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Comparison of canonical and grand canonical models for selected multifragmentation data
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Calculations for a set of nuclear multifragmentation data are made using a canonical and a grand canonical
model. The physics assumptions are identical but the canonical model has an exact number of particles,
whereas the grand canonical model has a varying number of particles, hence, is less exact. Interesting differ-
ences are found.
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I. INTRODUCTION V
o j==[2m(i+])mT¥42s+ 1)z, exp(BEp) (1.3

In experiments whose goals were to investigate the role of h
isospin in fragment yieldfl], the following interesting fea-
tures have been observed. If we compare the central collis the partition function of one compositg. is the inverse
sions of two heavy ion systems 1 and 2, which are similar inemperature. For mirror nucldi=k+ 1k andj=k,k+1 we
all aspects of the reactions except for the neutron and protoshould simply have
composition, the isotope vyield ratiosy,(n,z)/Y,(n,z),
whereY;(n,z) is the yield of the isotope with neutron num- (Nics 1)

ber n, and proton number, from reactioni, is found = exp(Bun— Bup)exp BAER). (1.9

to exhibit an exponential relationship as a function rof (M)
andz[1,2], . . . . .
Thus the log of the ratios of the yield will be linear with
respect tAAEg that is approximately obeyed by data. How-
Y2(n,2)/Y1(n,2)=Cexplann+ apz), (1.) ever a more close inspection raises another issue.

According to Eq.(1.4), one can deduce the value gf
whereC is an overall normalization constant ang anda,  =1/T from the slope of the line. Indeed for the lines drawn
are fitting parameters. This phenomenon is termed isoscajn Fig. 1, the temperatur® is less than 2 MeV. For such a
ing, a strong evidence that the processes are statistical.  |ow temperature, the model of simultaneous breakup model

Related to isoscaling is the exponential dependence of thg,8] should not be appropriate. In addition, such low values
mirror-nuclei ratios on the binding energy. In Fig. 1, the are in direct contradictions with temperature measurements
ratios of yields of mirror nuclei: Y;(t)/Y;(®*He),  obtained from isotope yield ratios. The isotope yield tem-
Yi(Li)/ Y;("Be) andY;(*'B)/Y;(*!C) for central collisions perature is about 5 MeV for the $18n systemg9,10]. To
of ?%Sn+124Sn (solid pointg and '%Sn+1'?Sn (open
pointy at 50 MeV per nucleon are plotted as a function of . . . . —T
the binding energy differencAEg. These ratios fall ap-
proximately on an exponential. Many statistical models such 20
as the grand canonical modg3,4] of multifragmentation
predict both the isoscaling and mirror-nuclei ratio depen-
dence. E 1o

Experimental evidence suggests that multifragmentation;:
occurs when the heated matter expands to density about oni~
third of nuclear matter densifys] and the time scale for the N
emission of fragments is short, between 50 and 10@ f6V. Z
Most successful statistical models that describe multifrag->"
mentation data assume a freeze-out volume at which com ol
posite yields are to be calculated entirely according to phase

° 124sn+ 124Sn

space[7,8]. If the dissociating system is very large, then O tizgy | 2g, E/A=50 MeV

grand canonical simplification can be employ@4]. Ac- 1 ' ' ' ' !

cording to this model, the average number of composites 0.0 0.5 1.0 1.5 .0 A 3.0
with neutron number and proton numbeyr is AEg (MeV)

_ . , FIG. 1. Isobar ratios for three pairs of mirror nuclei obtained
(ni,j)=exd Blipntipp)lwi;, (1.2 from the central collisions of 2%Sn+1%45n (solid pointg
and 1%5n+ 11250 (open point} collisions. The lines are best fit of
whereuw,, 1, are neutron and proton chemical potentials andeq. (1.4).
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resolve the discrepancies between temperatures observedp#étween grand canonical partition functidig,(\,,Ap) [A
is necessary to explore details of the exponential behavior of Bu, of Eg. (1.4)] and the canonical partition function

