NSCL PAC 36 – 2. Description of Experiment

TITLE: IAS - IAS 2p decay and testing charge independence using the A = 16 quintet.

By submitting this proposal, the spokesperson certifies that all collaborators listed have read the proposal and have agreed to participate in the experiment.

SPOKESPERSON: L. G. Sobotka
Address: Box 1134 Department of Chemistry
Washington University, St. Louis MO 63130
Phone: (314)935-5360 Fax: (314)935-6184 E-Mail: lgs@wustl.edu

BACKUP SPOKESPERSON: R. J. Charity
Institution: Washington University, St. Louis MO 63130
Phone: (314)935-6184 Fax: (314)935-6184 E-Mail: charity@wustl.edu

OTHER EXPERIMENTERS: (Please spell out first name and indicate Graduate Students (GS), Undergraduate students (UG) and Postdoctoral Associates (PD); include a separate sheet if necessary)

<table>
<thead>
<tr>
<th>Last name, First name</th>
<th>Organization</th>
<th>Last name, First name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shane, Rebecca</td>
<td>WU(GS)/MSU</td>
<td>Lynch, Bill</td>
<td>MSU</td>
</tr>
<tr>
<td>Mastren, Tara</td>
<td>WU(GS)</td>
<td>Tsang, Betty</td>
<td>MSU</td>
</tr>
<tr>
<td>Manfredi, Juan</td>
<td>WU(UG)</td>
<td>Chajecki, Zbigniew</td>
<td>MSU</td>
</tr>
<tr>
<td>Jager, Marieke</td>
<td>WU(UG)</td>
<td>Youngs, Michael</td>
<td>MSU</td>
</tr>
<tr>
<td>Wuosmaa, Alan</td>
<td>WMU</td>
<td>Coupland, Daniel</td>
<td>MSU</td>
</tr>
<tr>
<td>Baugher, Travis</td>
<td>MSU</td>
<td>Gade, Alaxandra</td>
<td>MSU</td>
</tr>
<tr>
<td>Winkelbauer, Jack</td>
<td>MSU</td>
<td>Weisshaar, Dirk</td>
<td>MSU</td>
</tr>
</tbody>
</table>

REQUEST FOR PRIMARY BEAM SEQUENCE INCLUDING TUNING, TEST RUNS, AND IN-BEAM CALIBRATIONS: (Summary of information provided on Beam Request Worksheet(s). Make separate entries for repeat occurrences of the same primary beam arising from user-requested interruptions to the experiment.)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Energy (MeV/nucl.)</th>
<th>Minimum Intensity (particle-nanoampere)</th>
<th>Beam Preparation Times (Hours)</th>
<th>Beam-On-Target Times (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam 1</td>
<td>20Ne</td>
<td>170</td>
<td>12+5=17</td>
<td>12+48 = 60</td>
</tr>
<tr>
<td>Beam 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADDITITIONAL TIME REQUIREMENTS THAT REQUIRE USE OF THE CCF (e.g. modification of the A1900 standard configuration, development of optics, … Obtain estimates from the A1900 Device Contact.)

Additional CCF use time Dev. of 20Ne beam

TOTAL TIME REQUEST (HOURS): 77
(Calculated as per item 4. of the Notes for PAC 36 in the Call for Proposals)

SET UP TIME (before start of beam) TAKE DOWN TIME
Access to: Experimental Vault 14 days 7 days
 Electronics Set-up Area 14 days 7 days
 Data Acquisition Computer 14 days 7 days
NSCL PAC 36 – 3. Status of Previous Experiments

HOURS APPROVED: ________________ HOURS RESERVED: _____________________

WHEN WILL YOUR EXPERIMENT BE READY TO RUN? ____8_______ / ___1____ / ___11____
__

EXPERIMENTAL LOCATION:

___ Transfer Hall (in the A1900) ___ Transfer Hall (downstream of the A1900)
___ N2 vault ___ N2 vault (with Sweeper line)
___ S2 vault (Irradiation line) X___ S2 vault
___ S3 vault

EXPERIMENTAL EQUIPMENT:

___ A1900 ___ Beta Counting System ___ Beta-NMR Apparatus
___ Sweeper Magnet ___ Neutron Walls ___ LENDA
___ Modular Neutron Array ___ Neutron Emission Ratio Observer
___ High Resolution Array X___ 53” Chamber X___ CsI(Na) Scintillator Array
___ Segmented Ge Array: [] classic; [] mini; [] beta; [] delta; [] barrel; [] other
___ GREITINA
___ S800 Spectrograph: [] with; [] without scattering chamber ___ DDAS
___ Radio Frequency Fragment Separator ___ LEBIT ___ BECOLA ___ Other (give details)

DETAIL ANY MODIFICATION TO THE STANDARD CONFIGURATION OF THE DEVICE USED, OR
CHECK NONE: [] NONE

DETAIL ANY REQUIREMENTS THAT ARE OUTSIDE THE CURRENT NSCL OPERATING ENVELOPE,
OR CHECK NONE (Examples: vault reconfiguration, new primary beam, primary beam intensities above what is
presently offered, special optics, operation at unusually high or low rigidities): [] NONE

20Ne primary beam

REACTION TARGETS AT EXPERIMENTAL STATION:

Be target

LIST ALL RESOURCES THAT YOU REQUEST THE NSCL TO PROVIDE FOR YOUR EXPERIMENT
BEYOND THE STANDARD RESOURCES OUTLINED IN ITEM 12 OF THE NOTES FOR PAC 36 IN THE
CALL FOR PROPOSALS. [X] NONE

None excess of of that required for the approved 10001.
For that experiment a few days of Craig Snow’s time is required to design a mount for ½ of CAESER.
(All hardware can be built at WU.)

LIST ANY BREAKS REQUIRED IN THE SCHEDULE YOUR EXPERIMENT, OR CHECK NONE: (Examples
of why an experiment might need an interruption: to change the experimental configuration; to complete the design
of an experimental component based on an initial measurement.) [] NONE

See below

OTHER SPECIAL REQUIREMENTS: (Safety related items are listed separately on following pages.) [] NONE

We are not asking for any calibration time as we propose to do this experiment before dismantling the set-up
for exp. #10001 that was approved for 129 hrs in the last (35) PAC. (That is, the time for the full complement
of calibrations need for A = 16 as well as A = 8 has already been provided (in the 10001, PAC 35 request.)

Required SUMMARY (no more than 200 words):
We propose to measure the two-proton decays of two analog T=2 states; 16Ne GS → 2p + 14O GS and 16FIAS → 2p + 14NIAS . We will study the correlations between the decay fragments and compare them to theoretical predictions. From the invariant masses of the decay products, we will determine the masses of 16Ne GS and 16FIAS and thus complete the A=16 quintet. We will fit the quintet masses with the isobaric multiplet mass equation (IMME) and look for isospin-symmetry breaking effects. If this experiment is done without breaking down the apparatus from exp #10001, this project can be done with only 77 additional hrs of PAC 36 approved time.
NSCL PAC 36 – 3. Status of Previous Experiments

Description of Experiment

I. Physics Justification

In our previous continuum-decay spectroscopy study (#08001, done in January 2010) we found that: a) the 8C ground state decays via two sequential steps of prompt two-proton (2p) decay (through the 6Be$_{g.s}$ intermediate state), b) The first 2p decay in this sequence has a enhanced “diproton” character, and c) That the analog of 8C in 8B (8B$_{IAS}$) also undergoes 2p decay (this being the first case of IAS to IAS 2p decay), see Fig. 1. In addition to the information on 2p decay, we obtained (among other findings) a new mass for 8C$_{g.s}$ (a fact relevant to this proposal) and found a new state in 10C that provides an example of four-body decay. A short paper on the 2p work was published last year [1] and a comprehensive long paper was submitted recently and is available on the WEB [2].

