

The National Superconducting Cyclotron Laboratory Michigan State University

U.S. flagship user facility for rare isotope research and education in nuclear science, astro-nuclear physics, accelerator physics, and societal applications

Betty Tsang for the STRIT/Collaboration JCNP2015, Osaka,

November 8, 2015

Nuclear Symmetry Energy: From Nucleus to Neutron Stars

From NSCL to Facility for Rare Isotope Beams (FRIB)

- Funded by DOE–SC Office of Nuclear Physics with contributions and cost share from Michigan State University and State of Michigan
 Managing to early
 - Managing to early completion in Dec 2020
 - Key feature is 400 kW beam power for all ions (5x10^{13 238}U/s)
 - Separation of isotopes in-flight
 - Fast development time for any isotope
 - Suited for all elements and short half-lives
 - · Fast, stopped, and reaccelerated beams

Michigan State University

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science

FRIB Construction Progress

above ground! April 1, 2015

\$730 M project: 2009 – 2020 (early completion)

International Collaboration is the key

JUSTIPEN

Japan-U.S. Theory Institute for Physics with Exotic Nuclei

JUSTIPEN Home JUSTIPEN Visit Application

- JUSTIPEN Visit Application Form
 Conferences, Schools, and
- Conterences, Schools, and Seminars
 Visitors
- Visitors
 Visitor Information
- Visitor Inform
 Publications
- Collaborations
- Job Postings
- JUSTIPEN Policies
- Governing Board
- RNB Resources
- Photo Gallery
- LinksNews

About JUSTIPEN

Purpose:

Deliver an international venue for research on the physics of nuclei during an era of experimental investigations on rare isotopes.

Location:

RIKEN, at the new RIB Factory

US Participation:

Provide travel and local support for U.S. visits to JUSTIPEN

Synopsis:

The Japan-U.S. Theory Institute for Physics with Exotic Nuc (JUSTIPEN) has been established in order to facilitate collal between U.S. and Japanese scientists whose main research in the area of the physics of nuclei. JUSTIPEN is located at RIKEN RIB Experimental Facility in Wako, near Tokyo, Japa participation in JUSTIPEN is in the form of travel grants and subsistence grants to those individuals who are interested in collaborating with Japanese scientists. JUSTIPEN's purview area of physics of or with exotic nuclei, including nuclear stri and reaction theory, nuclear astrophysics, and tests of the s model using exotic nuclei. While JUSTIPEN primarily focuse

JUSTIPEN provide funds for US scientists to travel to RIBF... to collaborate with Japanese scientists

1st CUSTIPEN Workshop, 2013, Beijing 中差奇诗像物理理论研究所来---次好讨会

Time to change "Theory" to "Experiment)" (2009)

- JUSTIPEN Home
- JUSTIPEN Visit Application Form
- Conferences, Schools, and Seminars
- Visitors
- Visitor Information
 Publications
- Collaborations
- Job Postings
- JUSTIPEN Policies
- Governing Board
- RNB Resources
- Photo Gallery
 Links
- News

About JUSTIPEN

Purpose:

Deliver an international venue for research on the physics of nuclei during an era of experimental investigations on rare isotopes.

Location:

RIKEN, at the new RIB Factory

US Participation:

Provide travel and local support for U.S. visits to JUSTIPEN

Synopsis:

The Japan-U.S. Theory Institute for Physics with Exotic Nuclei (JUSTIPEN) has been established in order to facilitate collaborations between U.S. and Japanese scientists whose main research thrust is in the area of the physics of nuclei. JUSTIPEN is located at the RIKEN RIB Experimental Facility in Wako, near Tokyo, Japan. U.S. participation in JUSTIPEN is in the form of travel grants and subsistence grants to those individuals who are interested in

JUSTIPEN provide funds for US scientists to travel to RIBF... to collaborate with Japanese scientists Home

- JUSEIPEN Organization
- JUSEIPEN Policies
- Grant Application Form
- Meetings
- JUSEIPEN related links

About JUSEIPEN

JUSE PEN Japan-U.S. Experimental Institute for Physics with Exotic Beams

The Japan-US Experimental Institute for Physics with Exotic Nuclei (JUSEIPEN) has been established to help promote and develop strong US-Japan experimental collaborations using rare isotope beams.