the mirror nuclei. Qn,z, we find it convenient to exploit this relation. In the
present problem, the grand canonical partition function is
Il. CANONICAL VS GRAND CANONICAL MODELS given by
In recent years, the grand canonical model has been re- Wk
placed by a canonical model. The physics assumptions are Zgr()\n,)\p)zl_[ E exp[(k)\n+l)\p)nk,]ill. (2.3
still the same but we no longer have to assume that the sys- Kl M1

tem is large. This is a technical advancement; the detail
have already been described in several platés13 so we
will not repeat these here. The model has been used to fit the
isotope data[12,14]. Surprisingly, isoscaling that follows InZgr()\n,)\p)=E exp(khp+INp) oy - (2.9
naturally from the grand canonical model, emerges also in ol
canonical modef14]. In this paper, we will investigate why g canonical partition function can be obtained fréign by
certain results from the canonical model resemble those frorﬂaplace inverse:
the grand canonical model and what are the differences. We
will also investigate the relation between the canonical tem- 1 v B B
perature and the temperature obtained based on the simpler Qy Z:—f f e~ (nFNg=(Aptirp)Z
grand canonical rules. T @2m?-a)oa

The yield of the composite that h&s-1 neutrons and
protons is given in the canonical model by

The expression for B, (\,,\p) is

X expIn Zg(Ny+iXp NpF+iXp)JdXdX .

(2.9
_ Qn-k-17-k
(it 110 = @k 1k Onzy (2.1 While this expression is true for any, andX , the saddle-
' point approximation consists in choosing the values\ pf
HereN,Z refer to the number of neutrons and protons of theand)\p such that the kernel maximizes &= 0 andxp:O
disintegrating systemQy ; is the canonical partition func- gng making a Gaussian approximation for the integrand

tion of this system. SimilarlyQn_x—1z—« is the canonical 5round this maximum. The result is
partition function of the residue system that Hds-k—1

neutrons andZ—k protons. The ratio of the yields in the ~ Qyz~e “N"*pDexfInZy, (X, N ) 1/(27* |def??),
canonical model is then given by (2.6)

(Nt 11 o1k Qn-k-17-k where the values ok, and \, are such t_hat the average
(2.2 numbers of neutrons and protons as obtained from the grand
canonical ensemble aidandz, i.e.,

(Nik+1) - O k+1 On-kz—k-1

The first factor leads to exp(Eg). We note in passing that

for mirror nucleiAEg=AE(, the change in Coulomb en- N= dInZg (A, Ap) 2.7
ergy. If we assume a uniformly charged sphere, thdf, I\n ' '
=2e?/Rya’ (z+1)?—2°]=0.722?"® MeV, wherea is the

composite mass number. For light nuclei @72 MeV does _dInZg(Np,Np)

not fit the data very well. We note for later use that 0235 o I\p (2.8

MeV fits AEg betweena=7 anda= 15 better.

The exact expression for the canonical partition functionThe elements of the determinant are given by,
Qn,z used in[14] does not allow us to investigate easily the =4%In Zgr/c?z)\n, g ,=ay,= #1In ZyloNdN,, and ay,
features we want to study. Since the ratios are very simple irF 3% In Zgr/az)\p.
the grand canonical ensemble and since there is a connection Equation(2.2) now takes the form

<nk+1,k> %eBAEBeXp{_[)\n(N_k_1)+)\p(z_k)]+ In Zgr()\na)\p)}
(N k1) exp{—[Ay(N—K) +A(Z—Kk=1)]+ InZg (N}, A}

(2.9

Here we have omitted the ratios of the determinaded>  the average number of neutrons to legrather thanN—k
because their effects will be negligible. Equati@9) will —1 to geth, andN—k to get) /) and the average number of
reduce to the standard grand canonical result if wenset protons to beZ (rather thanZ—k to obtain\, and Z—k
=\p;hp=A\, and take these values from a system that has-1 to obtain\ ).
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For a better estimate, let us writg,=X\,+ANy ;A=\,
+AN,. Assuming lowest order expansion is valid we can
get [depending upon whether we expandZif(\,,\p) in
terms of InZy(\;,\)) or vice versq exg[InZy(\n\p)

