Can we test Statistical Equilibrium?
Measured Isotopic yields

Isotopic effects are small: How to quantify them?

$$R_{21} = \frac{Y_2}{Y_1}$$

$$\propto e^{N\Delta\mu_n + Z\Delta\mu_p}$$

$$\propto (\hat{\rho}_n)^N (\hat{\rho}_p)^Z$$

Factorization of yields into p & n densities
Isoscaling from Relative Isotope Ratios

\[R_{21} = \frac{Y_2}{Y_1} \]

\[\propto e^{N\Delta\mu_n + Z\Delta\mu_p} \]

\[\propto \left(\rho_n^N\right)\left(\rho_p^Z\right) \]

Factorization of yields into p & n densities

Cancellation of effects from sequential feedings

Robust observables to study isospin effects
Origin of isoscaling

- Isoscaling disappears when the symmetry energy is set to zero
- Provides an observable to study symmetry energy

\[B = \alpha_v A - \alpha_s A^{2/3} + \delta - \alpha_c \frac{Z(Z-1)}{A^{1/3}} - \alpha_{sym} \frac{(A-2Z)^2}{A} \]
Predicted Isotopic yields

\[Y(N,Z) = \frac{Y^{124+124}(N,Z)}{C \cdot \exp(\alpha N + \beta Z)} \]

Agreement between data and predictions are excellent.

• extend to other systems?
Conditions for Isoscaling

\[M_{i}^{\text{pri}}(N, Z) \propto V \cdot (2J_i + 1) \cdot e^{(N\mu_n+Z\mu_p+B(N,Z)-E_i^*)/T} \]

Experimental Yields

\[M_{g.s.}^{\text{sec}}(N, Z)_{\text{tot}} \propto V \cdot S_{g.s.} \cdot e^{N\mu_n+Z\mu_p} \cdot e^{B(N,Z)/T} \cdot f_{N,Z}(T) \]

Isotope Ratios

\[\frac{Y_2(N, Z)}{Y_1(N, Z)} = \frac{f_2(T)}{f_1(T)} \cdot e^{(N\Delta\mu_n+Z\Delta\mu_p)/T} \]

Isoscaling

\[\Rightarrow \text{thermal equilibrium} \]
\[\Rightarrow \text{cancelation of sequential decay effects} \]
\[\Rightarrow \text{same temperature for reactions 1 & 2} \]
Generalized Isoscaling

Isotope Ratios with same T

\[
\frac{Y_2(N, Z)}{Y_1(N, Z)} = \frac{f_2(T)}{f_1(T)} \cdot e^{(N\Delta\mu_n + Z\Delta\mu_p)/T}.
\]

Isotope Ratios with different T

\[
\frac{Y_2(N, Z)}{Y_1(N, Z)} = \frac{f_2(T_2)}{f_1(T_1)} \cdot e^{(\alpha'N + \beta'Z)\cdot k} \cdot e^{B(N, Z)\cdot k}.
\]

where \(k = \frac{1}{T_2} - \frac{1}{T_1} \)

Correct for exp(-B(N,Z)k)

\[
\frac{Y_2(N, Z)}{Y_1(N, Z)} e^{-B(N, Z)\cdot k} \propto e^{(\alpha'N + \beta'Z)}
\]
Kr+Nb: \(E/A = 35, 70, 100, 120 \text{ MeV} \)

Ar+Sc: \(E/A = 50, 100, 150 \text{ MeV} \)

MSU 4\(\pi\) -- central collisions

Catania hodoscope -- \(T_{\text{iso}} \)

\[
<k> = \left< \frac{1}{T_2} - \frac{1}{T_1} \right>
\]
General Isoscaling

Ar+Sc: E/A=50, 100, 150 MeV
Kr+Nb: $E/A = 35, 70, 100, 120$ MeV

Generalized isoscaling

\[
<k> = \left< \frac{1}{T_2} - \frac{1}{T_1} \right>
\]

and $k_{\text{best fit}}$ values are consistent
Summary

Existence of isoscaling relations in reactions with different isospin but same temperature suggests thermal equilibrium.

- For reactions with different temperature, isoscaling relations can be restored by correcting the temperature dependence.
- Need better IMF data to resolve temperature measurements involving light and IMF isotopes.
- Can be used as a test for equilibrium.
Acknowledgements

PRC, in press

National Superconducting Cyclotron Laboratory, MSU

W. A. Friedman

University of Wisconsin, Madison

G. Imme, V. Maddalena, C. Nociforo, G. Raciti, G. Riccobene, F.P. Romano, A. Saija, C. Sfienti,

I.N.F.N. - Catania, Italy

S. Fritz, C. Groß, T. Odeh, C. Schwarz,

GSI, Darmstadt, Germany,

A. Nadasen, D. Sisan, K.A.G. Rao

University of Michigan, Dearborn