Survey of Spectroscopic factors for Z=3-24 isotopes

Hiu Ching Lee - NSCL/Michigan State University and the Chinese University of Hong Kong

Excluding deformed Ne, F and Ti isotopes, ground state neutron spectroscopic factors for Z=3-24 nuclei extracted using the simple DWBA reaction theory agree with the independent particle models for nuclei with spherical cores (e.g. 40Ca to 48Ca isotopes). Most discrepancies arise from nuclear or core correlations can be accounted for in modern day shell model.

Conclusions

- Adopt fixed parameters in DWBA calculations for the entire range of nuclei investigated.
- Digitize ~400 angular distributions from (d,p) and (p,d) reactions measured in the past 40 years to extract the SF values for 79 nuclei from Li to Cr.
- Perform Shell Model calculations for 59 nuclei from p to 1 f $7/2$ shells.

Definitions

\[S = n \quad \text{n even} \]
\[S = 1 - \frac{n-1}{2j+1} \quad \text{n odd} \]

Theoretical spectroscopic factor

Take A(d,p)A+1 stripping reaction as an example:

\[\Psi_\alpha = \sum \psi_\alpha (r_\alpha) \psi_{\bar{\alpha}} \]

\(\psi_\alpha (r_\alpha) \) is the overlap function defined as:

\[\psi_\alpha (r_\alpha) = \Psi_\alpha^\dagger \Psi_{\bar{\alpha}} \]

The theoretical spectroscopic factor \(S_\alpha \) is given by

\[S_\alpha = \left| \frac{\psi_\alpha (r_\alpha)}{\psi_\alpha (r_\alpha)} \right|^2 \]

 Demonstrates the use of spectroscopic factors to study nuclear structure.

Comparison with Independent Particle Model

SF’s of 40Ca-48Ca isotopes agree very well with IPM. 40Ca SF value is lower than predicted. The 1f$4/2$ valence neutrons in Ca isotopes are good single particles with spherical cores.

Comparison with Shell Model (Oxbash)

Good agreement with most isotopes within 20%.

Spectroscopic Factors

- Measure the orbital configuration of the valence nucleons.

Within the Independent Particle Model (Austern):

The values of the spectroscopic factors depend on the number of valence nucleons.

Summary of the input parameters used in TWOFNR

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target r.m.s radius/density</td>
<td>Shell model</td>
</tr>
<tr>
<td>Deuteron potential</td>
<td>Daehnick [45]</td>
</tr>
<tr>
<td>Parameters for the DWBA reaction mode calculations.</td>
<td></td>
</tr>
</tbody>
</table>