From the last PAC we were approved (proposal # 10001) to study the 2p correlations from the 8B$_{IAS}$ \rightarrow 6Li$_{IAS}$ + 2p decay and to detect the 3.5 MeV gamma ray from the deexcitation of 6Li$_{IAS}$ (see Fig. 1a). The present proposal uses the same apparatus that will be used for experiment #10001 to study the 2p decays of 16Ne$_{g.s}$ and 16F$_{IAS}$ (see Fig. 1b.) In this case, the energy of the 16F$_{IAS}$ is unknown (this is why there is a “?” in Fig. 1b for this level.) Thus the investigation of the A = 16 system not only provides the potential to find a second pair of analog 2p emitters but also, by reconstructing the energy of 16F$_{IAS}$, we can complete the A=16 quintet.

Complete correlations (energy and angular) in 2p decay of ground states have been measured for just 6Be$_{g.s}$ and 45Fe$_{g.s}$ decay [3,4]. The only known light 2p ground-state emitters are 6Be$_{g.s}$, 12O$_{g.s}$, 16Ne$_{g.s}$ and these have methodological importance for understanding the phenomenon in general. Like 6Be$_{g.s}$, 16Ne$_{g.s}$ can theoretically undergo sequential 2p decay through the low-energy tail of its 1p daughter (Fig.1a and 1b). But as found experimentally for 6Be$_{g.s}$, 16Ne$_{g.s}$ 2p decay is expected to be described by a prompt 3-body process [5]. Comparisons between 6Be and 16Ne are important as the Coulomb forces in the latter are 4 times larger and barrier penetration effects are more pronounced. Simultaneous reproduction of both 6Be and 16Ne decay correlations will thus provide an important test of 3-body decay models. Some information on 16Ne decay correlations exists [6], however only the angular correlations were measured, statistics were low, and the separation of the ground-state from excited states was not complete. The proposed experiment will measure both the energy and angular correlations with higher statistics (~1000 events). The first excited state of 16Ne is at 1.7 MeV and will clearly be
separated from the ground state in our proposed experiment. These data will be compared to existing predictions [5].

16F$_{\text{IAS}}$ is also an interesting case of 2p decay in that the isospin allowed 1p intermediates are too high and narrow (in energy) to be relevant (Fig. 1b). Thus to the extent that isospin is conserved, it can be considered a Goldansky-type prompt 2p decay like 45Fe [4]. Comparisons of 16Ne$_{\text{gs}}$ and 16F$_{\text{IAS}}$ correlations therefore should shed light on the influence of the intermediate state and possible isospin breaking effects. Also, like 8B$_{\text{IAS}}$, decay, we would not be surprised to find weak isospin breaking transitions to the 1p intermediate 15O (see [2].)

Again, as was the case in our prior study, where a new mass and width for 8C were extracted, we expect to do the same for 16Ne. This is relevant in that Grigorenko et al. have suggested that the experimental width tabulated for 16Ne (~122 keV) is incomprehensively too large [4]. Barker made the same general point [7]. We certainly can test this width, as from our previous work we know that our decay spectroscopy technique is capable of extracting a width (or upper limit to the width) to ~60 keV which is significantly below the present listed value of 122 keV.