JUSEIPEN can provide funds for U.S. scientist to travel to the RI Beam factory (RIBF) at the RIKEN Nishina Center in Wako near Tokyo, and to other institutes in support of JUSEIPEN's goals. JUSEIPEN can also provide a framework to organize and support workshops and meetings to help coordinate effort on the science goals and logistics for U.S. involvement in RIBF.

If you are a scientist working at a US institution interested in developing or joining a collaboration with Japanese colleagues to carry out experiments at the RI Beam factory, RIKEN, and you think JUSEIPEN can help, then please feel free contact the steering committee (via pfallon@lbl.gov). Information on applyng for a travel funds is given under JUSEIPEN Policies

JUSEIPEN provide funds for US scientists to travel to RIBF...

EN's activities is carried tives from the U.S. and the Office of Nuclear The present cycle of ugh FY2013.

For more information on JUSEIPEN please contact pfallon@lbl.gov

The First FRIB-China Workshop on Physics of Nuclei and Hadrons

May 28-30, NSCL, Michigan State University

Nuclear Symmetry Energy: From Nucleus to Neutron Stars 曾敏兒 -- Betty Tsang

Outline

- 1. Introduction : Different forms of EoS
- 2. How did we get here? Current constraints on density dependence of symmetry energy.
- 3. Where are we going? Future challenges and opportunities.
- 4. Research funded by DOE, NEXT and JUSEIPEN.
- 5. Summary

 To probe fundamental questions on the nature of nuclear matter especially the isospin asymmetric matter.
 To recreate and study astrophysical environments

Symmetry Energy

Image by Andy Sproles, ORNL Proton

Inclusion of surface terms in symmetry

Recommendation to US Long Range Plan from EOS working group

- At $\rho << \rho_0$: Establish observables to study cluster effect and link to neutrinosphere physics.
- At $\rho \le \rho_0$: Improve constraints from both structure and reaction experiments:
- At $\rho \approx 1.5 2\rho_0$: Determine symmetry energy and the momentum dependence of the isovector potential.

Isospin Diffusion observable to study E_{sym} with Heavy Ion Collisions

Bao-An Li et al., Phys. Rep. 464, 113 (2008) Tsang, Zhang et al., PRL122, 122701(2009)

Status of Constraints from nuclear structure and reactions

S(ρ)=12.5(ρ/ρ_0)^{2/3}+C(ρ/ρ_0)

Consistent Constraints from nuclear structure and reactions with credible uncertainties NuSYM13 & ICNT2013

Equation of State of Neutron Matter

Neutron Star: balance of Gravity (pulls in) and Symmetry energy pressure (pushes out): Masses vs. Radii

$$\frac{dM}{dr} = 4\pi r^2 \mathcal{E}(r)$$
$$\frac{dP}{dr} = -G \frac{\mathcal{E}(r)M(r)}{r^2} \left[1 + \frac{P(r)}{\mathcal{E}(r)} \right]$$
$$\left[1 + \frac{4\pi r^3 P(r)}{M(r)} \right] \left[1 - \frac{2GM(r)}{r} \right]^{-1}$$

EoS of pure neutron matter: Symmetry Energy as function of pressure (density)

Recent observations of Neutron Stars (radius/Radii)

Density dependence of symmetry energy at supra-saturation density

Above saturation density, the symmetry energy density dependence may have a different energy dependence than Skyrme interactions.

Pion Observable

Resonance	Quarks	Δ Formation	∆ Decay
Δ^{++}	uuu	$p + p \rightarrow n + \Delta^{++}$	$\Delta^{++} \rightarrow \pi^+ + p$
Δ^+	uud	$p + p \rightarrow p + \Delta^+$	$\Delta^+ \rightarrow \pi^+ + n$
Δ°	udd	n + n → n + ∆°	Δ° → π ⁻ + p
Δ-	ddd	n + n → p + Δ ⁻	<u>Δ⁻</u> → π⁻ + n

Pros:

- Produced in direct n p collisions – sensitive to symmetry energy
- exit in early time Cons:
- Cross-section is low and
- Easily reabsorbed in collision medium

- Pion ratios are most sensitive compared to n/p or t/3He rtaios
- Differences of pion spectra are more sensitive than ratios of integrated yields.
- A new detector is needed to probe these observables