—InZg (A, AT = exd —AN(N—k—1)—AN(Z—K)], or
exf —AN(N—K)—AN(Z—k—1)].
Equation (2.9) can be reduced to{nyq,)/{Ngk+1)
%eﬁAEBexn—xp%eﬁAEBexr’]—xé_
We will use
<nk+1,k> BAE ’ ’
~ePtEBexd (N +Ny—Np—Ap)/2]. (2.10
(Mik+1

Equation(2.10 looks just like a grand canonical result but
with an important difference. In the usual grand canonica
model\,,\, would be calculated just once, from E¢2.7)
and(2.8) whereN andZ are the neutron and proton numbers
of the disintegrating system. By contrast,, A, etc., of Eq.
(2.10 are calculated from Eq$2.7) and(2.8) for eachk and
the left-hand sides of Eq$2.7) and (2.8) are given byN
—k—1 andZ—k, respectively. The quantity,—\, etc. in-
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FIG. 2. Exact canonical model calculations for a system of neu-
tron numbeMN =104 andZ=70 using a freeze-out density of one-
quarter of normal density. This simulates centr#Sn+ 24Sn col-
lisions. Lower values olN and Z used in this calculation reflect
effects of preequilibrium emissions. The ratios of yields of mirror

creases wittk with the result that if we try to interpret the nuclei are plotted foa=1, 3, 7, 9, 11, and 13. The results for 3, 7,
canonical results within a usual grand canonical frameworland 11 can be compared with the experimental resifiig. 1).
one ends up with a large#, that is, a loweiT. Let us expand Tacwa=5 MeV is the temperature used in the canonical model
on this. In the canonical model, the slope of the log of thecalculation; Tyt would be the temperature deduced if one fit the
mirror-yield ratio depends not solely g®AEg, but also on  solid points obtained from the canonical calculations, using the
another factor that depends on the mass of the fragment, aggand canonical formula, E¢l.4). The results from a saddle-point

hence it also varies witAEg . Thus the slope of the curve in  Ed: (2.10 approximation are also shown.
the canonical approach does not give a simple measufe of

as it would in the grand canonical approach. This is demonYVe can do a similar analysis for,—\ . Finally we get
strated in Fig. 2 where it is shown that although the temperalcompare Eq(2.10]

ture used for the canonical calculatidmence the true tem-

perature is 5 MeV, deducing the temperature from the slope

of the mirror isotope yield ratio&s one would do in a grand
canonical formalisth one would arrive at a significantly
lower temperature. The best {golid line) to the calculated
values from the canonical mod&dolid points yield a tem-

1 A
(At )\n—hp—)\p)/2=AN—Ap+§ ﬂ:(Zk‘F 1).
(2.12

Equation(2.12 says that the correction grows like&k2 1

perature of 3.4 MeV. In the figure we also show that the=a, the mass of the composite. The correction would dimin-

approximation of Eq.(2.10 as shown by the star points,
works quite well.

The dependence of,—\, onk andN,Z where Xk+1 is
the mass number of the emitted particle an& gives the
size of the emitting system can be pinned down further. Le
An,Ap be the lambda values of the systénZ. We will
write Ap=An+dAy and Ap=Ap+drp. We then haveN
—k—1=Ziw; jexp{\,+]j\p). Expressing\,,\, in terms of
AN, Ap and approximating expg\p)~(1+dAp), etc. we get
—k—1=AdAy+BdAp where A and B are constantsA
=Ei2wi,j expiAnt+jAp) and B=Zijw;;exp{An+jAp).
Similarly starting fromN—k=2] w; ; exp(\,+j\,) and ex-
panding as above we getk=BdAy+CdAp where C
=Ej2wi,j exp(An+jAp). One can now expressA,dAp
in terms of the constants,B andC. We get

C—-A C+B
k+ .
B2—AC B2-AC

)\ﬂ_)\p:AN_AP—'_ (21])

ish as the disintegrating system,Z) grows. The constants

A, B, andC are positive definite and each will become larger
and larger as the disintegrating system becomes larger. The
correction would disappear in the thermodynamic limit. The
hctual values of the constams B, andC for a finite system
depend on many factors: the symmetry energy, the Coulomb
energies andN,Z of the disintegrating system.