A consequence of obtaining the energy of 16F$_{\text{IAS}}$ (and a new measurement of the mass/width for 16Ne) we will complete the T=2 quintet for A=16. Charge independence of the nuclear force can be tested by fitting this quintet to the Isobaric Multiplet Mass Equation (IMME) (Eq. 1). If the nucleon-nucleon interaction were charge independent, the masses of the 2T+1 members of the isobaric multiplet would only differ by the Coulomb interaction and the masses would be perfectly described by the IMME equation using the constant, linear and quadratic terms,

$$M = a + bT_z + cT_z^2 + (dT_z^3 + eT_z^4).$$

Finite “d” and “e” terms can arise from two general isospin-symmetry breaking effects. The first is that the wave functions are not the same when protons and neutrons are exchanged. This can be due to a Thomas-Ehrman-like effect, i.e. an asymmetric effect of the continuum on the valence neutron and proton wavefunctions. However isospin mixing can also require higher order terms. For example, 0$^+$ states of lower isospin, in the inner members of a quintet, can mix with the states of interest shifting their energy. Mixing with a T = 0 state, will give rise to an “e” term where mixing with T = 1 states can also give a “d” term. (To test for finite “d” one needs to study quartets [T=3/2, odd A]. To test for finite “d” and/or “e” coefficients one needs quintets. Known quintets are restricted to A = 4n nuclei as the T_z = 0, T = 2 states in 4n+2 nuclei are very high in excitation energy and difficult to separate from the larger density of T = 0 states.)

In the 1979 review of Benenson and Kashy [8], and even that of the more recent compilation done in 1998 [9], there was no strong evidence for isospin-symmetry breaking in the IMME,
except for the $A = 9$ quartet. The status of the “d” coefficient as of 1979 is displayed in Fig. 2a, a figure from the Benenson and Kashy review [8]. However, recently there has been considerable high-precision work on the $A = 32$ quintet [10, 11, 12, and 13]. Now, this case presents a clear need for terms beyond quadratic. Our recent work on $^8_{\text{C, g.s.}}$ gave a new value for its mass and now this case also presents a clear need for terms beyond quadratic.

We have reviewed and refit the IMME quartets and quintets, using the current data. The results are shown in Fig. 2b, where the large symbols are used for the quintets (for which both the d and e terms are fit) and small triangles for the quartets (only the d term beyond quadratic is fit.) One should note the scale is now finer than for Fig. 2a and the search can look for smaller deviations than was possible before. The cases of $A = 8, 32$ and 36 stand out for their need for terms beyond quadratic and the case of $A = 16$ is conspicuous for its absence.

As noted above, the mass of $^{16}_{\text{FIAS}}$ is not known (the “?” in Figure 1b.) The reason why this state has escaped detection thus far is clear as, if this state were to decay by 2p emission, an experiment like the one we now propose is needed. Such an experiment could not have been done until recently. The systematics across A (i.e. like that presented in Fig. 2b) are needed to determine if isospin-symmetry breaking is robust, if there is a trend with A, and to disentangle the two possible mechanisms. It has been predicted that the $A = 16$ quintet will display strong isospin-symmetry breaking effects due to the much stronger s–wave character of the $^{16}_{\text{Ne}}$ proton wavefunction compared to the $^{16}_{\text{C}}$ neutron wavefunction [5].

II. Goals of the proposed experiment

1. To detect the 2p decays of both $^{16}_{\text{Ne, g.s.}}$ and $^{16}_{\text{FIAS}}$ in high statistics (on the order of 1000 events each.) These states will be formed in neutron and proton knockout reactions from the $^{17}_{\text{Ne}}$ projectile. These will be only the second pair of analog 2p emitters found.

2. From the invariant mass of the detected decay products, we will measure the energy and width of these two states. If the theoretical estimates of the widths are correct, then we will only obtain upper limits of ~60 keV. On the other hand, if we confirm the previous value of 122 keV for $^{16}_{\text{Ne}}$, this will indicate that there are problems with the existing theories.

3. The correlations between the momenta of the decay products will be compared to the predictions of the cluster model calculations of Grigorenko et al. [3].

