex, need A identification
- 58Ni+Be, 140 MeV/u, NSCL
 - Complete Analysis
 - PRC 74, 054612 2006

\[R_0 = \frac{Y(Z)}{Y_{smooth}(Z)} \]

\[R = \frac{Y(Z, N - Z)}{Y_{smooth}(Z, N - Z)} \]

Figure: Casini et al., PRC 86 011602 2012
Pairing Energy in the SMM

\[E_B = a_V A - a_S A^{2/3} - a_A \frac{(A-2Z)^2}{A^{1/3}} - a_c \frac{Z(Z-1)}{A^{1/3}} + \delta(A,Z) \]

- **Volume term**
- **Surface term**
- **Asymmetry term**
- **Coulomb term**
- **Pairing term**

For pairing term:
\[\delta(A,Z) = \begin{cases}
 +\delta_0 & \text{A, Z even} \\
 0 & \text{A odd} \\
 -\delta_0 & \text{A, Z odd}
\end{cases} \]

Odd mass → No Pairing

No Pairing → No Staggering

Figure: Sergio Souza, SMM Calc.
Even Mass Staggering for $^{58}\text{Ni}+\text{Be}$

Data

More proton rich \rightarrow Bigger Staggering

- ^{40}Ca
- ^{42}Ca
- ^{42}Sc

Even Z-Even N

Odd Z-Odd N
Even Mass Staggering in Exp. BE

Consistent direction, but **becomes small for larger Z**
Odd Mass Staggering for 58Ni+Be

- Even Z-Odd N
- Odd Z-Even N

Very Proton-rich \rightarrow strong staggering, less proton rich \rightarrow less staggering

Data

39Ca
41Ca
41Sc
Odd Even Staggering for 58Ni+Be

Very Neutron Rich \rightarrow Staggering Flips

Data

41Ca

45Ca
Odd Even Staggering in Sn and Sp

Influence of Secondary Decay

• Neutron Rich (N-Z=5)
 – Over producing for odd Z, under producing for even Z
 – Sn<Sp, likely to excite to a neutron unbound level.
 – Odd Z, Even N emitting a neutron decays to odd-odd nucleus, which is unfavorable, because of pairing term.

• Proton Rich (N-Z=1)
 – Over producing for even Z, under producing for odd Z
 – Sn>Sp, likely to excite to a proton unbound level.
 – Odd Z, Even N emitting a proton decays to even-even nucleus, which is favorable, because of pairing term.

Figure: Sergio Souza, SMM Calc.
Conclusions and Future

• Odd Even Staggering
 – Z-Staggering is more complicated, isotopic resolution is necessary
 – Staggering effect increases as you go to more proton rich isotopes (N-Z=-1, N-Z=-2)
 – Staggering trend flips as you go to more neutron rich isotopes (N-Z=5, N-Z=7)
 – Working on quantifying effect with model calculations

• Isospin Diffusion
 – Analysis is ongoing, look for results soon
Collaborators

NSCL/Michigan State University
Jack Winkelbauer, Rachel Showalter, Betty Tsang, Bill Lynch, Zbigniew Chajecki, Dan Coupland, Jimmy Dunn, Sebastian George, Fei Lu, Andira Ramos, Alisher Sanetullaev, Rebecca Shane, Suwat Tangwancharoen, Mike Youngs

Western Michigan University
Michael Famiano, Steven Dye, Steven Nielsen, Mohamed el Houssieny

Washington University at St. Louis
Robert Charity, Lee Sobotka, Jon Elson

Indiana University
Romualdo de Souza

Variable Energy Cyclotron Centre
Tilak Ghosh, Tapan Rana

Universidade Federal do Rio Grande do Sul
Sergio R. Souza
Negligible staggering in BE for odd masses
Measured Systems

- Data taken (Millions of events):

<table>
<thead>
<tr>
<th>Beam</th>
<th>Target</th>
<th>¹¹²Sn</th>
<th>¹¹⁸Sn</th>
<th>¹²⁴Sn</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹¹²Sn</td>
<td>¹¹²Sn</td>
<td>11.4</td>
<td>x</td>
<td>8.7</td>
</tr>
<tr>
<td>¹¹⁸Sn</td>
<td>¹¹⁸Sn</td>
<td>3.8</td>
<td>10.7</td>
<td>x</td>
</tr>
<tr>
<td>¹²⁴Sn</td>
<td>¹²⁴Sn</td>
<td>12.3</td>
<td>10.1</td>
<td>15.2</td>
</tr>
</tbody>
</table>
What is the Symmetry Energy?

\[\frac{E}{A}(\rho, \delta) = \frac{E}{A}(\rho,0) + E_{\text{sym}}(\rho)\delta^2 \]

\[\delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p} \]

\[E_{\text{sym}}(\rho) = S_k \left(\frac{\rho}{\rho_0} \right)^{2/3} + S_i \left(\frac{\rho}{\rho_0} \right)^{\gamma_i} \]

This constraint mainly comes from “isospin diffusion” measured in HIC’s.
Isoscaling

Tsang et. al., PRL 92, 062701 (2004)
Probing the Asymmetry of the Spectators

The main effect of changing the asymmetry of the projectile spectator remnant is to shift the isotopic distributions of the products of its decay.

