Pion Simulation and Heavy Ion Collision

Mingbo Chen 2014 Winter MSU

Contents

- Motivation
- Introduction to the pBUU model
- Method of simulation
- Results and discussion
- Summary

Cited Work: Hong J, Danielewicz P.

Estee J.

Subthreshold pion production within a transport description of central Au+ Au collisions Probing the Symmetry Energy with pions

Motivation

- Nuclear equation of state (EOS) is a long standing problem in nuclear physics.
- EOS for symmetric nuclear matter has been significantly constrained. The zero-temperature energy minimizes at -16 MeV per nucleon, at normal density ρ_0 =0.16 fm⁻³. The nuclear incompressibility K=240±20 MeV.
- EOS for asymmetric nuclear matter still has large uncertainties tied to the symmetry-energy term.

Motivation

$$\frac{E}{A}(\rho, \alpha) = \frac{E}{A}(\rho, 0) + S(\rho)(\alpha^2 - O(\alpha^4))$$
$$\alpha = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$$
$$\frac{E}{A} \quad \text{Energy per nucleon} \qquad S(\rho) \quad \text{symmetry energy}$$

The density dependence of symmetry energy at $\rho < \rho_0$ has been constrained to some degree through various experimental measurements

At $\rho > \rho_0$, the knowledge is poor.

It is important to find a sensitive observable for experiments to constrain the behavior of symmetry energy at supranormal densities.

Motivation

- Different observables that could be used:
 - n/p ratio
 - t/³He
 - π⁻/π⁺
- Pions are selected as:
 - n/p ratio is less sensitive to symmetry energy with increasing beam energies.
 - t/³He requires understanding of cluster formation.
 - π^{-}/π^{+} currently the best observable, carry information about region of high-density in collision.
- So, our work is to employ pBUU transport model to simulate pion production in heavy ion collision (HIC).

Introduction to the pBUU model

- Dominant model of production is through delta resonances.
- pp -> Δ⁺⁺ -> pn π ⁺
- nn -> Δ⁰ -> pn π⁻

$$\pi^{-}/\pi^{+} \approx (\rho / \rho_{0})^{2}$$

Introduction to the pBUU model

- pBUU is the theoretical model used here is Boltzmann-Uehling-Uhlenbeck (BUU) transport model developed by P. Danielewicz et al.
- BUU semi-classical equation for the phase space distrubutions of different particles is given by

$$\frac{\partial f_X}{\partial t} + \frac{\partial \epsilon_X}{\partial \vec{p}} \frac{\partial f_X}{\partial \vec{r}} - \frac{\partial \epsilon_X}{\partial \vec{r}} \frac{\partial f_X}{\partial \vec{p}} = \kappa_X^{<} (1 \mp f_X) - \kappa_X^{>} f_X$$

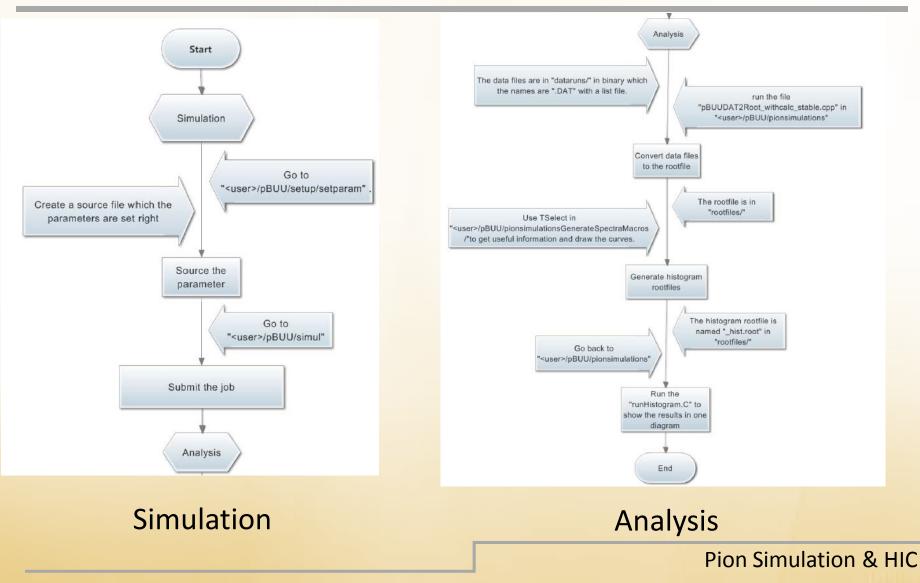
 $\begin{array}{ll} f_X(\vec{p},\vec{r},t) & \text{Particle movement} & \\ \mathcal{K}_X^< & \mathcal{K}_X^> & \\ \end{array} \ \, \begin{array}{ll} \text{The feeding and removal rates for specific momentum stats} \end{array}$

L.H.S. of equation describes motion through mean field. R.H.S. describes collisions.