4. The remeasurement of the mass of $^{16}_{\text{Ne}}$ and the first measurement of the mass of $^{16}_{\text{FIAS}}$ will complete the quintet for $A = 16$. The masses of the $^{16}_{\text{O}}, ^{16}_{\text{N}},$ and $^{16}_{\text{C}}$ T=2 states are
already known to 7 keV or better. We should measure the masses of 16Ne and 16F$_{\text{IAS}}$ to an uncertainty of 30 keV. This should allow the extraction of “d” and “e” to an uncertainty of ~3 keV, similar to what we obtained for A = 8 quintet (see 2b). This will allow us to determine if the A=16 quintet, like the A=8 case, has a finite “d” coefficient, implying an isospin-symmetry breaking mass effect of one type or another.

We emphasize that our previous work with the A = 8, accomplished all of these goals, achieving scientific objectives that were well beyond those stated in the initial A = 8 proposal, 08001. The new parameters for the ground-state of 8C can now largely be accounted for by an R-matrix calculation for “diproton” emission [2]. We have shown that the T = 2 analog of 8C$_{\text{gs}}$, 8B$_{\text{IAS}}$, also decays by 2p emission. The new values for 8C$_{\text{gs}}$ have allowed for a high precision test of the IMME equation from which we have found that an isospin-symmetry breaking term is required. Approval of the presently requested time will allow us to determine if the A = 16 system also requires such a term. In order to do this we need to determine the energy of the 16F$_{\text{IAS}}$ and reduce the uncertainty for the width of 16Ne$_{\text{gs}}$. We can achieve these goals using exactly the same procedure as used for the A = 8 system.

Experimental Details

The experiment apparatus is identical to the already approved 10001 experiment. The only differences between these experiments and our completed (and published [1,2]) 8001 experiment are: a) The addition of a part of CEASAR to measure the ground-state M1 from the decay of the T = 1 IAS in the residue (14N$_{\text{IAS}}$ in the present case) and b) using external preamps (with much lower gain) for the two inner HiRA E detectors so that the residues (14O$_{\text{gs}}$ and 14N$_{\text{IAS}}$) are within the range of our downstream pulse processing system.

The present request is for 2 days of (on target) beam time to collect the data on the A = 16 systems. Example simulations for the 16Ne \Rightarrow 14O + 2p decay are shown on the lower panels of Fig. 4. For comparison we show the A = 8 case in the upper panels. For the A=16 case we will have to change the gains (by using external preamps) for the two detectors closest to the beam.) No time is requested for energy calibration of the CsI(Tl) detectors, however it is our request that this experiment be done either back-to-back or without tearing down the approved 10001 experiment. Some beam time is included to ensure that the rather complex system is up and running and that the extended range offered by the added external preamps is working. This request is based on our desire to acquire at least 1000 events for each 2p decay.
References

10. S. Triambak, A. Garcia, E. G. Adelberger, at al, Phys. Rev. C. 73, 054313 (2006). (Note this paper uses the high-energy definition of \(T_z = \frac{Z-N}{2} \).)
Fig. 1a: Decay schemes for $A = 8$ 2p decay cases. Decay of 8C has been shifted up the ordinate. The decays in color are isospin allowed. The decay indicated by the blue (top) arrows were already studied in detail in exp #8001, and the decays in red (bottom) were found in #8001 and will be studied in detail in exp #10001.

Fig. 1b: Decay schemes for $A = 16$ suspected 2p decay cases. The decays (arrows) are isospin allowed and are the subject of the present proposal. Note that the energy of 16FIAS is unknown. (For this figure the energy is taken from the energy of the mirror level minus 200 keV, a procedure which gives the correct value for 8BIAS.)

Fig. 2a: The d term of the IMME fit to quartets from Benenson and Kashy [9]. Note the large error bar on the A=7 case.

Fig. 2b: The d and e terms of the IMME fit to quintets (circles and squares) and d terms from fits to quartets (small diamonds.) The A =8 results include our new mass and width for 8Cgs.
Fig. 3a: Apparatus used for exp.#8001 and we plan to use for exp.#10001 and the present experiment. The vault is S2 and the target and HiRA are shown in the chamber.

