Fragmentation measurements of 86Kr at Riken
Betty Tsang, Riken PAC meeting, Dec 18, 2003

US-Japan Collaboration

Michal Mocko NSCL Graduate Student
Bill Lynch NSCL Professor
Andreas Stolz NSCL Visiting Professor
Mark Wallace NSCL Graduate Student
Pham Ngoc Dinh NSCL Graduate Student
Franck Delaunay NSCL Research Associate
SAKURAI Hiroyoshi Univ. of Tokyo Associate Professor
MOTOBAYASHI Tohru RIKEN Chief Scientist
AOI Nori RIKEN Researcher
IWASAKI Hironori Univ. of Tokyo Research Associate
OHNISHI Tateo Univ. of Tokyo Graduate Student
SUZUKI Daisuke Univ. of Tokyo Graduate Student
NAKAO Tarou Univ. of Tokyo Graduate Student
SUZUKI Hiroshi Univ. of Tokyo Graduate Student
ICHIKAWA Yuichi Univ. of Tokyo Graduate Student
SUZUKI Masaru Univ. of Tokyo Graduate Student
ONG HooiJin Univ. of Tokyo Graduate Student
Projectile Fragmentation experiments

- Experimental objectives:
 - To understand rare isotope production in fragmentation reactions.
 - Extract systematics for fragment cross-section measurements, charge state distributions, momentum distributions,
 - Operations of current facilities, aide in experimental design, R&D for RIA, HI radiation therapy, space exploration etc.
Epax Parameterizations

Limiting fragmentation
 Independent of beam energy
 Geometrical dependence on targets

Empirical parameterizations
 Used in fragment production rate estimates
 Incorporated into LISE
 Widely used in designing experiments

Problems:
 Based on limited data sets at E/A=500 MeV
 No physics insights
 Observed deviations in producing nuclei far from stability
Comparison of Epax-predicted and experimental cross-sections

Most ratios are less than 1

Ratios decrease with decreasing charge and increasing N-Z
Fragmentation of $^{40}\text{Ca} -- \text{Be and Ta target comparison}$

Constant enhancement is predicted by EPAX.

Data may shed insights to the role of targets in production of fragments far away from stability.

Important to get data on Be & Ta targets.
Proposed Experiment

Need high quality and comprehensive data

- to explore energy and target dependence of fragmentation mechanisms
- to provide better parameterizations than EPAX especially for nuclei far from stability
 – crucial in development of fragmentation models to understand rare isotope production.

• Primary beam:
 – 86Kr; 65MeV/u, intensity \approx 1-80 pnA

• Targets:
 – 9Be (100 mg/cm2) and 181Ta (200 mg/cm2)
Comparison of Fragmentation of 40Ca and 48Ca

40Ca + 9Be

48Ca + 9Be
Projectile Fragmentation experiments

- **Primary beam:**
 - 86Kr; 65MeV/u, intensity $\approx 1-80$ pnA

- **Targets:**
 - 9Be (100 mg/cm2) and 181Ta (200 mg/cm2)

Experimental objectives:

- Comprehensive cross-section measurements for 86Kr fragmentation: data base from 25-500 MeV/u
- Deviation from EPAX
 - target effects
 - Dependence on Incident energy
- Production mechanism for n-rich isotopes in the p-removal chain.
- ...
RIPS set up

Additional timing with plastic scintillators

86Kr

$|\Delta P / P| = 1\%$

Momentum Slit

Secondary Beam

TOF scint

Si Detectors (ΔE)

E Si
Extraction of cross-sections
tail with low momentum constitutes background for n-deficient isotopes
Example: *Fragmentation of 58Ni at MSU*

Measured:
- >200 isotopes
- 9 orders of magnitude of cross-sections

N-rich isotopes
Magnified 5×10^6
Proposed run plans

I. $\sigma > 0.01$ mb ; 40 hr.

II. $10^{-2} < \sigma < 10^{-4}$ mb; 40 hr.

III. $10^{-4} < \sigma < 10^{-6}$ mb; 30 hr.

IV. $10^{-6} < \sigma < 10^{-8}$ mb; 30 hr.

V. Setup & calibrations; 24 hr.

Include 6 & 7 p-removal
Better determination of S_n for ^{80}Zn and ^{79}Cu & better understanding of how n-rich isotopes are produced.
Summary

• We are requesting 7 days of beam Time
• To obtain comprehensive isotope cross-sections from the fragmentation of 86Kr on 9Be and ^{181}Ta targets with particular attention to measure the p-removal chain up to ^{79}Cu.

Happy Holidays