Ill. THE ALBERGO TEMPERATURE

The Albergo formuld4] has often been used to extract a
temperature from experimental data. The formula is exact if
the following two assumptions are valitt) the populations
of various states are given by the grand canonical model and
(2) the secondary decays that will alter these primary popu-
lations can be neglected. Define a raio

CY(ALZIY(A+1Z))
COY(ALZYIY(A+1Z))]

(3.2
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where theY’s are the yields in the ground state. Then, the .
temperature is given by .
B 03 _o 7
T= &R’ (3.2 .
“
whereB is related to binding energies amsdo the ground - “""' S5 o
state spins: % 0.2 e Jﬂ;}-}%é",:ﬁiﬁ S LA
\% LT YR Lol
BZBE(Al,Zl)_BE(Al‘I‘l,Zl) z --..‘ -
3 %o S50 -——gL s T ]
—BE(A|,Zj)+BE(A+17Z)), (3.3 g : I
° %48_.0..:0.:~ .0,
T [2S(A,Z)+1]/[2S(A+1.2Z)+1]° 34 : ;’46'“
Even if the grand canonical model is exact, the change of 0 10 20
populations due to secondary decays can causé3z).to B (MeV)
give significantly different temperatures from the true grand _
canonical temperature. This was studied in detafl1i]. It FIG. 3. The inverse Albergo temperature, &8.2), from the

was shown that for large values Bf[Eq. (3.3)], the differ-  canonical model is plotted as a function of the binding energy dif-
ence between apparent temperature and the true grand d&fenceB. The inset shows the predicted temperature in an ex-
nonical temperature decreases. This suggests that while usifgnded scale. The dash linet5 MeV is the input temperature

the Albergo formula to deduce a temperature from experild the calculation.

mental data, it is advisable to use pairs that will lead to &or nuclei is consistent with the large fluctuations observed in

large value ofB. Albergo temperatures extracted from isotopes with small
Our objective here is different and is complementary tobinding energy differences.

the study made if15]. The canonical model is obviously
more rigorous than the grand canonical model. However, if IV. THE SCALING LAW

canonical values foR are used, Eq.3.2) is no longer strictly The last quantity we want to investigate is a ratio of two

correct. Using the primary yields of the ground states, we__.. . e
explre the dfeences between the deduced tomperatriiies (1 a2/ (Tn DIy andsee tiis
from Eqg. (3.2 compared to the actual temperature used in 36 the subscripts 1 and 2 refer to two systetfsr ex-
canonical model. This is shown in Fig. 3, we find that theample: 2 refers to central collisions é%Sn+ 1%4sn and 1 to
errors in temperature decrease with increadinghe insetin  gntral collisions of11%Sn+112Sn at 50 MeV/nucleon en-
Fig. 3 shows the deviation of the canonical Albergo temperagrgy). As this involves two ratios and two different systems,
ture for B greater than 10 MeV. Most of the predicted tem- the analysis is considerably more complicated than what we
peratures are slightly lower than the actual temperature of Bonsidered before. The ratRwe are after is given by

MeV. The deviations arise from the differences between iso-

tope vyields predicted by the canonical and grand canonical B wfi)myk w,(lk) Qnz—1-mz2-k Qni-1,z1-k
models. Not surprisingly, the conclusions[db] can be ap- wl(gk) wl(-l%—)m,k Qna1 72« Onirmzis’

plied here. 4.1)
Extraction of temperature from mirror-yield curves can ‘

also be cast in Albergo-type formula. The quantity that cor-For central collisions at the same beam energy per particle,

responds taB of Eq. (3.3) is small for any pair of ratios the w factors will give unity. Employing the saddle-point

shown in Fig. 1. The low temperatu(®.4 MeV instead of 5 approximation and setting the ratios of the det’s as unity as

