Isospin dyamics and the isospin dependent EOS MSU-Chimera Collaboration

July 6-13, 2004 (Catania, Italy)

¹¹²Sn,¹²⁴Sn beam at E/A=35 MeV

$^{112}Sn + ^{112}Sn$	16 hr
$^{112}Sn + ^{124}Sn$	16 hr
$^{124}Sn + ^{112}Sn$	23 hr
$^{124}Sn + ^{124}Sn$	23 hr

250 GB of data

Probe: Isospin diffusion in peripheral collisions

- Collide projectiles and targets of differing isospin asymmetry
- Probe the asymmetry δ=(N-Z)/(N+Z) of the projectile spectator during the collision.
- The use of the isospin transport ratio $R_i(\delta)$ isolates the diffusion effects:

$$R_i(\delta) = 2 \cdot \frac{\delta - \langle \delta \rangle}{\Delta \delta}$$

- Useful limits for R_i for ¹²⁴Sn+¹¹²Sn collisions:
 - $R_i = \pm 1$: no diffusion
 - − $R_i \approx 0$: Isospin equilibrium

Sensitivity to symmetry energy

$$R_i(\delta) = 2 \cdot \frac{\delta - \langle \delta \rangle}{\Delta \delta}$$

 $R_i = \pm 1$: no diffusion

Isospin equilibrium

- The asymmetry of the spectators can change due to diffusion, but it also can changed due to pre-equilibrium emission.
- The use of the isospin transport ratio $R_i(\delta)$ isolates the diffusion effects.

 $R_i \approx 0$:

Tsang, shi et al., PRL92(2004)

Isospin diffusions with mirror nuclei such as ⁷Li, ⁷Be

- The admixture of collective and thermal motion is mass dependent.
 - $E_{coll} \propto A$
 - E_{thermal} is independent of A
- Mirror nuclei ratios Y(⁷Li)/Y(⁷Be) avoid this problem, but have different Coulomb effects.
- Y(⁷Li) is largest near the rapidity of the ¹²⁴Sn beam; Y(⁷Be) is largest near the target
- $R_i(\ln(Y(^7Li)/Y(^7Be)))$ removes the Coulomb ridge
 - It is only weakly dependent on P_t .
 - It is nearly constant near beam rapidity.
- Study the impact parameter and rapidity dependence.

Chimera array

-4π array: 1192 Si + CsI telescopes

- http://www.lns.infn.it/research/chimera/

- Only Z identification for heavier particles
- Based on $\Delta E \cdot (\Delta E + E) \propto AZ^2$
- Can do this only for about 600 telescopes
- Use Fast/Slow component of the CsI to help the identification of ⁷Li/⁷Be
- Get ⁷Li/⁷Be only from 450 telescopes

Nc vs. Et

/

for given Et :

$$b_{\text{max}} = \sqrt{\int_{0}^{Et} N(E) dE} / \int_{0}^{\infty} N(E) dE$$

N(E) is the event number while the transverse energy = E

Impact Parameter selection

/ Efficiences

• b_{max} calculation

- b_{max} calculated from the total reaction cross-section

CountinaDatas

$\pi \cdot b_{\max}^2 = \sigma = \frac{CountingRates_{DAQ}/Effective}{N_{Target} \times I_{beam}}$					
Beam	124 Sn	¹²⁴ Sn	¹¹² Sn	112 Sn	
Target	124 Sn	¹¹² Sn	¹²⁴ Sn	112 Sn	
b _{max} (fm)	8.56	8.44	8.70	8.76	

- The impact parameter b is selected by two methods
 - The charge particle multiplicity of each event
 - The total energy in transverse direction for each event

