Exploring the symmetry energy in nuclear equation of state with heavy ions

Betty Tsang

The National Superconducting Cyclotron Laboratory
@Michigan State University
Transverse and elliptical flow constraints the EoS of symmetric nuclear matter.

The density dependence of asymmetry term is largely unconstrained.

The density dependence of asymmetry term is largely unconstrained.
Relevance to dilute and dense n-rich objects

Stability of Neutron Star and its structure

Sizes of nuclei with n-halo and n-skin

0 \rho_o \quad 5\rho_o

Epicenter

Nuclei+e^-
Nuclei+dripped n+e^-

11_{\text{Li}}

208_{\text{Pb}}

10 km

exotics
Multifragmentation Scenario
-- consistent with mixed phase

Time Sequence
-- System expands
-- light particle emitted
-- Fragments form
-- Fragments decouple

Time Dependence
-- Initial compression and energy deposition
-- Expansion
-- Cooling
-- Disassembly and freezeout

Different Approaches
Dynamical (AMD, BNV); Rate equations (EES);
Equilibrium at freeze-out density (BUU-SMM)
Varying the neutron contents

<table>
<thead>
<tr>
<th>System</th>
<th>$^{112}\text{Sn}+^{112}\text{Sn}$</th>
<th>$^{124}\text{Sn}+^{124}\text{Sn}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(N/Z)_0$</td>
<td>1.24</td>
<td>1.48</td>
</tr>
<tr>
<td>A_0</td>
<td>224</td>
<td>248</td>
</tr>
<tr>
<td>Z_0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>N_0</td>
<td>124</td>
<td>148</td>
</tr>
</tbody>
</table>

$^{112}\text{Sn}+^{112}\text{Sn} \rightarrow ^{124}\text{Sn}+^{124}\text{Sn}$

Gain = 24 Neutrons

$\hat{\rho}_{n}^{112} = 1$ \hspace{2cm} $\hat{\rho}_{n}^{124} \approx 1.078$

$\hat{\rho}_{p}^{112} = 1$ \hspace{2cm} $\hat{\rho}_{p}^{124} \approx 0.903$
n-enhancements observed from isotopes ratios

\[\rho_n \propto e^{\Delta\alpha} \]

Enrichment of n in the gas

\[\rho_p \propto e^{\Delta\beta} \]

Depletion of p in the gas

PRL, 85, 716 (2000)
Isoscaling from Relative Isotope Ratios

\[R_{21} = \frac{Y_2}{Y_1} \]

\[\propto e^{N \Delta \mu_n + Z \Delta \mu_p} \]

\[\propto (\rho_n)^N (\rho_p)^Z \]

Factorization of yields into p & n densities

Cancellation of effects from sequential feedings

Robust observables to study isospin effects
Compact representation of isoscaling

Central Collisions
Sn+Sn
E/A=50 MeV

\[S = R_{21} \times \exp(0.41Z) \]

\[\exp(0.37N - 0.41Z) \]

\[\exp(0.37N) \]
Isoscaling observed in many reactions

\[\frac{Y_2}{Y_1} \propto e^{(N\Delta \mu_n + Z\Delta \mu_p)/T} \]

\[PRL, 86, 5023 (2001) \]
DIC

\[R_{21} \propto \exp\left[\left(-\Delta S_n \cdot N - \Delta S_p \cdot Z\right)/T\right] \]

Separation Energy

\[E_{\text{Coul}} \quad E_{\text{sym}} \]

Evaporation

\[R_{21} \propto \exp\left[\left(-\Delta S_n + \Delta f_n^*\right) \cdot N + \left(-\Delta S_p + \Delta f_p^* + \Delta \Phi\right) \cdot Z\right]/T \]

Multifragmentation

\[R_{21} \propto \exp\left[\left(-\Delta \mu_n \cdot N - \Delta \mu_p \cdot Z\right)/T\right] \]

Chemical Potentials

\[E_{\text{Coul}} \quad E_{\text{sym}} \quad \rho_p \quad \rho_n \]
Origin of isoscaling

- Isoscaling disappears when the symmetry energy is set to zero.
- Provides an observable to study symmetry energy.
Role of density dependent asymmetry term

- Where do the fragments originate?

• Various models predict different dependence on density dependence of asymmetry term.
 - Equilibrium models: fragments originate in interior.
 - EES model: fragments emitted from surface.
Expanding Emitting Source model
W. Friedman
PRC42, 667 (1990)

Thermal instability at low density.
Density Dependence of Symmetry Energy

\[E_{\text{sym}} = C \left(\frac{\rho}{\rho_o} \right)^\gamma \]

Strong influence of symmetry term on fragment isotopic ratios.

PRL, 86, 5023 (2001)
Symmetry Terms

\[E(\rho, \beta) = E(\rho, 0) + E_{\text{sym}}(\rho) \beta^2 \]

\[K(F_1) = +61 \text{ MeV} \]

\[K(F_3) = -69 \text{ MeV} \]
Sensitivity to the isospin terms in the EOS

Isotope Ratios

Asy–stiff

Asy–soft

Isotone Ratios

Freeze-out source

Data

PRC, C64, 051901R (2001).
Summary

- **Density dependence of symmetry energy can be examined experimentally.**

- **Existence of isoscaling relations**

- **Conclusions from fragmentation work are model dependent:**
 - SMM and SMF favor ρ^2 dependence of $S(\rho)$.
 - EES favors $\rho^{2/3}$ dependence of $S(\rho)$.