This can be described by the isoscaling parameters α and β:

$$
\frac{Y_2(N,Z)}{Y_1(N,Z)} = C \exp(\alpha N + \beta Z)
$$

$$
R_i = 2 \frac{x_{AB} - (x_{AA} + x_{BB})/2}{x_{AA} - x_{BB}}
$$

$R_i(\alpha) = R_i(\delta)$ assuming $\delta = m\alpha + b$

δ (residue asymmetry)

α (isoscaling parameter)
Previous Isospin Diffusion Experiment

Collaboration between MSU, IUCF, WU (recall: Rachel Hodges’s talk)

$^{112}\text{Sn} + ^{112}\text{Sn}, \; ^{112}\text{Sn} + ^{124}\text{Sn}, \; ^{124}\text{Sn} + ^{112}\text{Sn}, \; ^{124}\text{Sn} + ^{124}\text{Sn}$ at $E/A=50$ MeV

Miniball/Miniwall

4\(\pi\) multiplicity array
Z resolution for $A<4$

LASSA

DSSD + CsI(Tl)
Energy, Position,
A,Z Resolution for $Z<8$

Xu et al, PRL, 85, 716 (2000)
Confirm Linearity of α on δ

- α depends linearly on the asymmetry according to statistical and dynamic models.
- Experimentally verified in central collisions.
- Measure ^{118}Sn on ^{118}Sn to add a data point to $^{112}\text{Sn} + ^{112}\text{Sn}$ and $^{124}\text{Sn} + ^{124}\text{Sn}$.
Establishing A and Z from ΔE, TOF

Figure: Michal Mocko
Isospin Diffusion → Isospin Transport Ratio

Isospin diffusion occurs only in asymmetric systems \(A+B \)

No isospin diffusion between symmetric systems \(A+A \), \(B+B \)

Non-isospin diffusion effects:
- same for \(A \) in \(A+B \) & \(A+A \);
- same for \(B \) in \(B+A \) & \(B+B \)

\[
R_i = 2 \frac{x_{AB} - (x_{AA} + x_{BB})/2}{x_{AA} - x_{BB}}
\]

\(\delta \) - Residue asymmetry (from model)
\(\alpha \) - (isoscaling parameter, Exp. Obs.)
\(R_i(\alpha) = R_i(\delta) \) assuming \(\delta = m\alpha + b \)

Non-isospin transport effects are “cancelled”!

\(R_i = 1 \)
\(R_i = -1 \)
The S800 Spectrometer
Absolute A-Z Identification

(A+0,Z+0)

(A+1,Z+0)

(A+1,Z+0)

Chi-Squared

Offset in Mass Number

Identified Mass/Charge Ratio

Time-of-Flight (ns)

Identified Mass/Charge Ratio

Time-of-Flight (ns)
The S800 Spectrometer
Absolute Z Identification
The S800 Spectrometer
Separates isotopes (Z≈20-50) by comparing ΔE, TOF, and Bρ

TOF corrections?
\[E_B = a_V A - a_s A^{2/3} - a_A \frac{(A-2Z)^2}{A^{1/3}} - a_c \frac{Z(Z-1)}{A^{1/3}} + \delta(A,Z) \]

<table>
<thead>
<tr>
<th>Volume term</th>
<th>Surface term</th>
<th>Asymmetry term</th>
<th>Coulomb term</th>
<th>Pairing term</th>
</tr>
</thead>
</table>

For pairing term:

\[\delta(A,Z) = \begin{cases}
+\delta_o & \text{A, Z even} \\
0 & \text{A odd} \\
-\delta_o & \text{A, Z odd}
\end{cases} \]
Odd-Even Staggering for $^{112}\text{Sn}+^{112}\text{Sn}$

Even Mass Fragments from Sn+Sn

- N-Z=0
- N-Z=2
- N-Z=4

Odd Mass Fragments from Sn+Sn

- N-Z=1
- N-Z=3
- N-Z=5