MeV) obtained from the slope of the yield ratios of the mir- before, we can consider

QNZ—I—m,ZZ—k _ exp{_[)\n(Nz_l_m)+)\p(22_k)]+ In Zgr()\n a)\p)}

4.2
Qnz-122-k exp{ —[NA(N2— 1)+ X (Z2=K) ]+ N Zg (N A )}

Similarly,

Qui-i-mzi-k _ X~ [Ra(NL=1=m)+Xp(Z1—k)]+ I Zg (Xp Xp)}

= = P~ 4.3
Qni-121-k exp{ —[NA(NI=D)+X(Z1=K) ]+ InZg (N} A )}
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We can now indicate how the grand canonical results ar&quations4.8) and(4.9) can be solved fob\, and o\, and
recovered. We set,=\/ )\ r,1’ and\,—\,=A\, then in the lowest order these value are independettaoidk but

the ratio achieves the exponentlal charadRe#. exp(mA\,). depend uporN2, Z2, N1, andZ1. To this orderR of Eq.
Experimentally it is found that the relationshii (4.1 is independent of andk as it is in the usual grand

— exp(am) wherea is a constant independent bandk is ~ ¢anonical ensemble. This is seen to be obeyed in experiments
quite well respected. This is not so obvious from Egs1), 0 @ good approximation.

(4.2), and(4.3). We are therefore required to investigate this  Instead of Eqs(4.4—(4.9), one may also consider the
near independence of the constant following approximation trying to relate to the grand canoni-

If we write in EqQ. (4.2 A,=\,+A\, and expand cal ensemble. Recall that, ,\, are the fugacities of a sys-

In Zg (A, ')\,/)) in terms of InZy,(\,,\,) and keep lowest order tem which hasN2__—I neutrons andZZ—!< protons. If we
i th ht-hand side of E.2) v e, denote the fugacities of the system which IN& neutrons

corrections, the right-hand side of E@l.2) is simply < andZ2 protons byA,,A 7, and employ the same approxi-
In a similar fashion, the right-hand side of E4.3) is €™n,  mate methods used in the discussion leading to (Ed.1),
so that the ratidR of Eq. (4.2) is exdm(\,— )\n)] where, of we get )\rQ:ANer(ICz—sz)/(Bg—AZCZ). Similarly
course, the values of;, X, are chosen to give neutron num- X/, X, refers to a system that haél—| neutrons andZ1
bersN2—1 andN1—I and proton number&2—k andZ1 ~ —k protons. In an obvious notation we also get=Ay;
—k, respectively. Our next task is to verify thaf—\ is  +(IC,;—kB,)/(Bi—A,C,). The quantity of interest is
approximately independent dfand k.

We have four equations: .~ IC,—kB, IC;—kB;
M= Ap=Anz—Angt - .
—AC; Bi-ACy
> et tiNpg (=N2—1, (4.4) 4.10
L, Because of cancellations in the above equation, results again
> je”‘nﬂ)‘pwi’j:ZZ—k, (4.5  approximate the grand canonical result quite closely.
V. SUMMARY

> et Mo, ;=N1-I, (4.6

In summary, we have explored several experimental ob-
servables that are sensitive to the isospin effects in multifrag-
> Je”‘ N =Z1—k. (4.77  mentation. We find that the mirror ratios, isoscaling, and
temperatures calculated in canonical model behave similarly
as those predicted with the grand canonical model with one
significant difference: the temperature deduced from the cal-
culated observables with the canonical model using the rules
based on the grand canonical model can be significantly dif-
ferent from the true temperatures.

Let N, =X+ 8\, and N\, =X+ \,. From Egs.(4.5 and
(4.7), retaining terms to lowest order io\, and 6\, we
obtain

ONpY j2€M Mow i+ N, ijeMnt N =72~ 71.
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