Fig. 3b: Mock-up drawing of how to use CAESAR with HiRA. The simulations indicate we can get adequate statistics for the high-energy M1 (2.5 MeV in the case of 14Ni$_{AS}$, see Fig. 1b) using only ½ of CAESAR.

Fig. 4: Simulated hit pattern on the HiRA detectors for protons and the residues in the 16Ne ground state (lower panels) and for comparison 8B$_{AS}$ decays (upper panels). In the case of 16Ne decay, note that only the gains of the two most inner detectors need to have the extended range in order to detect the HI’s. (The same is true for the residue of 16F$_{AS}$ decay, 14Ni$_{AS}$.)
Status of Previous Experiments

Results from, or status of analysis of, previous experiments at the CCF listed by experiment number. Please indicate publications, invited talks, Ph.D.s awarded, Master’s degrees awarded, undergraduate theses completed.

02019

07009

08001

10001

Time was approved to study the correlations in the 9BIAS decay and to do the necessary calibrations of the HiRA Si and CsI(Tl) detectors, the latter being Z dependent.
Educational Impact of Proposed Experiment

If the experiment will be part of a thesis project, please include the total number of years the student has been in graduate school, what other experiments the student has participated in at the NSCL and elsewhere (explicitly identify the experiments done as part of thesis work), and what part the proposed measurement plays in the complete thesis project.

This work will be a major part of the thesis work of Tara Mastren (a new graduate student at WU.) Other aspects of the project will serve as the material for the undergraduate “capstone” projects for Juan Manfredi and Marieke Jager. Juan worked on the 8C/8B data (note his authorship on these works) and he will likely focus on new $A = 8$ data. Marieke and Tara will work on the data collected from the present project - the $A = 16$ 2p decays and the IMME results.
Safety Information Worksheet

It is an important goal of the NSCL that users perform their experiments safely, as emphasized in the Director’s Safety Statement. Your proposal will be reviewed for safety issues by committees at the NSCL and MSU who will provide reviews to the PAC and to you. If your experiment is approved, a more detailed safety review will be required prior to scheduling and you will need to designate a Safety Representative for your experiment.

SAFETY CONTACT FOR THIS PROPOSAL: Betty Tsang

HAZARD ASSESSMENTS (CHECK ALL ITEMS THAT MAY APPLY TO YOUR EXPERIMENT):

____X____ Radioactive sources required for checks or calibrations.
__________ Transport or send radioactive materials to or from the NSCL.
__________ Transport or send—to or from the NSCL—chemicals or materials that may be considered hazardous or toxic.
__________ Generate or dispose of chemicals or materials that may be considered hazardous or toxic.
__________ Mixed Waste (RCRA) will be generated and/or will need disposal.
__________ Flammable compressed gases needed.
__________ High-Voltage equipment (Non-standard equipment with > 30 Volts).
__________ User-supplied pressure or vacuum vessels, gas detectors.
__________ Non-ionizing radiation sources (microwave, class III or IV lasers, etc.).
__________ Biohazardous materials.
__________ Lifting or manipulating heavy equipment (>500 lbs)

PLEASE PROVIDE BRIEF DETAIL ABOUT EACH CHECKED ITEM.
An alpha source is required to calibrate the Si detectors and gamma sources are required to calibrate CEASAR
The S-800 is not used in this experiment
Beam Request Worksheet Instructions

Please use a separate worksheet for each distinct beam-on-target requested for the experiment. Do not forget to include any beams needed for calibration or testing. This form does not apply for experiments based in the A1900. Note the following:

(a) **Beam Preparation Time** is the time required by the NSCL for beam development and beam delivery. This time is calculated as per item 4. of the Notes for PAC 36 in the Call for Proposals. This time is not part of the time available for performing the experiment.