New Detector

- Radioactive Beam:
- low luminosity → large coverage
- High Resolution:
- resolve many different species of produced particles
- distinguish particles by mass and charge (π⁺, π⁻)
- track particles in an applied magnetic field
- Versatile for a wide range of experimental programs

Time-Projection Chamber 2D path in horizontal plane from pad Pad plane positions B field E field RI beam ₹ Z (beam)

Target

Position in vertical direction from drift time

- Products from reaction ionize detector gas inside a field cage
- Electron signal is amplified by a wire plane
- The time at which the electrons hit the pads provides the third dimension

DEPARTMENT OF Office of Science

2006 March RIKEN workshop, by Bill Lynch Possible RIKEN (EOS) program

July 23, 2014

Joint US-Japan project

US Collaboration:

December/2008: submit DOE FOA proposal for \$1.2 M November/2009: Proposal approved (CAGRA, SAMURAI-Si, JUSEIPEN) October/2010: Project start date; Construction & Shipment of TPC,

and travel (help from JUSEIPEN)

Japanese collaboration: NEXT Part of "Material Science of Quarks" ~100 M yen for TPC electronics, Ancillary trigger scintillation array, Targets, TPC gas handling system ,TPC laser calibration system, Data acquisition

Approved experiments at RIKEN

Primary	Secondary	Target	δ_{CN}
238 _U	¹³² Sn	¹²⁴ Sn	0.22
	¹²⁴ Sn	¹¹² Sn	0.15
124 _{Xe}	¹⁰⁸ Sn	¹¹² Sn	0.09
	¹¹² Sn	¹²⁴ Sn	0.15

Day 1 experiment: Triggered by multiplicity and beam veto

Yan Zhang, THU

July, 2014

August, 2015

Commissioning of outside SAMURAI

On Site Experimenters (10/23 & 29)

J. Barney (MSU) G. Cerizza (MSU) J. Estee (MSU) T. Isobe (RIKEN)* G. Jhang (Korea U) M. Kaneko (Kyoto U) Y. Kim (RISP) M. Kurata-Nishimura (RIKEN) P. Lasko (IFN, Krakow) H. Lee (RISP) J. Lee (Korea U) J. Lukasik (IFN, Krakow) W. Lynch (MSU)* T. Murakami (Kyoto U)* P. Pawlowski (IFN, Krakow) K. Pelczar (IFN, Krakow) C. Santamaria (MSU) D. Suzuki (RIKEN) B. Tsang (MSU)* Y. Zhang (Tsinghua U)

*spokesperson

Commissioning of Cosmic Events October, 2015

Event from Kyoto multiplicity>0 trigger + beam veto

Event ID: 87 (Gain calibrated) - Top view

Event ID: 17 (Gain calibrated) - Top view

multiplicity>1

ULTURE, SPORTS

Event ID. 91 (Gain calibrated) - Top view

Wire planes

- Anode and ground plane creates avalanche region for electrons
- Anode plane induces image charge on the pad plane
- Gating grid closes off amplification region when not triggered

Plane	height (mm)	pitch (mm)	diameter(µm)
Anode	4.05	4	20
Ground	8.1	1	75
Gating grid	14	1	75

(12mm x 8mm pads)

TRIT

Gating grid (Suwat Tangwancharoen)

Commissioning of outside SAMURAI

On Site Experimenters (10/23 & 29)

J. Barney (MSU) G. Cerizza (MSU) J. Estee (MSU) T. Isobe (RIKEN)* G. Jhang (Korea U) M. Kaneko (Kyoto U) Y. Kim (RISP) M. Kurata-Nishimura (RIKEN) P. Lasko (IFN, Krakow) H. Lee (RISP) J. Lee (Korea U) J. Lukasik (IFN, Krakow) W. Lynch (MSU)* T. Murakami (Kyoto U)* P. Pawlowski (IFN, Krakow) K. Pelczar (IFN, Krakow) C. Santamaria (MSU) D. Suzuki (RIKEN) B. Tsang (MSU)* Y. Zhang (Tsinghua U)

*spokesperson

Welcome to

6th international symposium on nuclear symmetry energy (NuSym2016) Tsinghua University, Beijing, Jun. 13-17, 2016

