Calibration of the E Si detector in a DE-E telescope with a 212Pb pin source

By placing a pin source close (~2.5 mm) to a two sided 2mm pitch Si strip detector and inserting an 212Pb activated dowel pin between the DE and E detectors, we can calibrate and determine the front dead layer thickness of the E detector without disturbing the stability of the electronics.

Pin source of HiRA telescope

- By inserting an 212Pb activated dowel pin between the DE and E detectors, we can calibrate and determine the front dead layer thickness of the E detector without dismounting the DE detector which may damage the detectors and disturb the stability of the electronics.

Dead-layer thickness determination

- Dead-layer is the non-depleted region and metallic electrodes on the surface of a silicon detector.
- The energy of alpha particles lost in the dead-layer can not be measured.
- However, the energy loss in the dead-layer varies with on the entrance angles.

Calculation

Based on the energy of all telescopes, assume $|A-1|<0.05$.

$E_{\text{init}} = E_{\text{sys}} + X_{\text{DE}} + B$

$E_{\text{sys}} = 8.785$ MeV - energy loss in DL

Position of the pin as an example

Fitting method

The alpha peaks from the pin source can be used to provide calibrations of the E detectors and compared to initial alpha source calibrations before the experiments.

Results

Dead-layer thickness

How good are the initial calibrations done before experiments

Conclusion

- A pin source is relatively easy to make and convenient to use. It provides accurate calibrations to the E Si detectors placed behind a thin DE detector with minimum disturbance to the mechanical and electronic setup in nuclear physics experiments.
- By placing a pin source close (~2.5 mm) to a two sided 2mm pitch Si strip detector, the deadlayer thickness of the Si detector is determined to be about 0.5 ±0.10 μm.
- In the example we studied, the pin source was used to both check and correct the initial calibrations of the HIRA detectors. This is particular useful in experiments that run for a long time.

I would like to express my sincere thanks to my supervisor Betty Tsang for her invaluable guidance and support, Rachel Hodges for teaching me useful analysis skills, Bill Lynch, Jack Winkelbauer, Zbigniew Chajecki, Daniel Coupland, Suwat Tangwancharoen, Mike Youngs, Jon Barney and Bec Shane for their advise and help, and the HIRA group of NSCL and the SURE program of CUHK for providing me such a great opportunity for the research experience.

Acknowledgement

I would like to express my sincere thanks to my supervisor Betty Tsang for her invaluable guidance and support, Rachel Hodges for teaching me useful analysis skills, Bill Lynch, Jack Winkelbauer, Zbigniew Chajecki, Daniel Coupland, Suwat Tangwancharoen, Mike Youngs, Jon Barney and Bec Shane for their advise and help, and the HIRA group of NSCL and the SURE program of CUHK for providing me such a great opportunity for the research experience.