Introduction to the pBUU model

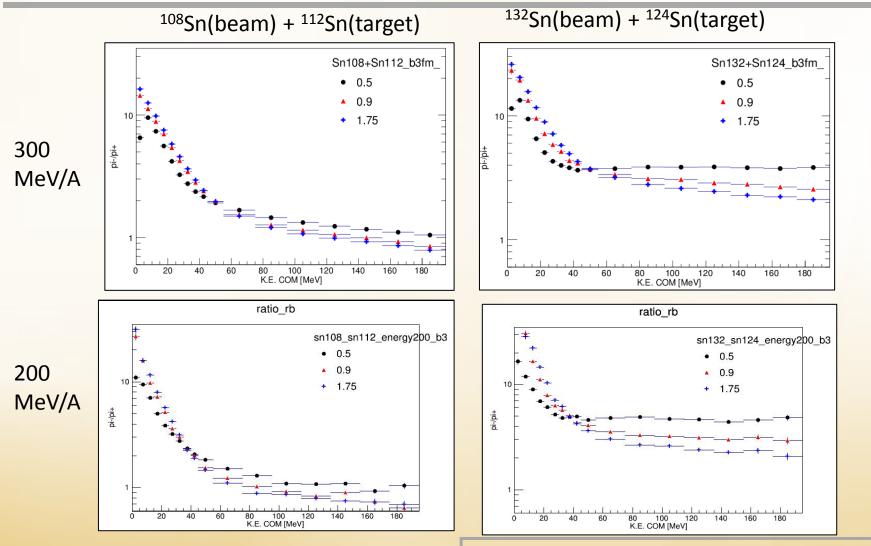
 pBUU uses simple parameterization of symmetry energy.

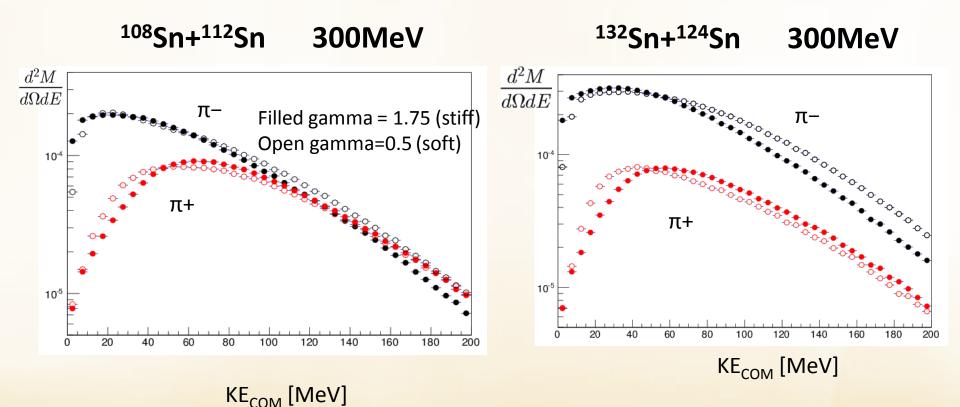
$$S(\rho) = S_{kin}(\rho_0) (\frac{\rho}{\rho_0})^{\frac{2}{3}} + S_{int}(\rho_0) (\frac{\rho}{\rho_0})^{\gamma}$$