(b) **Beam-On-Target Time** is the time that the beam is needed by experimenters for the purpose of performing the experiment, including such activities as experimental device tuning (for both supported and non-supported devices), debugging the experimental setup, calibrations, and test runs.

(c) The experimental device tuning time (XDT) for a supported device is calculated as per item 5. of the Notes for PAC 36 in the Call for Proposals. For a non-supported device, the contact person for the device can help in making the estimate. In general, XDT is needed only once per experiment but there are exceptions, e.g. a change of optics for the S800 will require a new XDT. When in doubt, please consult the appropriate contact person.

(d) A primary beam can be delivered as an on-target beam for the experiment either at the full beam energy or at a reduced energy by passing it through a degrader of appropriate thickness. The process of reducing the beam energy using a degrader necessarily reduces the quality of the beam. Please use a separate worksheet for each energy request from a single primary beam.

(e) Report the Beam-On-Target rate in units of particles per second per particle-nanoampere (pps/pnA) for secondary beams or in units of particle-nanoampere (pnA) for primary or degraded primary beams.

(f) More information about momentum correction and timing start signal rate limits are given in the A1900 service level description.

(g) For rare-isotope beam experiments, an electronic copy of the LISE++ files used to estimate the rare-isotope beam intensity must be e-mailed to the A1900 Device Contact.
NSCL PAC 36.7 – Beam Request Worksheet

Beam Request Worksheet

Please use a separate sheet for each distinct beam-on-target requested

<table>
<thead>
<tr>
<th>Beam Preparation Time</th>
<th>Beam-On-Target Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary Beam (from beam list)</th>
<th>Isotope</th>
<th>Energy</th>
<th>Minimum intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>^{20}Ne</td>
<td>170 MeV/nucleon</td>
<td>75 particle-nanoampere (pnA)</td>
</tr>
</tbody>
</table>

Tuning time (12 hrs; 0 hrs if the beam is already listed in an earlier worksheet): 12 hrs

<table>
<thead>
<tr>
<th>Beam-On-Target</th>
<th>Isotope</th>
<th>Energy</th>
<th>Rate at A1900 focal plane</th>
<th>Total A1900 momentum acceptance</th>
<th>Minimum Acceptable purity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>^{17}Ne</td>
<td>70 MeV/nucleon</td>
<td>5.8×10^5 pps/pnA (secondary beam) or pnA (primary beam)</td>
<td>1% (e.g. 1%, not ±0.5%)</td>
<td>50% (LISE++ says we should expect 55%)</td>
</tr>
</tbody>
</table>

$^{16}\text{F},^{15}\text{O},^{14}\text{N}$ all significant contaminants useful for energy calibration. Not ^{14}N is the expect residue in the IAS 2p decay.

Is a plastic timing scintillator required at the A1900 focal plane for providing a timing start signal?

[] No
[X] Yes

What is the desired thickness?
[] $125 \, \mu\text{m}$;
[X] $1000 \, \mu\text{m}$

What is the maximum rate expected for this setting? 10^5 Hz (1 MHz max)

Is event-by-event momentum correction from position measured at the A1900 Image 2 position required?

[X] No
[] Yes

Which detector should be used?
[X] Scintillator;
[] PPACs

What is the maximum rate expected for this setting?

Delivery time per table (or 0 hrs for primary/degraded primary beam): 2 hrs

Tuning time to vault: 3 hrs

Total beam preparation time for this beam: 5 hrs

Experimental device tuning time [see note (c) above]:

SeGA []; Sweeper []; Other [X] (HiRA + CEASAR)

On-target time excluding device tuning: 48 hrs

Total on-target time for this beam: 60 hrs

The expected primary beam energy and intensity were provided by Andreas Stoltz. He bases this on the experience with the primary ^{24}Mg beam at the NSCL. Rate estimates based on the numbers used above and a transmission efficiency of 1/3, i.e. $150,000 \, ^{16}\text{N} \, \text{s}^{-1}$ at our secondary target.