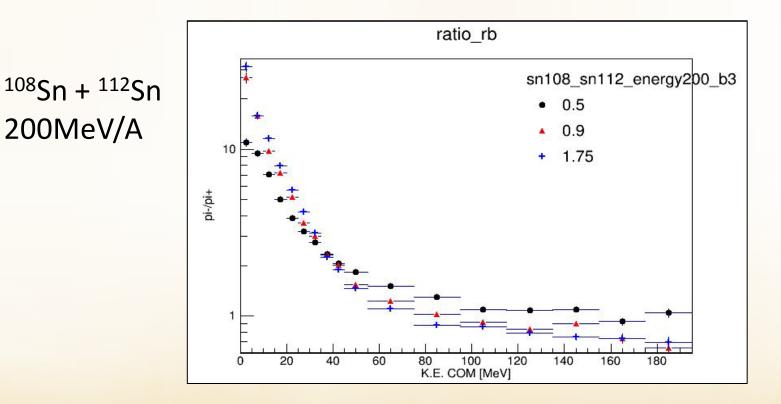

 $S_{kin}(\rho_0) \simeq 12.3 MeV$ Symmetry energy in absence of interaction

 $S_{\rm int}(\rho_0) \sim 0 MeV$ Interaction contribution

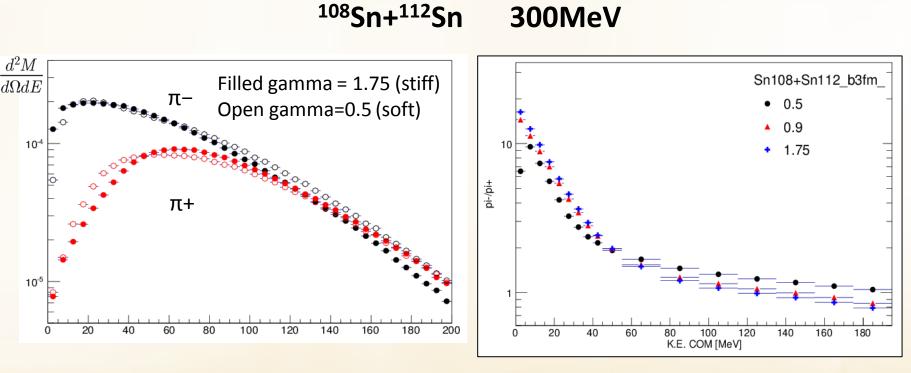
Larger γ stiff Smaller γ soft


Asymmetry energy $\frac{E}{A}(\rho, \alpha) = \frac{E}{A}(\rho, 0) + S(\rho)(\alpha^2 - O(\alpha^4))$

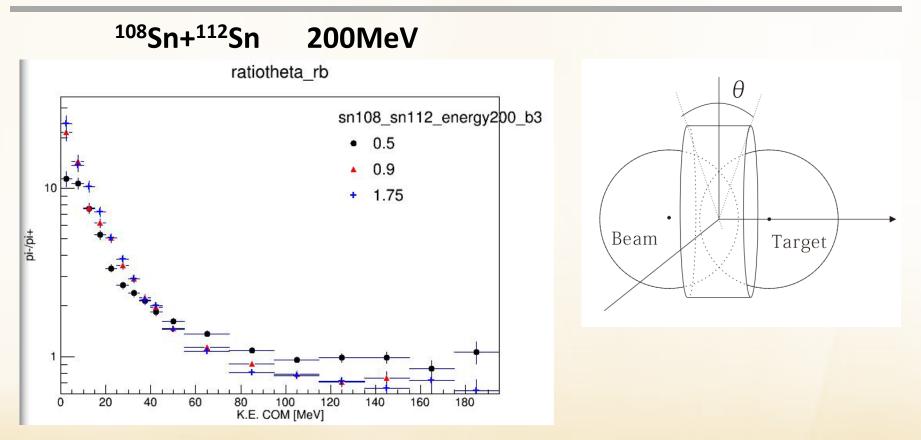

Method of simulation


Goal	Neutron rich	Neutron poor
Collision	¹⁰⁸ Sn(beam) + ¹¹² Sn(target)	¹³² Sn(beam) + ¹²⁴ Sn(target)
Energy density	200MeV/A & 300MeV/A	
Impact parameter	b=3fm	
gamma	0.5, 0.9 & 1.75	

200Mev/A simulation isdone by Justin 300Mev/A ¹³²Sn(beam) + ¹²⁴Sn(target) simulation is done by Han 300Mev/A ¹⁰⁸Sn(beam) + ¹¹²Sn(target) simulation is done by Mingbo



 Rich neutron reaction makes π- more abundent than π+



 Coulomb interactions accelerate π+ and decelerate π-. So π+/π- is big at low c.m. energies but small at high c.m. energies.

КЕ_{сом} [MeV]

 Stiff energy tends push away the coupled pions which makes π+ curve shift to higher energy and π- shift to lower energy when gamma gets bigger.

 An angle of theta is cut to see whether there is special effect at certain direction. However, it doesn't look special.

Summary

- Spectral pion ratios are good observables to study symmetry energy.
- Pions provide critical constraints in high density regions
- There are competing effects of Coulomb interactions and of symmetry energy.
- The stiffness of the energy has an impact on the competitiveness of symmetry energy.
- The angle cut of the reaction doesn't show big difference which may indicate other effects.

Acknowledge

- Justin, my workmate as well as my good friend.
- Prof. Tsang, my busy and kindly tutor.
- Han, my helpful workmate.